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Near a quantum-critical point in a metal a strong fermion-fermion interaction, mediated by a soft boson,
destroys fermionic coherence and also gives rise to an attraction in one or more pairing channels. The two
tendencies compete with each other, and in a class of large N models, where the tendency to incoherence is
parametrically stronger, one would naively expect an incoherent (non-Fermi liquid) normal state behavior to
persist down to T = 0. However, this is not the case for quantum-critical systems, described by Eliashberg
theory. In such systems, the part of the fermionic self-energy �(ωm ), relevant for spin-singlet pairing, is large for
a generic Matsubara frequency ωm = πT (2m + 1) but vanishes for fermions with ωm = ±πT , while the pairing
interaction between fermions with these two frequencies remains strong. It has been shown [Y. Wang et al. Phys.
Rev. Lett. 117, 157001 (2016)] that due to this peculiarity, the onset temperature for the pairing Tp is finite even
at large N , when the scaling analysis predicts a non-Fermi liquid normal state. We consider the system behavior
below Tp and contrast the conventional case, when ωm = ±πT are not special, and the case when the pairing
is induced by fermions with ωm = ±πT . We obtain the solution of the nonlinear gap equations in Matsubara
frequencies and then convert to real frequency axis and obtain the spectral function A(k, ω) and the density of
states N (ω). In a conventional BCS-type superconductor, A(k, ω) and N (ω) are peaked at the gap value �(T ),
and the peak position shifts to a smaller ω as temperature increases towards Tp, i.e., the gap “closes in.” We
show that, when the pairing is induced by fermions with ωm = ±πT , the situation is qualitatively different from
the standard BCS result. Namely, the peak in N (ω) remains at a finite frequency even at T = Tp − 0, the gap
just “fills in” near this T . The spectral function A(k, ω) either shows almost the same “gap filling” behavior as
the density of states, or its peak position shifts to zero frequency already at a finite � (“emergent Fermi arc”
behavior), depending on the position of k on the Fermi surface. As an example, we compare our results with
the data for the cuprates and argue that “gap filling” behavior holds in the antinodal region, while the “emergent
Fermi arc” behavior holds in the nodal region.
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I. INTRODUCTION

The pairing near a quantum-critical point (QCP) in a metal
is a fascinating subject due to highly nontrivial interplay
between superconductivity and non-Fermi liquid (NFL) be-
havior [1–34]. In most cases, the dominant interaction be-
tween low-energy fermions near a QCP is mediated by critical
fluctuations of the order parameter. In dimensions D � 3,
this interaction gives rise to a singular fermionic self-energy,
and a coherent Fermi-liquid behavior gets destroyed below
a certain temperature Tcoh, either on the full Fermi surface
[13,15,35,36] or in the hot regions [6–8,13,20,37,38]. The
same interaction, however, also mediates fermion-fermion
interaction in the particle-particle channel. The electron-
mediated interaction is positive (repulsive), but it depends
on both momentum and frequency and generally has at least
one attractive component (d wave for antiferromagnetic QCP,
p wave for a ferromagnetic QCP, s, p, and d waves for a
nematic QCP, Ref. [18]) If such a system generates pairing
below some finite Tp (i.e., either becomes a true superconduc-
tor or develops preformed pairs), the range of NFL behavior

shrinks to Tcoh > T > Tp, and even vanishes when Tp > Tcoh

[19]. A naked quantum-critical T = 0 behavior can only be
observed either if the pairing interaction is repulsive in all
channels [19], or at attractive component exists, but fermionic
incoherence prevents Cooper pairs to develop down to T = 0.

In this paper, we analyze the pairing within the Eliashberg
theory, which does not include phase fluctuations and, hence,
does not distinguish between a true superconductivity and
preformed pairs. We will use the term “superconducting” to
describe the state below the onset temperature of the pairing,
but label this temperature as Tp to distinguish it from the actual
Tc, which can be lower. We analyze superfluid stiffness and the
role of phase fluctuations in Ref. [39].

Calculations of the onset temperature for the pairing in
all quantum-critical (QC) systems, studied so far, show that
it is finite [5,6,19,22,33,34]. This can be interpreted as an
evidence that the tendency to pairing is stronger than towards
incoherent, NFL behavior. The situation can potentially be
reversed if the interaction in the pairing channel is somehow
reduced compared to that in the particle-hole channel. This
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FIG. 1. The T = 0 phase diagram of an itinerant QC model
with fermion-fermion interaction mediated by a critical boson with
dynamical propagator χ (�m ) = (g/|�m|)γ , where 0 < γ < 1. The
original model with N = 1 has been extended to N > 1 in such a way
that the pairing interaction is reduced by 1/N , while the interaction in
the particle-hole channel (the one which gives rise to NFL behavior
in the normal state) remains intact. The critical Ncr = Ncr (γ ) > 1
separates the regions of superconductivity at N < Ncr and NFL
normal state behavior at N > Ncr .

can be achieved by either modifying the momentum depen-
dence of the interaction, mediated by critical fluctuations, to
reduce the magnitude of the attractive pairing component,
or by extending the model to an SU(N ) global symmetry
[21] (the original model corresponds to N = 1). Under this
extension, the pairing interaction is reduced by 1/N , but
the self-energy stays intact [21]. In both cases, the equation
for the (frequency-dependent) pairing vertex in the attractive
channel retains its form, but the overall magnitude of the
pairing interaction is reduced. The analysis of a large-N QC
model at T = 0 shows [21,22] that there exists a critical
Ncr, separating a superconducting region at N < Ncr and a
region of a T = 0 NFL normal state behavior at N > Ncr (see
Fig. 1). A conventional reasoning in this situation would be
that the Tp(N ) terminates at T = 0, N = Ncr and vanishes for
N > Ncr. However, numerical studies of large-N QC models
yield a different result [22]—Tp(N ) bypasses N = Ncr, and
remains finite at all N (see Fig. 2).

This unusual behavior was argued in Ref. [22] to be the
consequence of the special form of Matsubara fermionic self-
energy �(ωm) at the two lowest Matsubara frequencies: ωm =
πT and −πT . Namely, in the Eliashberg theory, �(kF , ωm)
is given by the convolution of local fermionic and bosonic
propagators and the formula for �(kF , ωm) contains the sum
over internal fermionic Matubara frequencies ωm′ [see Eq. (6)
below]. For ωm = ±πT , the sum reduces to the term with

FIG. 2. The onset temperature of the pairing Tp(N ) in the γ

model, extended to N > 1. We set γ = 0.9. The line Tp(N ) bypasses
Ncr (the red dot). At large N , Tp(N ) ∝ 1/N1/γ .

m′ = m (the self-action term), all other terms in the sum over
ωm′ cancel out. The self-action term in �(kF , ωm) comes from
scattering with zero frequency transfer and finite momen-
tum transfer, and mimics the scattering by impurities. The
same thermal scattering also contributes to the pairing vertex
	(kF , ωm). Both contributions diverge at a QCP, either on
the whole Fermi surface, or at special hot spots. However,
for spin-singlet pairing, singular contributions to 	(kF , ωm)
and �(kF ωm) cancel out in equation for the gap function
�(kF , ωm) = 	(kF , ωm)/(1 + �(ωm)/ωm), by analogy with
the Anderson’s theorem [37,40–42]. As the consequence,
fermions with ωm = ±πT can be viewed for the pairing
problem as free particles. Meanwhile, the pairing interaction
between fermions with ωm = πT and −πT remains strong.
This strong interaction, not countered by the self-energy, gives
rise to the emergence of a nonzero �(kF ,±πT ) below a
certain Tp(N ), which remains finite for all values of N . A
finite �(kF ,±πT ) then induces nonzero �(kF , ωm) at other
Matsubara frequencies, for which the self-energy is strong
even without the self-action term.

In this communication, we extend the analysis of supercon-
ductivity, induced by first fermionic Matsubara frequencies,
to T < Tp(N ). We argue that, although Tp(N ) bypasses N =
Ncr, there is a crossover in the system behavior at Tcross(N ).
The crossover temperature is numerically smaller than Tp for
the physical case N = 1, and the line Tcross(N ) terminates
at T = 0 at N = Ncr. In the temperature range Tcross(N ) <

T < Tp(N ), superconductivity can be viewed as induced by
fermions with ωm = ±πT ; at smaller T < Tcross(N ) fermions
with all ωm contribute to superconductivity, and the ones with
ωm = ±πT are no longer special. At N > Ncr, Tcross = 0, and
superconductivity induced by fermions with ωm = ±πT ex-
tends down to T = 0. We show the schematic phase diagram
in Fig. 3. We emphasize that the system behavior at Tcross <

T < Tp is qualitatively different from that in a weakly coupled
superconductor for any gap symmetry. The conventional su-
perconducting behavior develops only at temperatures below
Tcross < Tp.

We analyze the evolution of the gap �(kF , ωm) below
Tp(N ) along the Matsubara axis, and then convert from
Matsubara to real frequencies and analyze the behavior of
�(kF , ω), the spectral function at the Fermi surface A(kF , ω),
and the density of states (DOS) N (ω). We argue that the fre-
quency dependence of A(kF , ω) and of N (ω) is qualitatively
different for T < Tcross(N ) and Tcross(N ) < T < Tp(N ). The
dependence on kF is determined by Fermi surface topology,
the nature of the pairing boson, and the symmetry of the
superconducting state. As our goal is to analyze the universal,
model-independent features of the frequency dependencies,
present for all pairing symmetries, in the bulk of the paper
we will not explicitly specify the dependencies of the pairing
vertex, the self-energy, the gap function, and the spectral
function on kF . We will reinstate the dependencies on kF

when we discuss the specific case of magnetically mediated
d-wave superconductor.

A. Summary of the results

Along the Matsubara axis, we find that at large N >

Ncr, the pairing vertex 	(ωm) is smaller than �(ωm) for all
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FIG. 3. A schematic phase diagram of our QC model, extended
to N > 1, for some γ < 1. The solid line is the onset temperature
for superconductivity, Tp(N ). The dashed line marks the crossover
from the behavior similar to a BCS superconductor at a lower T to
the novel behavior at a higher T , in which superconducting order
does not provide a substantial feedback effect on the fermionic
self-energy, and it largely remains the same as in the normal state.
In this region, the spectral function A(ω) and the DOS N (ω) are
functions of ω/T rather than of ω/�(T ). The critical Ncr separates
superconducting and normal states at T = 0. This phase diagram
has been obtained within the Eliashberg theory, which neglects gap
fluctuations. The latter likely destroy long-range superconducting
order in some T range below Tp(N ), leading to pseudogap behavior
between the actual Tc and Tp. Our results for N (ω) and A(ω) above
Tcross do not rely on the existence of a long-range superconducting
order and should survive in this range.

temperatures and all Matsubara frequencies, including ±πT .
The self-energy �(ωm) with m �= 0,−1 remains essentially
the same as in the normal state, i.e., the feedback effect from
superconductivity on this self-energy is weak. We show that
the pairing gap �(ωm) is strongly peaked at ωm = ±πT .
Specifically, �(±πT ) is larger by the factor N than �(ωm �=
±πT ). As T decreases below Tp(N ), �(πT ) first increases,
and then reaches the maximum and eventually vanishes at
T = 0. At N < Ncr, �(πT ) tends to a finite value at T = 0,
and the magnitude of �(0) increases as N gets progressively
smaller. At N < Ncr, the temperature dependence of �(πT )
is still nonmonotonic, with the maximum at a finite T . When
N gets smaller, the maximum becomes more shallow, and
at N → 1, �(πT ) monotonically increases as T decreases
below Tp.

We use the results along the Matsubara axis as an input and
obtain the behavior of 	(ω) and �(ω) along real frequency
axis. Using these 	(ω) and �(ω), we obtain the DOS

N (ω) = N0 Re

[
1√

1 − (	(ω)/(ω + �(ω)))2

]
. (1)

We show below that the ratio 	(ω)/(ω + �(ω) can be re-
expressed exactly as 	∗(ω)/(ω + �∗(ω)), where 	∗(ω) and
�∗(ω) are the solutions of the modified Eliashberg equations,
in which thermal contributions are explicitly taken out.

At the lowest T < Tcross(N ), N (ω) displays a conventional
BCS-like behavior: it nearly vanishes at ω < �(0) (more
exactly, at ω < ω0, where ω0 is the solution of �(ω0) = ω0),

FIG. 4. A representative of our results for the DOS. We set
γ = 0.3 and N = 1.5, which is smaller than Ncr for this γ . At low
T < Tcross ∼ 0.1Tp, the DOS has a peak at ω ≈ �(T ), and the peak
frequency decreases as temperature increases, i.e., the gap in the
DOS closes. At T > Tcross, the DOS flattens up with increasing T
(the gap fills in). In this T range the maximum in the DOS is located
at ωp ∼ T , which increases with increasing T .

and has a sharp peak at ω = ω0 ∼ �(0). As T increases,
the position of the maximum in the DOS initially shifts to a
lower frequency [because �(0) gets smaller with increasing
T ], i.e., the gap in the DOS “closes in” with increasing
temperature. However, once temperature exceeds Tcross(N ),
this behavior changes qualitatively. We show that at Tcross <

T < Tp, N (ω) is finite at all frequencies, including ω = 0, and
its dependence on ω is determined by the universal scaling
function of ω/T . As the consequence, the frequency, at which
N (ω) has a maximum, linearly increases with increasing T .
As T approaches Tp from below, DOS “fills in,” i.e., N (ω)
approaches N0, but the position of the maximum in N (ω)
remains at a finite frequency. At N > Ncr, Tcross = 0, and the
frequency dependence of N (ω) is determined by the scaling
function of ω/T at all T . In this case, N (ω = 0) remains finite
even in the limit T → 0.

We emphasize that these two distinct regimes of the behav-
ior of N (ω) are present even in the original physical model
with N = 1. In this respect, the extension to N > 1 is just a
convenient way to understand the origin of such behavior by
extending the width of the regime, in which superconductivity
is generated solely by fermions with ω = ±πT . A represen-
tative of our results for the DOS is shown in Fig. 4

The phenomenon in which N (ω = 0) remains finite at
T → 0 is known as “gapless superconductivity.” It was orig-
inally found by Abrikosov and Gorkov in their analysis of an
s-wave BCS superconductor with magnetic impurities [43]. In
their case, gapless superconductivity exists in a finite parame-
ter range before magnetic impurities destroy superconductiv-
ity. In general, gapless superconductivity emerges when the
imaginary part of the fermionic self-energy at zero frequency
remains finite, despite the fact that superconductivity gaps
out low-energy excitations. Several researchers argued [44]
in early days after BCS that any phonon-mediated s-wave
superconductor is a gapless superconductor at a finite T
because Im �(ω = 0) is finite due to scattering on thermally
excited phonons. The same holds for electronically mediated
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superconductivity in a clean metal. Still, at the lowest T ,
Im �(ω = 0) is strongly reduced, compared to its normal
state value, due to the reduction of the phase space for low-
energy scattering [45–48]. Numerical analysis of Eliashberg
equations for several models of magnetically induced d-wave
superconductivity [7,16,37] and for strong coupling (small
Debye frequency) limit of electron-phonon superconductivity
[1–4] shows that �′′(0) rapidly increases above some T < Tp,
and the maximum in the DOS shifts up from �(T ) and
remains at a finite frequency at Tp. This is consistent with
our theory of two qualitatively different regimes of system
behavior below and above Tcross.

The behavior of the spectral function is more involved
because in A(ω) the thermal contribution does not cancel out.
The expression for A(ω) = −(1/π ) Im[G(kF , ω)] at ω > 0 is
[see Eq. (70) below]

A(ω) = 1

π
Im

[
ω + �(ω)

(ω + �(ω))2 − 	(ω)2

]

= 1

π
Im

[
ω + �∗(ω)

(ω + �∗(ω))2 − 	∗(ω)2
L(ω)

]
, (2)

L(ω) =
√

	∗(ω)2 − (ω + �∗(ω))2

P sgn Im �̃∗ +
√

	∗(ω)2 − (ω + �∗(ω))2
, (3)

where, we remind, 	∗(ω) and �∗(ω) are the solutions
of the modified Eliashberg equations without self-
action terms. The frequency-independent P = P(T )
describes the thermal contribution to the self-
energy. When P >

√
	∗(ω)2 − (ω + �∗(ω))2, L(ω) ≈√

	∗(ω)2 − (ω + �∗(ω))2/P. In this case, A(ω) ∝ N (ω),
i.e., the spectral function displays the same crossover from
“gap closing” to “gap filling” as the DOS. In the opposite
limit P <

√
	∗(ω)2 − (ω + �∗(ω))2, L(ω) ≈ 1. In this case,

A(ω) at T < Tcross shows two sharp peaks at ω = ±�(0).
At temperatures above Tcross, the two peaks merge, and A(ω)
develops a maximum at ω = 0, resembling that of the normal
state. A representative of our results for A(ω) is shown in
Fig. 5.

The transformation from “gap closing” to “gap filling”
behavior in the DOS and the spectral function has been
observed in several superconducting materials, most notably
the d-wave cuprates [45,49–57] The spectral function in the
cuprates shows the same behavior as the DOS in the antinodal
regions, where the fermionic incoherence is the strongest, and
the d-wave gap is the largest. In the regions near the Brillouin
zone diagonals, the symmetrized spectral function has peaks
at a finite frequency ±�(0) at low temperatures, and a single
maximum at ω = 0 at higher temperatures. The angular range
in which the system displays a single peak above a certain T
has been termed a Fermi arc [45]. Our results, applied to d-
wave case, reproduce and explain the observed behavior. We
argue that for magnetically mediated d-wave superconductor,
the thermal piece in the self-energy P = PkF in (3) is large
in the antinodal region, hence A(kF , ω) ∝ N (ω), while in the
nodal region PkF is much weaker, hence A(kF , ω) is given by
Eq. (2) with L(ω) ≈ 1.

FIG. 5. A representative of our results for the spectral function
A(ω) for γ = 0.3 and N = 1.5 (N < Ncr). Left panel is for the
case when thermal contribution to A(ω) is strong, right panel is for
the case when it is weak (in our notations, the cases P → ∞ and
P ≈ 0, respectively). In both panels, A(ω) at low T < Tcross has well
pronounced peaks at ω = ±�(T ). The peak frequency decreases
with increasing T . At T > Tcross, the peaks disappear, and the spectral
function shows a dip, when P is large, and a single peak at ω = 0,
when P is small.

B. Relation to phenomenological models

The crossover from “gap closing” to “gap filling” in
the DOS and in A(kF , ω) in the antinodal regions and the
crossover from two peaks to a single peak in A(kF , ω) in
the nodal regions, have been phenomenologically described
by assuming that the pairing vertex 	(kF , ω) is independent
of frequency and has the same form as in a weak coupling
superconductor (not necessary s-wave), while the full self-
energy �(kF , ω) = i
kF (T ) sgn ω, where 
kF (T ) is different
in nodal (N) and antinodal (A) regions (Refs. [50,58–60]) Un-
der this approximation, the DOS becomes [using 	(kF , T ) =
�kF (T ) to match the notations in earlier papers and assuming
that �kF (T ) ≈ �(T ) weakly depends on kF in the antinodal
regions, which gives the largest contribution to the DOS]

N (ω) = N0 Re

⎡
⎣ 1√

1 − (
�(T )

ω+i
A(T )

)2

⎤
⎦, (4)

where 
A(T ) is the damping in the antinodal region. At

A(T ) = 0, the DOS vanishes at ω < � and is singular
at ω = � + 0. A nonzero 
A(T ) makes N (ω) continuous
and nonzero down to ω = 0. Furthermore, the position of
the peak in N (ω) shifts to a higher frequency from ω =
�(T ) (see Fig. 6) At vanishing �(T ) the peak in N (ω) ≈
N0(1 + 1

2�2 Re [ 1
(ω+i
A )2 ]) remains at a finite ω = √

3
A. In
other words, the magnitude of the deviation of N (ω) from

FIG. 6. The DOS N (ω) and the spectral function AN (ω) in a dirty
BCS superconductor, from Eqs. (4) and (5).
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N0 is set by �2, while its frequency dependence is set by
Re 1

(ω+i
A )2 and does not depend on �. If one additionally sets
phenomenologically 
A(T ) ∝ T , one obtains that the position
of the maximum in the DOS increases linearly with T near
T = Tp, when 
A(T ) > �(T ).

A similar phenomenolgical model, with the linear T depen-
dence of the damping rate in the nodal region, 
N (T ) ∝ T ,
was used [60] to explain Fermi arcs. Indeed, approximating
	(kF , ω) by �N (T ), with d-wave angular dependence, ap-
proximating �(kF , ω) by i
N (T ) sgn ω, and using the first
formula in (2), we obtain

AN (ω) = − 1

π
Im

[
ω + i
N (T )

(ω + i
N (T ))2 − �2
N (T )

]

= 1

π

ω2 + �2
N (T ) + 
2

N (T )(
ω2 − �2

N (T ) − 
2
N (T )

)2 + 4ω2
2
N (T )

. (5)

This spectral function has two separate peaks at positive and
negative ω at 
N (T ) <

√
3�N (T ), and a single maximum at

ω = 0 at 
N (T ) >
√

3�N (T ) (Fig. 6)
Phenomenological modeling of the spectral function in

the antinodal region requires at least two parameters, as one
has to reproduce the form proportional to the DOS. One
phenomenological parameter is the analog of the thermal
contribution P(T ) in Eq. (3), the other sets the form of
�∗(ω) = i
∗

A(T ) sgn ω. The form of the spectral function in
the antinodal region is reproduced when P(T ) � 
∗

A(T ).
Comparing our microscopic theory with the phenomeno-

logical ones, we note that we can extract from our results the
effective damping rates in the nodal and antinodal regions,
and these damping rates are indeed similar to the ones used
in phenomenological models. Our formulas are more complex
than just �(ω) = i
 sgn ω and 	(ω) = �. Both � and 	 in
our case are complex functions, with substantial frequency
dependence. However, the key distinction between our theory
and phenomenology is that we point out the specific reason for
the linear in T dependence of the damping rate between Tcross

and Tp, namely, that the pairing in this T range is induced by
fermions with ωm = ±πT , due to the vanishing of �∗(±πT ).

The issue, which we do not address here, is the role of
pairing fluctuations. We remind the reader that the Eliashberg
theory neglects phase and amplitude fluctuations of the pair-
ing vertex and in this respect Tp, obtained by solving Eliash-
berg equations, should be treated as the onset temperature for
the pairing, rather than the actual Tc for superconductivity.
It is very likely that in some range below Eliashberg Tp,
fluctuations destroy long-range superconducting order, and
the actual Tc < Tp. This is corroborated by the analysis of
the stiffness for phase fluctuations above Tcross (Ref. [39]). In
between Tc and Tp, the system displays pseudogap behavior
of preformed pairs. Our results for the DOS and the spectral
function at T > Tcross should survive at Tc < T < Tp because
they are the consequences of the fact that in this T range
the feedback from the pairing on the fermionic self-energy
is weak. Strong fluctuations of the pairing gap reduce this
feedback even further. In other words, our theory describes
gap filling and Fermi arcs both at T � Tc and in the pseu-
dogap region Tc < T < Tp. Still, to fully address the issue
of gap fluctuations (both transverse and longitudinal), one

needs to go beyond the Eliashberg theory and analyze the full
Luttinger-Ward functional [61].

The paper is organized as follows. In Sec. II, we present
the microscopic model of the pairing, mediated by a gapless
boson with χ (�m) = (g/|�m|)γ (the γ model), and extend
the model to N > 1. We present the set of coupled Eliashberg
equations along Matsubara axis for the pairing vertex 	(ωm)
and the fermionic self-energy �(ωm) and discuss how one can
eliminate the self-action terms. In Sec. III, we briefly review
earlier results of the analysis of the linearized gap equation,
the existence of the critical Ncr at T = 0, and the behavior of
the onset temperature for the pairing Tp(N ). In Sec. IV, we dis-
cuss system behavior at N > Ncr, first in Matsubara frequen-
cies, in Sec. IV A, and then in real frequencies, in Sec. IV C.
We present the analytical solution of the Eliashberg equations
at large N and discuss the behavior of the pairing gap, the
Free energy and the specific heat, the DOS, and the spectral
function. In Sec. V, we discuss system behavior at N < Ncr,
again first in Matsubara frequencies, in Sec. V A, and then in
real frequencies, in Sec.V B. In Sec. VI, we summarize our
results and compare them with the experimental data.

II. THE MODEL

We consider a model of itinerant fermions at the onset
of a long-range order in either spin or charge channel. At
the critical point, a soft boson associated with the fluctua-
tions of the emerging order parameter, becomes massless and
mediates singular interaction between fermions. We follow
earlier works [6,7,12–14,16,19,21,22,34,62] and assume that
this interaction is attractive in at least one pairing channel
and that bosons can be treated as slow modes compared to
fermions, i.e., the Eliashberg approximation is valid. Within
this approximation one can explicitly integrate over the mo-
mentum component perpendicular to the Fermi surface (for a
given pairing symmetry) and reduce the pairing problem to
a set of coupled integral equations for frequency dependent
self-energy �(ωm) and the pairing vertex 	(ωm) for fermions
on the Fermi surface. The interaction between fermions is
mediated by a critical boson with χ (�) = (g/|�|)γ (the γ

model, Refs. [6,7,12,22,34]). We made χ (�) dimensionless
by combining it with fermion-boson coupling constant g. The
boson-mediated interaction simultaneously gives rise to the
NFL form of the self-energy in the normal state and to pairing.
Both effects develop at a scale of order g, which is the only
parameter with the dimension of energy. The equations we
analyze are

	(ωm) = πT gγ
∑

m′

	(ωm′ )√
�̃2(ωm′ ) + 	2(ωm′ )

1

|ωm − ωm′ |γ ,

�̃(ωm) = ωm+gγ πT
∑

m′

�̃(ωm)√
�̃2(ωm′ )+	2(ωm′ )

1

|ωm−ωm′ |γ ,

(6)

where here and below �̃(ωm) = ωm + �(ωm). Note that we
define �(ωm) as a real function of frequency, i.e., without
the overall factor of i. The self-energy along Matsubara axis,
related by the Kramers-Krong (KK) formula to �

′′
(ω) along

the real frequency axis, does contain i as the overall factor.
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The superconducting gap �(ωm) is defined as a real variable

�(ωm) = ωm
	(ωm)

�̃(ωm)
. (7)

The equation for �(ω) is readily obtained from (6)

�(ωm) = πT gγ
∑

m′

�(ωm′ ) − �(ωm)ωm′
ωm√

ω2
m′ + �2(ωm′ )

1

|ωm − ωm′ |γ . (8)

This equation contains a single function �(ω), but for the
price that �(ωm) appears on both sides of the equation, which
makes (8) less convenient for the analysis than Eqs. (6).

Equation (6) describes color superconductivity [9] (γ =
0+, χ (�m) ∝ log |ωm|), spin- and charge-mediated pairing
in D = 3 − ε dimension [14,19,21] (γ = O(ε) � 1), a 2D
pairing [38] with interaction peaked at 2kF (γ = 1/4), pairing
at a 2D nematic/Ising-ferromagnetic QCP [5,23,63] (γ =
1/3), pairing at a 2D (π, π ) SDW QCP [6,7,20,64] and an
incommensurate CDW QCP [65,66] (γ = 1/2), a 2D pairing
mediated by an undamped propagating boson (γ = 1), and the
strong coupling limit of phonon-mediated superconductivity
[1–4] (γ = 2). The pairing models with parameter-dependent
γ have also been considered (Refs. [11,12]). In this commu-
nication, we consider the set of γ models with γ < 1. The
analysis for γ > 1 requires a separate consideration because
of the divergence of the normal state self-energy at T = 0.

The full set of Eliashberg equations for electron-mediated
pairing contains also the equation describing the feedback
from the pairing on χ (�), e.g., the emergence of a prop-
agating mode (often called a resonance mode) in the dy-
namical spin susceptibility for d-wave pairing mediated by
antiferromagnetic spin fluctuations [47,48]. To avoid addi-
tional complications, we do not include this feedback into
our consideration. In general terms, the feedback from the
pairing makes bosons less incoherent and can be modeled by
assuming that the exponent γ moves towards larger value as
T moves down from Tp.

The two equations in (6) describe the interplay between
two competing tendencies–the tendency towards supercon-
ductivity, specified by 	, and the tendency towards incoherent
NFL behavior, specified by �. The competition between
the two tendencies is encoded in the fact that � appears
in the denominator of the equation for 	 and 	 appears in
the denominator of the equation for �. Accordingly, a large,
non-FL self-energy is an obstacle to Cooper pairing, while
once 	 develops, it reduces the strength of the self-energy,
i.e., moves a system back into a FL regime.

The right-hand side (r.h.s.) of the equations for 	(ωm) and
�(ωm) contain divergent contributions from the terms with
m′ = m, i.e., from χ (0). The divergence can be regularized
by moving slightly away from a QCP, in which case χ (0) is
large but finite. This term mimics the effect of nonmagnetic
impurities and by Anderson theorem should not affect Tp. To
get rid of this thermal contribution in the equations for 	(ω)
and �(ω), we follow Refs. [37,42] and use the same procedure
as in the derivation of the Anderson theorem [67]. Namely, in
each equation in (6), we pull out the term with m′ = m from
the sum and move it to the left-hand side (l.h.s.). We then

introduce new variables 	∗(ωm) and �∗(ωm) as

	∗(ωm) = 	(ωm)(1 − Q(ωm)),

�̃∗(ωm) = �̃(ωm)(1 − Q(ωm)), (9)

where

Q(ωm) = πT χ (0)√
�̃2(ωm) + 	2(ωm)

. (10)

The ratio 	(ωm)/�̃(ωm) = 	∗(ωm)/�̃∗(ωm), hence �(ωm),
defined in (7), is invariant under 	(ωm) → 	∗(ωm) and
�̃(ωm) → �̃∗(ωm). Using (9), one can easily verify that the
equations on 	∗(ωm) and �̃∗(ωm) are the same as in (6),
but without the thermal contribution, i.e., the summation over
m′ now excludes the divergent term with m′ = m. In the gap
equation, the term with m = m′ vanishes because the vanish-
ing of the numerator in the r.h.s. of (8). One can also solve (9)
backwards and express 	(ωm) and �̃(ωm) via 	∗(ωm) and
�̃∗(ωm) as

	(ωm) = 	∗(ωm)(1 + Q∗(ωm)),

�̃(ωm) = �̃∗(ωm)(1 + Q∗(ωm)), (11)

where

Q∗(ωm)
πT χ (0)√

(�̃∗(ωm))2 + (	∗(ωm))2
. (12)

Like we said in Introduction, our goal is to analyze the
system behavior at Tcross < T < Tp, in particularly ω/T scal-
ing in the DOS and the spectral function, which we associate
with the special role of fermions with Matsubara frequencies
ωm = ±πT . To understand this behavior, it is instructive to
extend the range where it holds by reducing the value of Tcross.
We argue that this can be achieved by reducing the tendency
towards pairing compared to that for the NFL normal state.
To do this, we follow Refs. [21,68] and extend the model to
matrix SU(N ). Under this extension, the interaction in the
particle-hole channel remains intact, while the interaction in
the particle-particle channel acquires an additional factor 1/N .
The outcome of the extension to N > 1 depends on whether
it is done for the original Eliashberg equations, or for the
modified ones, in which self-action terms are eliminated. In
Refs. [21,68], the extension to N > 1 was done in the original
Eliashberg equations. As a result, at N > 1, their gap equation
at a QCP contains singular terms, which gave rise to qualita-
tive changes in the system behavior between N = 1 and N >

1. We first eliminate the thermal contributions to 	(ωm) and
�(ωm) only then extend the modified Eliashberg equations for
	∗(ωm) and �∗(ωm) to N �= 1, In this procedure, gap equation
at N > 1 does not acquire singular terms. As our goal is to
understand the system behavior at N = 1, we believe that our
procedure is more adequate as in our case the extension to
N > 1 reduces Tcross and makes it vanish at N > Ncr, but the
structure of the gap equation and equations for the DOS and
the spectral function remain the same as at N = 1.
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The modified equations for 	∗(ωm) and �̃∗(ωm) become

	∗(ωm) = πT

N
gγ

∑
m′ �=n

	∗(ωm′ )√
(�̃∗(ωm′ ))2 + (	∗(ωm′ ))2

1

|ωm − ωm′ |γ ,

�̃∗(ωm) = ωm + gγ πT
∑
m′ �=m

�̃∗(ωm)√
(�̃∗(ωm′ ))2 + (	∗(ωm′ ))2

1

|ωm − ωm′ |γ , (13)

and the equation for �(ωm) becomes

�(ωm) = πT

N
gγ

∑
m′ �=m

�(ωm′ ) − N�(ωm)ωm′
ωm√(

ω2
m′

) + �2(ωm′ )

1

|ωm − ωm′ |γ . (14)

Below we will also need the expression for the Free energy Fsc of a superconductor, described by the Eliashberg theory. The
formula for Fsc has been obtained in Refs. [61,69,70] for conventional s-wave superconductivity, mediated by an Einstein phonon
(the case γ = 2, finite ωD, and N = 1). Extending the results to γ < 1, QC regime, where the bosonic mass vanishes, and to
N �= 1, we obtain

Fsc = −N0

⎛
⎝2πT

∑
m

ω2
m√

ω2
m + �2

m

+ π2T 2gγ
∑
m �=m′

ωmωm′ + 1
N �m�m′√

ω2
m + �2

m

√
ω2

m′ + �2
m′

1

|ωm − ωm′ |γ

⎞
⎠ (15)

where �m = �(ωm). The gap equation (14) is obtained from the condition δFsc/δ�n = 0 In the normal state, the expression for
the Free energy reduces to

Fn = −N0

⎛
⎝2πT

∑
m

|ωm| + π2T 2gγ
∑
m �=m′

sgn ωm sgn ωm′

|ωm − ωm′ |γ

⎞
⎠. (16)

The difference between Fsc and Fn at T = 0 is the condensation energy of a superconductor. At a finite T ,

δF = Fsc − Fn = −2πT N0

∑
m

|ωm|
(

1√
1 + D2

m

− 1

)
− N0π

2T 2gγ
∑
m �=m′

sgn ωm sgn ωm′

|ωm − ωm′ |γ
1 + 1

N DmDm′ − √
1 + D2

m

√
1 + D2

m′√
1 + D2

m

√
1 + D2

m′

,

(17)

where Dn = D(ωn) = �(ωn)/ωn. Near T = Tp, one can expand δF in powers of �m:

δF = πT N0

∑
m

|ωm|D2
m − N0π

2T 2gγ
∑
m �=m′

sgn ωm sgn ωm′

|ωm − ωm′ |γ
(

1

N
DmDm′ − D2

m + D2
m′

2

)

+ 3

4
πT N0

∑
m

|ωm|D4
m − N0π

2T 2gγ
∑
m �=m′

sgn ωm sgn ωm′

|ωm − ωm′ |γ
(

1

4
D2

mD2
m′ + 3

8

(
D4

m + D4
m′

) − 1

2N
DmDm′

(
D2

m + D2
m′

))
. (18)

III. THE LINEARIZED GAP EQUATION

To obtain Tp, it is sufficient to consider the linearized gap
equation. It is obtained from (13) by setting 	∗ to be infinites-
imally small. Then 	∗(ωm′ ) in the denominators of (13) can
be ignored, and the self-energy �∗(ωm) can be approximated
by its normal state form. The resulting equations are

	∗(ωm) = gγ

N
πT

∑
m′ �=m

	∗(ωm′ )

|ωm′ + �∗(ωm′ )|
1

|ωm − ωm′ |γ ,

�∗(ωm) = gγ πT
∑
m′ �=m

sgn(ωm′ )

|ωm − ωm′ |γ . (19)

By power counting, �∗(ωm) ∝ gγ ω
1−γ
m . Substituting this into

the equation for 	 in (19), we obtain that the pairing kernel
Km,m′ ≡ (gγ /N )/(|ωm′ + �∗(ωm′ )|)/|ωm − ωm′ |γ is marginal

at g � |ωm′ | � |ωm|, where Km,m′ ∝ 1/|ω′
m|, and decays as

Km,m′ ∝ gγ /|ωm′ |1+γ at |ωm′ | � g, ωm. This implies that Tp,
if it exists, should be generally of order g. The marginal form
of the kernel is similar to that in the BCS case, and within
the perturbation theory gives rise to the logarithmical growth
of the pairing susceptibility. However, in distinction to BCS,
the marginal form of Km,m′ holds only if |ωm′ | > |ωm|, i.e., at
each order of perturbation, the logarithm is cut by the running
frequency in the next cross-section in the Cooper ladder. As
the consequence, the summation of the logarithms alone does
not lead to the divergence of the pairing susceptibility [22].
In this situation, it would be natural to expect that the pairing
is a threshold phenomenon, i.e., it occurs if the pairing vertex
exceeds some finite value. The pairing strength in Eq. (19)
is controlled by 1/N , hence, by this logics, there should be a
critical Ncr, separating superconducting state at N < Ncr and
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N

Normal State

SC State

T = 0

FIG. 7. The behavior of Ncr (γ ), given by Eq. (20). At T = 0, this
critical N separates superconducting and normal states at N < Ncr (γ )
and N > Ncr (γ ), respectively.

nonsuperconducting NFL state at N > Ncr. The analysis of the
pairing problem at T = 0 yields exactly this behavior [21,22]:
there exists

Ncr = (1 − γ )
(γ /2)

[

(γ /2)

2
(γ )
+ 
(1 − γ )


(1 − γ /2)

]
, (20)

separating superconducting and nonsuperconducting states
[
(. . . ) is the Gamma function]. We plot Ncr (γ ) in Fig. 7. We
see that Ncr > 1 for all γ � 1, which we consider here. The
value of Ncr rapidly increases at small γ . This increase is just
the consequence of the fact that in the limit γ → 0, the pairing
problem reduces to BCS theory without an upper cutoff for
frequency integration. Once this cutoff is introduced, Ncr (γ =
0) remains finite. We emphasize in this regard that for any
finite γ , the pairing kernel at large running ω′ decreases faster
than 1/|ωm′ | (as Km,m′ ∝ 1/|ωm′ |1+γ ), hence the gap equation
is unltra-violet convergent even without frequency cutoff.

The existence of Ncr at T = 0 would normally imply that
this is the termination point of the line Tp(N ). However, the
numerical solution of (19) yields qualitatively different result:
Tp is nonzero at any N , and the line Tp(N ) bypasses Ncr and
approaches zero only at N → ∞ (see Fig. 8). The reason

for this behavior has been named in Ref. [22]: the power
counting argument that �∗(ωm) ∝ ω

1−γ
m does not work for

the first two Matsubara frequencies ωm = ±πT . For these
frequencies, Eq. (19) yields �∗(±πT ) = 0 because contribu-
tions from positive and negative ωm′ exactly cancel out. To
see the consequence of �∗(±πT ) = 0, consider the equa-
tion for 	(ωm) in the limit N � 1 and set external ωm =
πT (2m + 1) to πT (i.e., set m = 0). For m′ = O(1), but
m′ �= −1, the product πT K0,m′ is independent of T and is of
order 1/N . However, for m′ = −1 (ωm′ = −πT ), πT K0,−1 =
(1/N )(g/(2πT ))γ becomes large at small enough T . A simple
experimentation shows [22] that in this situation, the gap
equation reduces to

	∗(πT ) ≈ 1

N

( g

2πT

)γ

	∗(−πT ),

	∗(ωm) = 1

N

( g

2πT

)γ

(
	∗(πT )∣∣ 1
2 − ωm′

2πT

∣∣γ + 	∗(−πT )∣∣ 1
2 + ωm′

2πT

∣∣γ
)

,

m �= 0,−1. (21)

We will be searching for even-frequency solutions of the gap
equation: 	∗(ωm) = 	∗(−ωm). Then the first equation in (21)
sets Tp = (g/2π )1/N1/γ , and the second shows that a nonzero
	∗(ωm) is induced by 	∗(±πT ) and is suppressed by N1/γ

for T → Tp.
The functional form Tp ∝ 1/N1/γ at large N has been

verified numerically in Ref. [22] for a particular choice of
γ = 0.1. In Fig. 8, we show that the same behavior holds for
γ = 0.3 and 0.9. To see that this behavior is indeed due to the
vanishing of �∗(±πT ), we exclude ωm = πT from the set
of Matsubara frequencies and then solve again the linearized
gap equation. The result is shown in Fig. 8. We clearly see
that T̃p, obtained this way, tends to zero above some critical
value of N , which numerically is close to Ncr (γ ) in Eq. (20).
This implies that, without the first two Matsubara frequencies,
the system would display a conventional behavior, with T̃p(N )
line terminating at N = Ncr. That the actual Tp(N ) bypasses
Ncr and vanishes only at N = ∞ is then entirely due to the
vanishing of the self-energy for fermions with ωm = ±πT . To
check that only fermions with ωm ± πT special, we computed

FIG. 8. The pairing instability temperature Tp(N ), obtained by solving the linearized gap equation (19) as an eigenvalue/eigenfunction
problem for M = 4000 Matsubara frequencies, with N playing the role of an eigenvalue. Upper and lower panels are for γ = 0.3 and 0.9,
respectively. At large N , Tp(N ) ≈ (g/2π )1/N1/γ . For comparison, we also show T̃p(N ), which we obtained by solving the linearized gap
equation without fermions with Matsubara frequencies ±πT . The temperature T̃p(N ) terminates at T = 0 at the critical N = Ncr.
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T̃p,1(N ) by eliminating fermions with ±πT and ±3πT and
obtained that T̃p,1(N ) behaves similar to T̃p(N ) and terminates
at N ≈ Ncr.

This result indicates that the system behavior may be
qualitatively different at low T < T̃p(N ), when all fermions
contribute to the pairing, and at T̃p(N ) < T < Tp, when the
pairing is induced by fermions with ωm = ±πT . At N > Ncr,
T̃p = 0 and fermions with ωm = ±πT determine the system
behavior for all T < Tp. At small γ , Ncr ≈ 4/γ � 1, and the
lines Tp(N ) and T̃p(N ) remain close down to a very small T ∼
g(γ )1/γ � g. However, for γ � 1, the two lines are distinct
already at T � g. We emphasize that at these γ , the sizable
range T̃p(N ) < T < Tp(N ) exists even for the physical case of
N = 1. The system properties in in this T range should be, at
least qualitatively, the same as that at large N .

Below we study superconductivity, induced by fermions
with ωm = ±πT , in some detail by solving the nonlinear
gap equation at T < Tp. We first solve the gap equation in
Matsubara frequencies and obtain the gap, the Free energy,
and the specific heat, and then convert to real frequencies and
obtain the gap function, the spectral function, and the DOS.

IV. NONLINEAR GAP EQUATION, N > Ncr

We begin with the case N > Ncr when T̃p = 0, i.e., the
pairing would be impossible if the self-energy did not vanish
at ωm = ±πT . The limit N � 1 can be treated analytically
and we consider it in some detail below.

A. Nonlinear gap equation in Matsubara frequencies

The nonlinear equation for the pairing vertex 	∗(ωm) and
the equation for the fermionic self-energy �∗(ωm), which
includes the feedback from the pairing, are given in (13).
We recall that at large N , the pairing temperature Tp(N )
is obtained by solving the linearized equation for 	∗(ωm)
for fermions with only two Matsubara frequencies ωm =
±πT ; the pairing vertex 	∗(ωm) for other ωm is then
expressed via 	∗(πT ) = 	∗(−πT ). We assume and then
verify that this holds also for T < Tp, i.e., that the non-
linear gap equation can be approximated by restricting to
ωm′ = ±πT in the r.h.s. of Eq. (13). Relabeling 	∗(πT ) =
	∗(−πT ) = 	∗

0, �∗(πT ) = −�∗(−πT ) = �∗
0 , and �̃∗

0 =
πT + �∗(πT ), to shorten notations, we obtain from (13) the
set of two coupled equations for 	∗

0 and �̃∗
0 :

	∗
0 = πT

(
Tp

T

)γ
	∗

0√
(	∗

0 )2 + (�̃∗
0 )2

,

�̃∗
0 = πT

⎡
⎣1 + N

(
Tp

T

)γ

⎛
⎝1 − �̃∗

0√
(	∗

0 )2 + (�̃∗
0 )2

⎞
⎠

⎤
⎦. (22)

The solution of (22) to leading order in 1/N is

	∗
0 = πT

(
2

N

)1/2(Tp

T

)γ (
1 −

(
T

Tp

)γ )1/2

,

�̃∗
0 = πT

(
Tp

T

)γ

, or �∗
0 = πT

((
Tp

T

)γ

− 1

)
. (23)

The superconducting gap �0 ≡ �(±πT ) = 	∗
0πT/�̃∗

0 is

�0 = πT

(
2

N

)1/2(
1 −

(
T

Tp

)γ )1/2

. (24)

The gap �0 vanishes both at T = 0 and at T = Tp. In between,
it is finite, but for any T , D0 = �0/(πT ) is small and at most
of order 1/N1/2. In other words, the gap at N � 1 remains
smaller than the temperature at all T < Tp.

Solving next the set of Eliashberg equations for other ωm �=
±πT we obtain at large N

	∗(ωm) ≈ 	∗
0

[(
2πT

|ωm − πT |
)γ

+
(

2πT

|ωm + πT |
)γ ]

,

�∗(ωm) ≈ 2N�̃∗
0 H

( |ωm| − πT |
2πT

, γ

)
sgn(m + 1/2),

(25)

where H (a, b) = ∑a
1 n−b is a Harmonic number. We plot

	∗(ωm) and �∗(ωm) in Fig. 9. At large m [but still when
�∗(ωm) � ωm],

	∗(ωm) ≈ 2	∗
0

|m|γ , �̃∗(ωm) ≈ 2N
|�̃∗

0 |
1 − γ

|m|1−γ sgn(m). (26)

Observe that the self-energy behaves as �∗(ωm) ∝ T 1−γ , at
all ωm = O(T ), including ωm = ±πT . Still, the self-energy
at ±πT is smaller in 1/N than �∗(ωm) at other Matsubara
frequencies. As the consequence, the pairing gap �(ωm) is
parametrically larger at ωm = ±πT than at other frequencies.
From (25) we have, at |ωm| �= πT ,

�(ωm) = 	∗(ωm)

�̃∗(ωm)
= 1

N

�0

H (m, γ )

(
1

mγ
+ 1

(m + 1)γ

)

∝ T

(
2

N

)3/2(
1 −

(
T

Tp

)γ )1/2

. (27)

We also see from see (27) that at any T < Tp, �(ωm) at any
Matsubara frequency is parametrically smaller than T . Put it
differently, D(ωm) = �(ωm)/ωm is small, of order 1/N3/2, at
m = O(1), and even smaller at larger m. We plot �(ωm) and
D(ωm) in Fig. 10.

Taking −iD0 as an estimate for small frequency limit of
D(ω) ≡ �(ω)/ω in real frequencies, we find that D(ω → 0)
tends to a finite imaginary value, i.e., at large N , we have
gapless superconductivity in the sense that �(ω) ∝ iω (see
Ref. [71]). Using then N (ω) = N0 Re[1/

√
1 − D2(ω)] for the

DOS (N0 is the normal state value), we find that the DOS at
zero frequency N (ω = 0) = N0/

√
1 + D2

0 ≈ N0(1 − 1
2 D2

0) is
reduced below Tp, compared to the normal state value, but
remains finite, as in a gapless superconductor.

To verify this result and to get the full form of N (ω) we
need to obtain �(ω) as a function of a real frequency ω. This
is what we will do in Sec. IV C. Before that, we use the result
for D(ωm) and obtain the free energy Fsc(T ) and the specific
heat C(T ) at N > Ncr.

1. The free energy and the specific heat

The free energy Fsc and �F = Fsc − Fn are given by
Eqs. (15)–(18). At large N we keep only contributions which
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m

m

m

× 10−2

FIG. 9. The pairing vertex 	∗(ωm ) and the self-energy �∗(ωm ) from Eq. (25). For definiteness we set γ = 0.9, N = 10, and T = 0.05Tp.

contain Dm, Dm′ with m, m′ = 0,−1. Contributions from Dm

with other m are smaller in 1/N . Using that
∑

m
sgn m

|πT ±ωm|γ = 0,
we obtain from (18)

δF ≈ −2π2T 2N0

(
Tp

T

)γ [
D2

0

(
1 −

(
T

Tp

)γ )
− ND4

0

4

]
.

(28)

Varying δF by �0, one reproduces Eq. (24). Substituting D0

from (24) into (28), we obtain

δF ≈ − 2

N
π2T 2N0

(
Tp

T

)γ (
1 −

(
T

Tp

)γ )2

. (29)

The specific heat variation between the superconducting and
the normal state, δCv = −T ∂2δF/∂T 2, is

δCv = 2

N
π2TpN0Cγ

(
T

Tp

)
, (30)

where the scaling function Cγ (x) is

Cγ (x) = 2γ 2xγ+1 − 2γ (3 − γ )x(1 − xγ )

+ (2 − γ )(1 − γ )x1−γ (1 − xγ )2. (31)

At T → 0, Cγ (0) → 0, i.e., δCv vanishes. At T = Tp − 0,
Cγ = 2γ 2. This sets the magnitude of the specific heat jump

m

m

m

× 10−4

FIG. 10. The pairing gap �(ωm ) = 	∗(ωm )ωm/�̃(ωm ) and
D(ωm ) = �(ωm )/ωm for the same parameters as in Fig. 9. Observe
that �(πT ) and D(πT ) are much larger than at 3πT , etc.

at Tp:

δCv = (4γ 2/N )π2TpN0. (32)

The specific heat in the normal state is obtained from (16).
The first term in (16) gives the conventional free-fermion
contribution to the free energy Fn,free(T ) = Fn,free(0) −
N0π

2T 2/3. The second term gives

Fn,int (T ) = −N0Nπ2T 2

(
Tp

T

)γ

×
∑
m �=m′

sgn(m + 1/2) sgn(m′ + 1/2)

|m − m′|γ . (33)

At T ∼ Tp, this second term is larger by N than the free-
fermion contribution. The calculation of the double sum in
(33) requires care as one needs to extract the universal con-
stant on top of formally ultraviolet divergent contribution to
Fn,int(T = 0). To extract the universal constant, we note that
the summation over m − m′ can be done explicitly. The result
is

∑
m �=m′

sgn(m + 1/2) sgn(m′ + 1/2)

|m − m′|γ = 4
∞∑

m=0

H (m, γ ), (34)

where, we remind, H (m, γ ) is the harmonic number. For the
remaining summation, we use the Euler-Maclaurin formula

∞∑
m=0

f (m + 1/2) =
∫ ∞

0
f (x)dx + Q,

Q = −
∫ 1/2

0
f (x)dx + 1

2
f (1/2)

−
∞∑

n=2

Bn

n!

dn−1 f

dxn−1 |x=1/2
, (35)

where Bn are Bernoulli numbers. The first term in the first
line in (35) contributes to Fn,int (T = 0), the second term de-
termines the universal prefactor in the temperature-dependent
piece in the Free energy. To apply this formula, we rede-
fine the Harmonic number as H (m, γ ) → H (m + 1/2, γ ) =∑m+1/2−1/2

1 1/pγ and extend it to a function H (x, γ ) of
a continuous variable x. Evaluating then the integral and
the derivatives in the second line in (35) numerically,

144512-10
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FIG. 11. The plots of the scaling functions Qγ from Eq. (36).

we obtain

∞∑
m=0

H (m, γ ) =
∫ ∞

0
H (x, γ ) + Qγ . (36)

We plot Qγ in Fig. 11.
Substituting this result into (33) and differentiating the Free

energy over T , we obtain

Cv,n = N (4π2N0Tp)(2 − γ )(1 − γ )Qγ

(
T

Tp

)1−γ

. (37)

The ratio of the specific heat jump to its value at T = Tp + 0
is then

δCv

Cv,n
= 1

N2

γ 2

(2 − γ )(1 − γ )Qγ

. (38)

We see that the relative jump of Cv at Tp is small by 1/N2.
In Fig. 12, we plot Cv (T ) = Cv,n(T ) + δCv (T ) in the full
temperature range below Tp. At sufficiently small T , both Cv

and Cv,n scale as T 1−γ .

p

p

FIG. 12. The specific heat (in units of TpN0) vs T/Tp. The dashed
line is the normal state result. We set γ = 0.5 and N = 5. Observe
that the jump of C(T ) at Tp is small, and that at low T specific heat
returns back to its normal state value.

B. Beyond leading order in 1/N

We now go beyond the leading order in 1/N . The goal
here is to analyze how fermions with other ωm affect the
magnitudes of 	∗(πT ) = 	∗

0 and D(πT ) = D0 at a small
but finite temperature. We recall that at large N , 	∗

0 ≈
(2/N )1/2πT (Tp/T )γ and D0 ≈ (2/N )1/2. We show that both
	0 and D0 increase as N get smaller.

For the analysis to next order in 1/N we use the fact
that D0 ∝ 1/N1/2, while for other Matsubara frequencies
D(ωm) ∝ 1/N3/2 [see Eqs. (24) and (27)]. Because D appears
in even powers in the equation for the self-energy in (13),
the inclusion of these D(ωm) with m �= 0,−1 would lead to
corrections of at least of order 1/N3. To order O(1/N ) we then
still have the same equation for �̃∗

0 as in (22). Expanding in
this equation in two orders of D2

0 ∝ 1/N and setting T � Tp,
we obtain

�̃∗
0 = NπT

(
Tp

T

)γ (
D2

0

2
− 3D4

0

8

)
. (39)

The expansion to subleading order in 1/N in the equation
for 	∗

0 requires more care, as the leading term [the one kept
in the first equation in (22)] is of order 1/N1/2, while other
terms in the r.h.s. of (13) are of order D(ωm) ∝ 1/N3/2, i.e.,
they contain only one additional power of 1/N . Keeping these
terms, we obtain from (13)

	∗
0 = NπT

(
Tp

T

)γ

D0

(
1 − D2

0

2

)

+
∞∑

m=1

D(ωm)

(
1

mγ
+ 1

(m + 1)γ

)
. (40)

Substituting D(ωm) = �(ωm)/ωm from Eq. (27), we obtain

	∗
0

(
1 − Wγ

2N

)
= NπT

(
Tp

T

)γ

D0

(
1 − D2

0

2

)
, (41)

where

Wγ =
∞∑

m=1

1

H (m, γ )

(
1

mγ
+ 1

(m + 1)γ

)2

. (42)

We plot Wγ in the inset of Fig. 14.
Solving (39) and (41) to order 1/N , we obtain at low T �

Tp

	∗
0 =

(
2

N

)1/2

πT

(
Tp

T

)γ (
1 + 3(Wγ − 1)

4N

)
,

�̃∗
0 = πT

(
Tp

T

)γ (
1 + Wγ − 2

2N

)
,

D0 = �0

πT

(
2

N

)1/2(
1 + Wγ + 1

4N

)
. (43)

The analysis at larger T � Tp proceeds in the same way and
we refrain from presenting the full formulas. In Fig. 13, we
show �0 = �(πT ) as a function of T/Tp for γ = 0.9 and two
different values of N > Ncr (Ncr ∼ 1.3 for γ = 0.9). In both
cases �0 vanishes at T = 0, but the slope of �0(T ) at small
T gets larger when N decreases.

The result for 	∗
0 to first order in 1/N can be cast into

	∗
0 ≈ (2/(N − N∗

cr ))
1/2πT ( Tp

T )
γ

where N∗
cr = 3(Wγ − 1)/2 is

144512-11
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FIG. 13. The gap at the first Matsubara frequency �(πT ) = �0

as a function of temperature for γ = 0.9 and two different N > Ncr .
The slope of �0(T ) at small T increases as N gets smaller.

some γ -dependent constant. Taking this approximate formula
as an indication of the evolution of 	∗

0 with decreasing N , we
find 	∗

0 ∝ T 1−γ /(N − N∗
cr )

1/2. At N > N∗
cr (γ ), 	0 vanishes

at T = 0 (we recall that we consider γ < 1), but N = N∗
cr (γ )

the slope of 	∗
0(T )/T 1−γ (and of �0) diverges. This is

consistent with the T = 0 analysis, which indicates that at
N < Ncr, given by Eq. (20), the system has a superconducting
order at T = 0. The N∗

cr (γ ) = 3(Wγ − 1)/2 is an approximate
function and predictably differs from the actual Ncr (γ ), given
by Eq. (20). We plot both functions in Fig. 14. Interestingly,
N∗

cr (γ ) and Ncr (γ ) show quite similar variation with γ .
We emphasize that the increase of 	∗

0(T → 0) with de-
creasing N is due to the contribution from fermions with
|ωm| �= πT . We see that these fermions become progressively
more involved in the pairing, as N get smaller.

We next consider the solutions for the pairing vertex and
the self-energy in real frequencies. This will allow up to
compute the spectral function A(ω) and the DOS N (ω).

C. Nonlinear gap equation in real frequencies

The transformation of Elishberg equations from Matsubara
to real frequencies has been discussed in several publications
[1,3,4], for electron-phonon interaction. The computational
procedure uses spectral decomposition method and analytical
continuation. We extend this procedure to our case of electron-
mediated pairing with the effective interaction χ (�m) =
(g/|�m|)γ . The conversion to real frequencies requires special
care for two reasons. First, if one simply replaces ωm by

N

N

W

FIG. 14. The approximate N∗
cr (γ ) = 3(Wγ − 1)/2 vs the actual

Ncr (γ ). The inset shows Wγ given by Eq. (42).

−iω in the bosonic propagator χ (ωm′ − ωm) → χ (ωm′ + iω),
it will have a set of branch cuts in the complex ω plane, along
ω = iωm + b, where b is real. One needs to add additional
terms to the r.h.s. of the equations for retarded functions
	R(ω) and �R(ω) to cancel these singularities and restore
analyticity. Second, we again need to eliminate singular
contributions from the terms with zero bosonic Matsubara
frequency. This can be done in the same way as in the
calculations along the Matsubara axis. Namely, we introduce
new functions 	∗,R(ω) and �̃∗,R(ω), related to 	R(ω) and
�̃R(ω) = ω + �R(ω) as

	∗,R(ω) = 	R(ω)(1 − Q(ω)),

�̃∗,R(ω) = �̃R(ω)(1 − Q(ω)), (44)

where Q(ω) is singular [see Eq. (48) below], but 	∗,R(ω) and
�̃∗,R(ω) are free from singularities. The equations on 	∗,R(ω)
and �̃∗,R(ω) are the same as on 	R(ω) and �̃R(ω), but with
additional terms which cancel out divergent contribution from
χ (0). The gap function �R(ω) = ω	R(ω)/�̃R(ω) is equally
expressed in terms of 	∗,R(ω) and �̃∗,R(ω):

�R(ω) = ω
	R(ω)

�̃R(ω)
= ω

	∗,R(ω)

�̃∗,R(ω)
. (45)

To simplify the formulas, below we skip the index R. All
functions, which we obtain in real frequencies, are retarded
functions.

Taking care of both the branch cuts and the divergent terms,
we obtain the equations for 	∗(ω) an �̃∗(ω) in the form (see
Appendix for details)

	∗(ω) = πT

N

∑
m

	∗(ωm)√
(	∗(ωm))2 + (�̃∗(ωm))2

χ (ωm + iω)

+ 1

N

∫
dx

[
S	(ω − x)χ

′′
(x)(nF (x − ω) + nB(x)) − S	(ω)χ

′′
(x)

T

x

]
,

(46)

�̃∗(ω) = ω + iπT
∑

m

�̃∗(ωm)√
(	∗(ωm))2 + (�̃∗(ωm))2

χ (ωm + iω)

+
∫

dx

[
S� (ω − x)χ

′′
(x)(nF (x − ω) + nB(x)) − S� (ω)χ

′′
(x)

T

x

]
,
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where

S	(ω) = 	(ω)√
	2(ω) − �̃2(ω)

, S� (ω) = �̃(ω)√
	2(ω) − �̃2(ω)

(47)

and χ
′′
(x) = Im χ (x) = sgn(x) gγ

|x|γ sin πγ

2 . In (46), the solu-
tion of the Eliashberg equations in Matsubara frequencies,
i.e., 	∗(ωm) and �̃∗(ωm) are considered as inputs. The first
term in each of the two equations is obtained by just replacing
ωm by −iω, the second one cancels out nonanalyticities, and
last one cancels out the divergent contribution from χ (0). We
reiterate that we cancel out the divergence at x = 0 before
extending the model to large N . The function Q(ω) in (44),
which determines the relations between 	∗(ω) and �̃∗(ω) and
	(ω) and �̃(ω), is

Q(ω) = P√
	2(ω) − �̃2(ω)

, (48)

where

P =
∫

dxχ
′′
(x)

T

x
= πT χ (0). (49)

Equivalently, we can express 	(ω) and �̃(ω) via 	∗(ω) and
�̃∗(ω) as

	(ω) = 	∗(ω)(1 + Q∗(ω)), �̃(ω) = �̃∗(ω)(1 + Q∗(ω)),

(50)

where

Q∗(ω) = P sgn Im �̃∗√
(	∗)2(ω) − (�̃∗)2(ω)

. (51)

In Eqs. (47)–(51), the square root is defined with a branch cut
along negative real axis.

We now analyze the Eqs. (46). At ω = 0, we have

	∗(0) = πT

N

∑
m

	∗(ωm)√
(	∗(ωm))2 + (�̃∗(ωm))2

χ (ωm)

+ 1

N

∫
dxχ

′′
(x)

(
S	(−x)

sinh x/T
− S	(0)

x/T

)
,

�̃∗(0) = iπT
∑

m

�̃∗(ωm)√
(	∗(ωm))2 + (�̃∗(ωm))2

χ (ωm)

+
∫

dxχ
′′
(x)

(
S� (−x)

sinh x/T
− S� (0)

x/T

)
. (52)

The first term in the formula for �̃∗(0) vanishes by symmetry,
after summing up the contributions from positive and negative
ωm.

We first consider large N . We assume and then verify that
in this case �̃∗ is parametrically larger than 	∗ not only
along the Matsubara axis but also along the real axis. To
leading order in 1/N we then have for the self-energy, using
�̃(ω)/

√
−i�̃(ω) = i, valid for a retarded �̃(ω),

�̃∗(0) = i
∫

dxχ
′′
(x)

(
1

sinh x/T
− T

x

)
= −iπT

( g

πT

)γ

Sγ ,

(53)
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FIG. 15. The scaling function Sγ , defined in (54).

where

Sγ = 2 sin πγ /2
∫ ∞

0

dx

xγ

(
1

πx
− 1

sinh πx

)
. (54)

We plot Sγ in Fig. 15.
For 	∗(0), we find from Eq. (52)

	∗(0) ≈ πT

N

∑
m

	∗(ωm)

|�̃∗(ωm)|χ (ωm). (55)

Using the fact that at large N the dominant contribution to the
Matsubara sum comes from m = 0,−1 and substituting the
expressions for 	∗(±πT ) and �∗(±πT ), we obtain

	∗(0) =
(

2

N

)3/2

πT
( g

πT

)γ
(

1 −
(

T

Tp

)γ )1/2

. (56)

Then D0 = 	∗(0)/�̃∗(0) is

D0 = i

(
2

N

)3/2 1

Sγ

(
1 −

(
T

Tp

)γ )1/2

, (57)

and the DOS at zero frequency is

N (0) = N0

(
1 −

(
2

N

)3
(
1 − (

T
Tp

)γ )
2S2

γ

)
. (58)

This agrees, up to a prefactor, with the estimate that we ob-
tained in the analysis on the Matsubara axis, by just assuming
that D(ωm = πT ) is comparable to D(ω = 0).

We emphasize that N (0) differs from the normal state
value N0 at all T < Tp, including T = 0, where we expect
superconductivity to disappear. We will show below that the
limit ω → 0 and T → 0 has to be taken with care, and at
any nonzero ω the DOS indeed transforms into N0 at T → 0.
Still, strictly at ω = 0, N (0) < N0. This is somewhat similar to
the behavior of N (ω) in an ideal BCS superconductor, where
N (0) = 0 for all T up to Tc, while N (ω �= 0) approaches N0 at
T → Tc.

We next move to finite ω. In the Eq. (46) for 	(ω), the
second term [(1/N )

∫
. . . ] is of order 	(ω)/N and can be ne-

glected at large N . Evaluating the first term by summing up the
contributions from m = 0,−1, at which 	∗(ωm)/|�̃∗(ωm)| is
the largest, we obtain

	∗(ω) =
(

2

N

)3/2

πT
( g

πT

)γ
(

1 −
(

T

Tp

)γ )1/2

F	

(
ω

πT

)
,

(59)
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where

F	(x) = 1

2

(
1

(1 + ix)γ
+ 1

(1 − ix)γ

)
. (60)

Note that F	(x) is purely real and even in x, hence 	∗(ω) is
real and even in ω.

Because 	∗(ω) is small in 1/N3/2, the self-energy at finite
ω remains the same as in the normal state, up to 1/N3

corrections:

�∗(ω) = πT

(
g

πT

)γ

F�

(
ω

πT

)
, (61)

where

F� (x) = i
∞∑

m=0

(
1

(2m + 1 + ix)γ
− 1

(2m + 1 − ix)γ

)

− i sin
πγ

2

∫ ∞

0

dy

yγ

(
2

πy
− coth

πy

2

+ sinh πy

cosh πy + cosh πx

)
. (62)

The first term in F� (x) is real, the second is imaginary. At
large x (i.e., at ω � πT ), F� (x) ≈ (x1−γ /(1 − γ ))eiπγ /2. We
plot the scaling functions F	(x), Re[F� (x)], and Im[F� (x)] in
Fig. 16.

We see that Im [F� ( ω
πT )] changes sign as a function

of frequency (hence, Im [�∗(ω)] also changes sign). This
sign change must happen because Im[�∗(ω)] is related by
Kramers-Kronig(KK) formula to �∗(πT ) = 0:

2T
∫ ∞

0
dω

Im �∗(ω)

ω2 + (πT )2
= �∗(πT ) = 0. (63)

The integral in the r.h.s. of (63) vanishes only if Im[�∗(ω)]
changes sign at least once. We verified numerically that the
KK relation is indeed satisfied, see Fig. 17. We remind in this
regard that �∗ is the self-energy without the thermal contri-
bution. The imaginary part of the full self-energy, Im[�(ω)],
indeed remains positive at all frequencies.

Substituting the results for 	∗(ω) and �̃∗(ω)
into �(ω) = 	∗(ω)ω/�̃∗(ω) and D(ω) = �(ω)/ω,

F

F

F F

F

F

FD

FD

FD

FD

FIG. 16. The scaling functions F	( ω

πT ), F� ( ω

πT ), and ω

πT FD( ω

πT ) = ω

πT F	( ω

πT )/F� ( ω

πT ) for the pairing vertex, the self-energy and the gap
function respectively, see Eqs. (60), (62), and (65). We recall that F	( ω

πT ) and F� ( ω

πT ) are computed without the thermal contribution. The
function F	(x) is real, F� (x) and FD(x) are complex, i.e., the gap function �(x) is a complex function of frequency. The results are for γ = 0.3
and 0.9. Observe that Im F� (x) changes sign at some frequency. This sign change is necessary to satisfy KK relation on �∗(πT ) = 0 (see
Fig. 17).
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From KK relation

From Eq. (22)

FIG. 17. The verification of the KK transformation. Yellow
squares: the self-energy obtained directly along the Matsubara
axis: �∗(iωn) = 2πT (g/2πT )γ H (n, γ ), Eq. (25). Blue circles:
the self-energy �∗(iωn) = −iπT (g/πT )γ F� (ωn), where F� (iωn) =
(2iωn/pi)

∫ ∞
0 dx Im F� (x)/(x2 + ω2

n ) is obtained by KK transforma-
tion from Im F� (x) along the real axis, see (62). The two expressions
coincide. To better show this we manually split the two expressions
for �∗(iωn) by multiplying the yellow curve by 1.01. Observe
that F� (iπT ) = 0, i.e., the self-energy �∗(iωn), extracted from KK
transformation, vanishes at the first Matsubara frequency. We set
γ = 0.9 and T = 0.01g.

we obtain

�(ω) =
(

2

N

)3/2(
1 −

(
T

Tp

)γ )1/2

ωFD

( ω

πT

)
,

D(ω) =
(

2

N

)3/2(
1 −

(
T

Tp

)γ )1/2

FD

( ω

πT

)
. (64)

At ω � g, when �̃∗(ω) ≈ �∗(ω),

FD(x) = F	

(
ω

πT

)
F�

(
ω

πT

) . (65)

The DOS is

N (ω) = N0 Re

[
1

(1 − D2(ω))1/2

]
≈ N0

(
1 + 1

2
Re[D2(ω)]

)

= N0

(
1 + 1

2

(
2

N

)3(
1 −

(
T

Tp

)γ )
Re

[
F 2

D

(
ω

πT

)])
.

(66)

We see that the magnitude of N (ω)/N0 − 1 ≈ 1
2 Re D2(ω)

is determined by the temperature-dependent factor in (64)
and depends on T/Tp. However, the frequency dependence
of D(ω) and of the DOS is determined by FD(ω/(πT )),
which for any given γ is a universal function of ω/T and
does not depend on T/Tp. This implies that the characteristic
frequency, at which N (ω) deviates from N0, is determined by
the temperature rather than by the magnitude of the supercon-
ducting gap.

Because F	(x) is real,

Re F 2
D (x) = F 2

	(x)
(Re F� (x))2 − (Im F� (x))2

((Re F� (x))2 + (Im F� (x))2)2
. (67)

At small x = ω/πT , Re F� (x) ∝ x2 and Im F� (x) is finite.
Then Re F 2

D (x) is negative. At x, where Im F� (x) changes
sign, Re F� (x) is finite, hence for this x Re F 2

D (x) is positive.
In between, Re F 2

D (x) necessary changes sign. This in turn
implies that N (ω) < N0 at small x and N (ω) > N0 at larger x.
Then N (ω) has a dip at ω = 0 and a hump at a characteristic
frequency set by temperature, rather than by the gap itself.
This frequency increases with increasing T . This behavior
is qualitatively different from that in a BCS superconductor,
where the maximum in the DOS is located at ω = �(T ) and
shifts to a lower frequency with increasing T because �(T )
gets smaller. We plot Re F 2

D (x) in Fig. 18 for two different
values of the exponent γ . In both cases, the hump at ω ∼ T
is clearly visible. The position of the hump shifts to a lower

× 10−3

× 10−5

(c)

(a)

(b)

F
D

FIG. 18. (a) The real part of the scaling function F 2
D ( ω

πT ), defined in Eq. (65), for γ = 0.3 and γ = 0.9. The Re[F 2
D ( ω

πT )] determines the
frequency dependence of the DOS at large N , Eq. (66). In the normal state, FD = 0. Observe that Re[F 2

D ( ω

πT )] has a peak at ω ∼ T . (b) and
(c) The magnified plots of Re[F 2

D ( ω

πT )] at lager ω/(πT ). For γ = 0.3, Re[F 2
D ( ω

πT )] gradually decreases, for γ = 0.9 it changes sign at ω

πT ∼ 7.
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FIG. 19. DOS at large ω ∼ g for γ = 0.9. We set N = 6 and
T = 0.4Tp. At some ω ∼ g, N (ω) − N0 changes sign from negative
to positive, and at even larger frequencies approaches zero from
above.

frequency with increasing γ but remains at a finite ω even at
γ = 1.

On a more careful look, we find that there is still a small
difference in the behavior of the DOS at γ < 1/2 and γ >

1/2. Namely, at ω � T , Re �∗(x) = cos πγ /2(x1−γ /(1 −
γ )) and Im �∗(x) = sin πγ /2(x1−γ /(1 − γ )). As a result,
Re F 2

D (x) ∝ cos πγ is positive at γ < 1/2 and negative at
γ > 1/2. This implies that for γ > 1/2 N (ω) crosses N0 twice
at ω = O(T ), because (Im F� (x))2 is larger than (Re F� (x))2

at both large and small x. The second crossing at x ∼ 7
is seen in Fig. 16 for γ = 0.9. Digging further into this
issue, we find that for γ > 1/2, N (ω) crosses N0 one
more time, now at ω ∼ g � T , when the bare ω term in
�̃∗(ω) becomes relevant. To see this, we extend the analysis
of the DOS to ω ∼ g. The calculation is straightforward
and we only cite the result: the difference N (ω)/N0 − 1 at
ω ∼ g is proportional to cos πγ + (1 − γ )2(ω/g)2γ + 2(1 −
γ )(ω/g)γ cos πγ /2. Solving for N (ω) = N0, we find for γ >

1/2 the solution at ω = ω1 ∼ g. We show the behavior of
N (ω)/N0 at large ω ∼ g in Fig. 19.

In Figs. 20 and 21, we show the results of the full numerical
calculation of the temperature evaluation of the gap �(ω) and
the DOS N (ω) for two values of γ : γ = 0.3 and γ = 0.9
(one is larger than 1/2, another is smaller). We set N = 6 in
both cases (the numerical analysis for larger N is too involved
for γ = 0.3). For γ = 0.9, N = 6 is above Ncr ∼ 1.3. For
γ = 0.3, Ncr ≈ 9.6 > 6. In this situation, the behavior similar
to the one at N > Ncr exists above the crossover temperature
Tcross(N ) (see Sec. V), and we show the results only in this T
range. The value of Tcross(N = 6) for γ = 0.3 is only 0.01Tp,
so the range of T > Tcross is rather wide.

We see from Fig. 20 that the imaginary part of �(ω) is
finite even at very small ω, consistent with Eq. (64). For the
DOS, we clearly see from Fig. 21 that there is a dip in N (ω) at
small frequencies and the position of the maximum in N (ω)
is set by the temperature.

A remark is in order here. The integrated DOS
∫

dωN (ω),
with N (ω) as in Fig. 21, does have some T dependence. This
seems problematic, because the integrated DOS is propor-
tional to the total number of particles, which is the conserved

FIG. 20. �(ω) for various T > Tcross. (Top) γ = 0.3 and N = 6.

(Bottom) γ = 0.9 and N = 6. Red lines are for the real part �′(ω)
and blue lines are for the imaginary part �′′(ω). At small but nonzero
ω, both the real and imaginary parts are finite, in contrast to the
BCS-like behavior where �′′(ω) is zero up to some ω0 ≈ �′ at low
temperatures.

quantity. In fact, there is no contradiction. The reasoning
is that the momentum integration in Eliashberg equations is
performed assuming particle-hole symmetry, i.e., neglecting
contributions from energies of order μ. There are additional
contributions to the DOS from energies of order μ, both in the
normal and the superconducting state. They are not equal, be-
cause μ changes between normal and superconducting states
[72]. This additional contribution must be included to ensure
particle conservation.

We next consider the spectral function A(ω) =
−(1/π ) Im[G(kF , ω)]. In terms of original 	(ω) and �̃(ω),
we have

A(ω) = − 1

π
Im

[
�̃(ω)

�̃2(ω) − 	2(ω)

]
. (68)

Expressing �̃(ω) and 	(ω) via �̃∗(ω) and 	∗(ω) using
Eq. (51), we find

A(ω) = − 1

π
Im

[
�̃∗(ω)

(�̃∗(ω))2 − (	∗(ω))2
L(ω)

]
, (69)

where

L(ω) = 1

1 + Q∗(ω)
=

√
	∗(ω)2 − �̃∗(ω)2

P sgn Im �̃∗ +
√

	∗(ω)2 − �̃∗(ω)2
.

(70)

To leading order in 1/P, A(ω) ∝ 1
P Re [ 1√

1−(	∗(ω)/�̃∗(ω))
2
] ∝

N (ω)/N0, i.e., the spectral function has the same dependence
on ω as the DOS. Accordingly, at a finite T , A(ω) is nonzero
for any frequency, and the position of the maximum in A(ω)
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FIG. 21. The DOS N (ω) for various T > Tcross. (Top) γ = 0.3 and N = 6. (Bottom) γ = 0.9 and N = 6. (Right) The temperature
dependence of the characteristic frequency ωp, defined as the peak position of the N (ω).

scales with T and remains at a finite frequency at Tp (see
Fig. 22). If P is finite, either because the system is at some dis-
tance from a QCP, or we probe A(ω) for fermions connected

by momenta different from the one at which static χ diverges
(e.g., near-nodal fermions in the cuprates, if a pairing boson
is an antiferromagnetic spin fluctuation), the behavior of A(ω)

FIG. 22. The spectral function A(ω) at a fixed T > Tcross, plotted as a function of ω for various values of parameter P, which measures the
strength of thermal contributions to the self-energy and the pairing vertex. At large P, A(ω) shows the same behavior as the DOS, with the dip
at small ω. At small P, it shows instead the maximum at ω = 0. The plots are for γ = 0.3 and γ = 0.9.
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FIG. 23. The pairing vertex 	(ωm ) and the gap �(ωm ) as functions of Matsubara frequency for γ = 0.9, N = 1, and T = 0.18Tp < Tcross.
Observe that �(ωm ) is a smooth function, i.e., �(±πT ) is about the same as at ±3πT , etc.

depends on the interplay between P and
√

	∗(ω)2 − �̃∗(ω)2

at relevant ω. the other term in L(ω) in (70). If P is smaller,
L(ω) ≈ 1, and

A(ω) = − 1

π
Im

[
�̃∗(ω)

(�̃∗(ω))2 − (	∗(ω))2

]
. (71)

Substituting the expressions for 	∗(ω) and �̃∗(ω) we find that
in this situation A(ω) is peaked at zero frequency, as if the sys-
tem was in the normal state. We show this behavior in Fig. 22.

The analysis beyond the leading order in 1/N proceeds
in the same way as for Matsubara frequencies. As N gets
smaller, the maximum in the DOS becomes more pronounced,
and, at the same time, the DOS at zero frequency, N (0) gets
smaller. These modifications get larger as N decreases towards
Ncr and eventually, at N < Ncr, the system behavior at the
lowest T changes qualitatively. We discuss this in the next
section.

V. THE CASE N < Ncr

At smaller N < Ncr, the analytical solution is difficult to
obtain because there is no obvious small parameter, so our
discussion will be based on the numerical results.

A. Nonlinear gap equation in Matsubara frequencies

In Fig. 23, we show the results for 	∗(ωm) and �(ωm)
for γ = 0.9 and N = 1 (which is smaller than Ncr ≈ 1.3) at
the lowest temperatures. The results for γ = 0.3 and N = 1
are very similar. We see that now not only 	∗(ωm), but also
�(ωm) does not differ much between ωm = ±πT and other
Matsubara frequencies. This is quite different from �(ωm) at
N > Ncr, see Fig. 13. The smooth frequency dependence of
�(ωm) in Fig. 23 implies that at N < Ncr and low T fermions
with Matsubara frequencies ωm �= ±πT also contribute to the
pairing. This is consistent with our earlier result that at N <

Ncr the transition temperature remains finite even we exclude
fermions with ωm = ±πT from the Eliashberg equations [the
corresponding temperature is T̃p(N ) in Fig. 8].

In Fig. 24, we show �(πT ) = �0 as a function of T . We
show the case γ = 0.9, but we verified that the T dependence
of �(πT ) is quite similar for other γ . We see that �0 now
tends to a finite value at T = 0. For N slightly below Ncr, the

temperature dependence of �0 is still nonmonotonic, i.e., as T
is reduced below Tp, �0 first increases and then drops below a
certain T , before reaching a finite value at T → 0. At smaller
N , the maximum in �0(T ) becomes shallow, and at N = 1,
�0 monotonically increases as T decreases.

Comparing the behavior of �0(T ) at N > Ncr and N < Ncr,
Figs. 13 and 24, we see that near Tp, the behavior in the two
cases is the same, but at low T , �0(T ) at N > Ncr continue
decreasing, while �0(T ) at N < Ncr saturates. The tempera-
ture, at which the two curve separate, marks the crossover, at
N < Ncr, between the conventional superconducting behavior
at low T and the behavior, similar to that at N > Ncr, at
higher T . In the higher T region, the pairing can still be
viewed as induced by fermions with Matsubara frequencies
±πT . We label the crossover temperature as Tcross. It has the
same dependence on N as T̃p(N ) in Fig. 8 (it also vanishes at
N = Ncr), but numerically Tcross is larger than T̃p(N ). We will
see that the DOS and the spectral function undergo a crossover
at T ∼ Tcross.

B. Nonlinear gap equation in real frequencies

We used the same computational procedure as at large
N and obtained 	∗(ω), �̃∗(ω), and �(ω) along the real
frequency axis. We present the results in Fig. 25. We clearly

FIG. 24. The gap �(πT ) = �0 as a function of temperature for
γ = 0.9 and three different N < Ncr ≈ 1.34. The gap now tends
to a finite value at T = 0. For N slightly below Ncr , �0(T ) is
still nonmonotonic, but for N = 1, �0 monotonically increases with
decreasing T .
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FIG. 25. Real and imaginary parts of the gap �(ω) as functions of ω for various T . The results are for γ = 0.3 and γ = 0.9, in both cases
for N < Ncr. Red and blue lines are for �′(ω) and �′′(ω), respectively. The data clearly show a crossover at T ∼ Tcross from BCS-like behavior
at smaller T to the behavior similar to that at N > Ncr , at larger T .

see the crossover in the system behavior around Tcross(N ). At
T < Tcross(N ), the behavior of the gap function is conven-
tional in the sense that Re �(ω = 0) is finite and Im �(ω)
emerges only above a finite frequency, approximately equal to
�(0). The self-energy �∗(ω) at ω < �0 is strongly reduced
compared to its value in the normal state. At T > Tcross(N ),
Im �(ω) ∝ ω at small frequencies, and Re �(ω) ∝ ω2, i.e.,
the systems displays the same gapless superconductivity as at
N > Ncr. In the same T range, the self-energy �∗(ω) almost
recovers the normal state value (see Fig. 25).

In Fig. 26, we show the behavior of the DOS N (ω). We see
a qualitative change of the behavior between T > Tcross(N )
and T < Tcross(N ). At smaller T , N (ω) is similar to that in
a BCS superconductor: it has a sharp peak at ω ≈ �(0) and
nearly vanishes below the peak frequency. At T increases, but
remains smaller than Tcross(N ), the position of the maximum
in N (ω) shifts to a smaller frequency because �(0) decreases,
i.e., the gap in the DOS “closes.” However, at higher T >

Tcross(N ), N (ω) becomes nonzero at all frequencies, and the
position of its maximum shifts to a higher frequency as T
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FIG. 26. DOS N (ω) as a function of frequency for γ = 0.3 and γ = 0.9 and several N < Ncr (γ ). At low T < Tcross, the DOS has a sharp
peak at ω = �(T ) and nearly vanishes below the peak. At higher T > Tcross, the DOS has qualitatively the same functional form as for large
N , and the peak position shifts to a higher frequency with increasing temperature. (Insets) The peak position ωp as a function of T/Tp. The
crossover at Tcross is clearly visible.

increases, and remains finite at T = Tp − 0, i.e., the gap in
the DOS “fills in”. We plot the variation of the position of the
maximum in N (ω) with T in the inserts of the plots of the
DOS in Fig. 26.

In Fig. 27, we present our results for the spectral function
A(ω). It shows a similar crossover around Tcross. We recall
that the form of the spectral function depends on the strength
of the thermal contribution to the self-energy [the P term in
Eq. (70)]. In the limit when the thermal contribution is large,
A(ω) displays the same behavior as N (ω). In the opposite
limit when P is smaller, L(ω) in Eq. (70) is close to one,
and A(ω) at T < Tcross(N ) has two sharp peaks at frequencies
close to ±�(0), as expected in a BCS superconductor. At
T > Tcross(N ), this behavior changes, and A(ω) has a single
peak at ω = 0. We show the variation of A(ω) between T <

Tcross(N ) and T > Tcross(N ) in the right panels of Fig. 27, for
both smaller and larger P. In the left panels, we show the
evolution of A(ω) with increasing P at T < Tcross(N ) and at
T > Tcross(N ).

VI. DISCUSSION

In this work, we analyzed the competition between the
tendency towards fermionic incoherence and NFL and to-
wards pairing near a quantum-critical point in a metal. We
used the γ model of dynamical fermion-fermion interaction,

mediated by a critical boson with susceptibility χ (�m) ∝
(g/|�m|)γ . To understand the competition, we extended the
model to SU(N ) global symmetry and used N as a param-
eter go gauge the relative strength of the interaction in the
particle-particle and particle-hole channels. At large N , the
interaction in the pairing channel is smaller by 1/N than
the one that gives rise to a NFL in the normal state. Earlier
work by some of us and others [22] found markedly dif-
ferent variation of system behavior with N at T = 0 and at
a finite T . Namely, the calculations at T = 0 showed that
superconductivity only develops if N is smaller than some
γ -dependent Ncr, while at larger N the system remains in
a NFL normal state. Computations of the onset temperature
for the pairing Tp(N ), on the other hand, showed that the
line Tp(N ) bypasses Ncr and Tp(N ) remains finite at any
N , no matter how large N is (see Fig. 2). The authors of
Ref. [22] argued that this discrepancy is due to the fact
that Eliashberg equations for spin-singlet pairing contain
fermionic self-energy without thermal contribution, and this
self-energy is large for all frequencies, except for ωm = ±πT ,
at which it vanishes. The pairing interaction between fermions
with πT and −πT is then not countered by the self-energy.
This pairing interaction scales as 1/(NT γ ) and opens up the
gap �(±πT ) at T = Tp ∝ 1/N1/γ . A nonzero �(±πT ) then
induces the pairing gap for fermions with other Matsubara
frequencies.
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FIG. 27. The spectral function A(ω) for γ = 0.3 and 0.9 and several N < Ncr. (Left) A(ω) for a set of temperatures at either strong or weak
thermal contribution [the limits P = ∞ and P = 0 in Eq. (70)]. At small T < Tcross, the spectral function has sharp peaks at ω = ±�(T ),
like in a BCS superconductor. At T > Tcross, A(ω) shows the same behavior as the DOS in Fig. 26, when the thermal contribution is strong,
and develops a single peak at ω = 0 when the thermal contribution is weak. (Right) A(ω) at a fixed T for different strengths of the thermal
contribution. (Top) T < Tcross. (Bottom) T > Tcross.

In this paper, we extended the analysis of the pairing
problem to T < Tp(N ) and solved the nonlinear gap equation.
We analyzed the large N limit analytically and solved the
gap equation at smaller N numerically. We first obtained
�(ωm) along Matsubara axis and used it to compute the
Free energy and the specific heat. We found that the specific
heat jumps at Tp, but at large N the relative magnitude of
the jump �C(Tp − 0)/Cn(Tp) is reduced by the factor 1/N2.
The behavior of the specific heat below Tp is also rather
unconventional, as C(T ) recovers its normal state form at
T → 0.

We then solved the gap equation along the real axis, using
�(ωm) as input. We obtained �(ω) and used it to compute the
DOS N (ω) and the spectral function A(ω). In a weak coupling,
BCS-type superconductor A(ω) and N (ω) are peaked at the
gap value �(T ), and the peak position shifts to a smaller ω as
temperature increases towards Tp [the gap in N (ω) and A(ω)
“closes” with increasing T ].

We found that at N > Ncr, the behavior of N (ω) and A(ω)
is very different. The DOS remains finite at all frequencies,
including ω = 0, and the position of the maximum in N (ω)
increases linearly with T and remains finite at Tp. As T
increases towards Tp, N (ω) at small ω increases and N (ω)
at larger ω decreases, as if the gap in N (ω) “fills in” with
increasing temperature. The form of the spectral function
A(ω) depends on the strength of the thermal contribution to
the self-energy. When this contribution is strong, A(ω) has
the same frequency dependence as the DOS N (ω). When it
is smaller, A(ω) has a a single peak at ω = 0.

At N < Ncr, which includes the original case of N = 1,
this behavior holds above a certain temperature Tcross(N ) (see
Fig. 3). At T < Tcross, both N (ω) and A(ω) display a BCS-like
behavior with peaks at ω = �(T ).

The issue, which we did not discuss in this work, is
whether gap fluctuations (transverse or longitudinal) destroy
long-range superconducting order in some T range below
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FIG. 28. The spectral function A(ω) along the Fermi surface. At T < Tcross (middle), A(ω) in the nodal region (red) has two closely located
peaks, which merge at the node. In the antinodal region (green) the two peaks are well separated. At T > Tcross (right), A(ω) has a maximum
in the nodal region, which corresponds the Fermi arc, but in the antinodal region A(ω) shows two separate maxima.

Tp(N ). It is very likely that in some range below Tp(N ) long-
range superconducting order gets destroyed, and the actual
Tc < Tp. We analyze this issue in some detail in Ref. [39],
where we argue that Tc is comparable to Tcross, i.e., the range
Tcross < T < Tp largely corresponds to pseudogap region. In
the theory, which we presented here, the novel behavior at
Tcross(N ) < T < Tp is due to the fact that in this T range
the feedback from the pairing on the fermionic self-energy
is weak. This does not critically depend on the existence
of long-range superconducting order. In fact, if fluctuations
destroy superconducting phase coherence, the feedback will
be further reduced. In this respect, our results equally describe
the system behavior in the pseudogap phase, more specifically,
in the so-called weak pseudogap regime, where long-range
superconducting order is destroyed by phase fluctuations, but
the gap magnitude is still finite.

A. Application to the cuprates

1. The spectral function

The transformation from “gap closing” behavior at small
T to “gap filling” behavior at T ∼ Tp has been observed in
high-Tc cuprates, in has been observed in high-Tc cuprates
in ARPES measurements of the spectral function in the
antinodal region [45,49–57]. Symmetrized data of MDC
ARPES measurements along a particular direction of k in
the near-nodal region showed the transformation from two
peaks at a finite frequency to a single peak at ω = 0 (this is
termed as the appearance of the Fermi arc). These results are
consistent with our microscopic analysis for the DOS and
also for the spectral function, if we assume that the thermal
contribution is stronger in the antinodal region than in the
near-nodal region. The strength of thermal contribution scales
with the static bosonic susceptibility χ ′(0). Static χ ′(0) is
larger for antinodal fermions in, e.g., spin-fluctuation models
[7,16,18], where the interaction is peaked at momentum at or
near (π, π ).

To quantitatively apply our results to the cuprates, we need
to extend our analysis to include the d-wave symmetry of the
gap function. This is less relevant for the DOS and A(ω) in the
antinodal region, as there the gap can be approximated by the
constant, except for N (ω) at the smallest frequencies at T <

Tcross, as the sharp peak in the DOS gets somewhat broadened
after angular integration [8]. However, the d-wave angular
dependence of the gap must be included into the analysis of
the spectral function in the nodal region near Brillouin zone
diagonals. To model the d-wave case, we added cos 2θ factor
to 	∗(ω) and solved the Eliashberg equations at a given T ,
and γ . We show the results in Fig. 28, where we plot the
spectral function along the Fermi surface. For simplicity, in
this calculation we set P to be angle-independent. Making P
smaller for nodal fermions and larger for antinodal ones will
widen the range of the behavior seen near the nodes.

We see from Fig. 28 that at T < Tcross, A(ω) has two
weakly separated peaks in the nodal region and more strongly
separated peaks in the antinodal region. This is the expected
result for a d-wave superconductor at T � Tc. At high T >

Tcross, the evolution of the spectral function is similar to the
one in Fig. 22. Namely, near the node A(ω) has a single
maximum at ω = 0, while in the antinodal region A(ω) has
a dip at ω = 0 and a shallow maximum, whose frequency
scales with T . In between, the frequency dependence of A(ω)
gradually evolves from a single peak at ω = 0 to two maxima
at finite ω and a dip at zero frequency.

This behavior reproduces the key features of ARPES data
in Refs. [50–57].

2. The density of states

In experiments the DOS can be extracted from STM
measurements of electron tunneling through a potential bar-
rier [49]. The measured quantity is the differential con-
ductance dI/dV , where eV is the bias voltage applied
to the barrier and I is the current through the barrier.
This quantity is related to the DOS by Fermi’s Golden
Rule I ∝ ∫ ∞

−∞ N (E )[nF (E − eV ) − nF (E )]dE , where nF (x)

144512-22



SPECIAL ROLE OF THE FIRST MATSUBARA FREQUENCY … PHYSICAL REVIEW B 99, 144512 (2019)

FIG. 29. The “tunneling density of states” S(ω) ∝ dI/d (eV), where dI/d (eV) is the differential conductance at voltage eV = ω. Left
panel–the BCS model; right panel–our model. At T = 0, S(ω) ∝ N (ω), but at a finite T they differ because of thermal broadening induced by
distribution functions of fermions on the two sides of the tunneling barrier. At T � Tp, the position of the maximum of S(ω) scales with T
in both cases. The point that we emphasize here is that, in the BCS model, the position where S(ω) intersects with the normal state value of
the DOS, N0 (the value of S(ω) at large ω), remains fixed at ω ≈ �(T = 0), while in our case this position by itself scales with T in the “gap
closing” regime.

is Fermi distribution function. At T = 0, I ∝ ∫ eV
0 N (E )dE

and dI/dV ∝ N (eV ). However, at a finite temperature, dI/dV
differs from N (eV ), as there is a a thermal broadening from
the Fermi distribution function. A simple manipulation shows
at any finite T

S(eV ) = dI

dV
∝

∫ ∞

0
dxN (x) f (x, eV )

f (x, eV ) = 1 + cosh( x
T ) cosh( eV

T )

T
[

cosh( x
T ) + cosh( eV

T )
]2 (72)

At T = 0 the function f (x, eV ) reduces to δ(x − eV ), and
S(eV ) ∝ N (eV ). At finite T f (x, eV ) still peaks at x = eV ,
but gets broadened by T . As a result of this broadening, even
in a pure BCS superconductor, where Tp = Tc, the thermal
evolution of S(ω), viewed as a function of running ω = eV ,
is not set entirely by �(T ) and in fact becomes a function
of ω/T in the limit when � → 0. As a result, even in the
BCS limit the measured S(ω) displays the “gap fulling”
behavior, with the maximum in S(ω) at ω ∝ T , despite that
the maximum of BCS N (ω) = N0Re[ω/

√
ω2 − �2(T )] is at

ω = �(T ). In the limit of small �, the BCS S(ω) behaves as

S(ω) = N0

[
1 +

(
�

2Tc

)2

	
(

cosh(
ω

T

)]
,

	(y) = 1

y + 1

∫ ∞

0

dx(cosh x − 1)

x2

y2 − y − (1 + cosh x)

(y + cosh x)2

(73)

The maximum in 	(y) is at y = 12.47, i.e., ω = 1.83�0,
where �0 = 1.76Tc is the gap value at T = 0. We show S(ω)
for BCS superconductor in the left panel of Fig. 29.

It is then important to find a way to distinguish between
thermal broadening induced by the Fermi functions in the
formula relating S(ω) to N (E ) and the crossover from gap
closing to gap filling behavior in N (E ) itself. In the right panel
of Fig. 29 we show S(ω) computed with our N (E ). We see
one experimentally detectable difference. Namely, for BCS

N (E ), S(ω) first crosses the value of the DOS in the normal
state, N0, at ω, which is close to �0 and weakly depends
on temperature. At T → Tc, when S(ω) is given by (73), the
crossing is at ω = 1.09�0. At the same time, for our form of
N (ω), the frequency, where S(ω) first crosses N0, increases
with increasing T and by itself scales with T in the “gap
filling” regime. We mark these positions at different T by
color dots in the right panel of Fig. 29. We argue that this
last behavior is in a good agreement with STM results [49].
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APPENDIX: ANALYTIC CONTINUATION FROM
MATSUBARA AXIS TO REAL FREQUENCY AXIS

In this Appendix, we show the derivation of Eq. (46) for
the pairing vertex 	∗(ω) and the self-energy �∗(ω) along
real frequency axis. We follow Ref. [3] and use spectral
decomposition approach. Below we explicitly keep the factors
i for Matsubara frequencies, e.g., define the interaction as
χ (i�m) = gγ

|�m|γ .

For a general complex z, we can define the retarded χR(z)
as

χR(z) =
(−g2

z2

)γ /2

. (A1)

By definition, χR(z) is analytic in the upper half-plane of z
and coincides with χ (i�m) at positive �m.

Immediately above real frequency axis, at z = ω + iδ, we
have from (A1)

Re χR(ω) = gγ

|ω|γ cos
πγ

2
,

Im χR(ω) = gγ sgn(ω)

|ω|γ sin
πγ

2
. (A2)
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The two functions are expressed via each
other by Kramers-Kronig relations: Re χR(ω) =
(2/π )P

∫ ∞
0 dx Im χR(x)x/(x2 − ω2); Im χR(ω) =

−(2/π )ωP
∫ ∞

0 dx Im χR(x)/(x2 − ω2). Re χR(ω) is even
function of ω, and Im χR(ω) is odd in ω.

According to Cauchy theorem, a retarded χR(z) in the
upper half-plane of z can be expressed via Im χR(x) as

χR(z) = 1

π

∫ ∞

−∞

Im χR(x)dx

x − z
, Im z > 0. (A3)

In particular, at �m > 0,

χ (i�m) = 1

π

∫ ∞

−∞

Im χR(x)dx

x − i�m
= 2

π

∫ ∞

0

Im χR(x)xdx

x2 + �2
m

(A4)

For negative �m, we need to introduce the retarded χA(z). It is
related to Im χR(x) by the same formula as (A3), but z should
be in the lower half-plane:

χA(z) = 1

π

∫ ∞

−∞

Im χR(x)dx

x − z
, Im z > 0. (A5)

We will need both χR(z) and χA(z) below for complex z.
Along the Matsubara axis, z = i�m, we will just use the fact
that χ (i�m) is an even function of �m and extend (A4) to
negative �m. We will use the same trick for the Green’s
function G(iωmkF )—we express it via Im GR(x, kF ) for ωm >

0 and use the fact that G(iωmkF ) is odd in ωm to extend the
relation between G(iωmkF ) and Im GR(x, kF ) to negative ωm.

Now, the expressions for 	(ωm) and �̃(ωm), Eq. (6),
contain the susceptibility χ (iωm − iωm′ ), where ωm is an
external Matsubara frequency, which we want to convert
to real axis. In distinction from χ (i�m), this susceptibility
cannot be analytically continued from the Matsubara axis by
just replacing iωm by z, because χ (z − iωm′ ) = (−g2/(z −
iωm′ )2)γ /2 has a set of branch cuts in the upper half-plane

of z, at z = iωm′ + z0, where z0 is a real variable (Ref. [3]).
Due to this complication, we have cannot simply replace iωm

by real ω in χ (iωm − iωm′ ) and have to implement the full
spectral decomposition procedure. Namely, we depart from
Eliashberg equations along Matsubara axis and use Cauchy
theorem to express G(iωm, k) and χ (iωm − iωm′ ) in terms of
retarded Im GR(x, k) and Im χR(x) along real axis as

G(iωm, k) =
∫ ∞

−∞

dx

π

Im GR(x, k)

x − iωm
,

χ (iωm − iωm′ ) =
∫ ∞

−∞

dy

π

Im χR(y)

y − i(ωm − ωm′ )
. (A6)

We then explicitly sum over ωm′ and integrate over k and
obtain the expressions for �̃(iωm) and 	(iωm), in which the
dependence on ωm is only via 1/(iωm − x − y). This form can
be straightforwardly continued analytically from Matsubara to
real frequency by just replacing iωm by ω + i0+.

For compactness, we do the calculations in Nambu for-
malism, in which one operates with the 2 × 2 matrix Green’s
function Ĝ(iωm, k), in which �(iωm) and 	(iωm) are the ele-
ments of the 2 × 2 matrix self-energy �̂(iωm). The Eliashberg
equation in Nambu formalism is

�̂(iωn) = −T
∑

m

∫
d2k

(2π )2
τ̂3Ĝ(iωm, k)τ̂3χ (iωn − iωm),

(A7)

where τ̂3 is a Pauli matrix. �̂ = �τ̂0 − 	τ̂1, and the ma-
trix Ĝ(iωm, k) = −(iωm − �̂(iωm))−1. The diagonal and off-
diagonal elements of Ĝ(iωm, k) are normal and anomalous
Green’s functions in conventional notations.

Substituting the spectral representation (A6) into
(A7) and performing the summation over ωm, using
T

∑∞
m=−∞

1
x−iωm

1
y−iωn+iωm

= nF (x)+nB (−y)
iωn−x−y , where nF and

nB are Fermi and Bose distribution functions, respectively, we
obtain

�̂(iωn) = −T
∑

m

∫
d2k

(2π )2

∫
dxdy

π2
τ̂3

Im ĜR(x, k)

iωm − x
τ̂3

Im χR(y)

iωn − iωm − y

= −
∫

d2k

(2π )2

∫
dxdy

π2
τ̂3 Im ĜR(x, k)τ̂3 Im χR(y)

nF (x) + nB(−y)

iωn − x − y
. (A8)

Replacing iωn with ω + i0+, we obtain the retarded self-energy in real frequencies

�̂R(ω) = −
∫

d2k

(2π )2

∫
dxdy

π2
τ̂3

Im ĜR(x, k)

ω − x − y + i0+ τ̂3 Im χR(y)[nF (x) + nB(−y)]. (A9)

Using the fact that for any two functions F and G, we have F Im G = Im(G Re F ) − i Re(G Im F ), we express Im ĜR(x, k)/(ω −
x − y + i0+) via the full ĜR(x, k) as

2 Im ĜR(x, k)

ω − x − y + i0+ = Im

[
ĜR(x, k)

(
1

ω − x − y + i0+ + 1

ω − x − y − i0+

)]

− i Re

[
ĜR(x, k)

(
1

ω − x − y + i0+ − 1

ω − x − y − i0+

)]

= Im

[
ĜR(x, k)

(
1

ω − x − y + i0+ + 1

ω − x − y − i0+

)]
+ 2π iδ(ω − x − y) Re iĜR(x, k).
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We substitute this form into (A9) and integrate over x by closing the integration contour over the upper half-plane of complex x.
Because ĜR(x, k) is analytic in the upper half-plane, the poles come from 1/(ω − x − y + i0+), at x = y − ω + i0+ with residue
1 and from nF (x), at x = i(2n + 1)πT , n � 0, with residues −T . Using the residue theorem, we find

�̂R(ω) = −1

2

∫
d2k

(2π )2

∫
dy

π
Im χR(y) Im

[∫
dx

π
(nF (x) + nB(−y))τ̂3ĜR(x, k)τ̂3

(
1

ω − x − y + i0+ + 1

ω − x − y − i0+

)]

− i
∫

d2k

(2π )2

∫
dy

π
Im χR(y)(nF (ω − y) + nB(−y)) Re[iτ̂3ĜR(ω − y, k)τ̂3]

=
∫

d2k

(2π )2

∫
dy

π
Im χR(y)T

∑
ωn>0

Im

[
iτ̂3ĜR(iωn, k)τ̂3

2

ω − iωn − y

]

+
∫

d2k

(2π )2

∫
dy

π
Im χR(y)(nF (ω − y) + nB(−y)) × [Im(iτ̂3GR(ω − y, k)τ̂3) − i Re(iτ̂3GR(ω − y, k)τ̂3)]

= 2T
∑
ωn>0

∫
d2k

(2π )2
Im

[
iτ̂3ĜR(iωn, k)τ̂3

∫
dy

π

Im χR(y)

ω − iωn − y

]

−
∫

d2k

(2π )2

∫
dy

π
τ̂3ĜR(ω − y, k)τ̂3 Im χR(y)(nF (y − ω) + nB(y)), (A10)

where we also used nF (ω − y) + nB(−y) = −[nF (y − ω) + nB(y)].
According to (A5), (1/π )

∫
dy Im χ (y)/(ω − iωn − y) = −χA(ω − iωn), because complex z = ω − iωn is in the lower half-

plane of complex z. For practical purposes, however, we just have

χA(ω − iωn) ≡ χ (ω − iωn) =
(

g2

(ω − iωn)2

)γ /2

. (A11)

Using this, we finally obtain

�̂R(ω) = −2T
∑
ωn>0

∫
d2k

(2π )2
Im[iτ̂3ĜR(iωn, k)τ̂3χ (ω − iωn)]

−
∫

d2k

(2π )2

∫
dy

π
Im[χR(y)]τ̂3ĜR(ω − y, k)τ̂3(nF (y − ω) + nB(y)). (A12)

Let’s now spit this matrix equation into the equations for the pairing vertex 	R(ω) and conventional (nonanomalous) self-
energy �R(ω) by expressing �̂R(ω) as

�̂R(ω) = �R(ω)τ̂0 − 	R(ω)τ̂1 (A13)

and expressing τ̂3G(ω, k)τ̂3 as

τ̂3GR(ω, k)τ̂3 = −(ω + �R(ω))τ̂0 − ξkτ̂3 + 	R(ω)τ̂1

ξ 2
k + 	R(ω)2 − (ω + �R(ω))2

, (A14)

where ξk is the fermionic dispersion. This procedure requires some care because, strictly speaking, the Dyson equation holds for
time-ordered Green’s functions, but not for retarded Green’s functions. Equation (A14) is valid assuming that we can analytically
continue the Dyson equation for time-ordered Green’s functions

τ̂3G(ω, k)τ̂3 = −(ω + �(ω))τ̂0 − ξkτ̂3 + 	(ω)τ̂1

ξ 2
k + 	(ω)2 − (ω + �(ω))2

into the upper half-plane. This holds if (z + �R(z))2 − 	R(z)2 does not become real and positive anywhere in the upper half-
plane of complex z, so there are no extra poles, induced by the denominator. In our case, we are safe because already in the
normal state the largest term in �R(z) is the imaginary thermal contribution +iπT χ (0) with the same sign as sgn[Im z].

Expressing next
∫

d2k/(2π )2 = N0
∫

dξk, where N0 is the DOS in the normal state, and integrating over ξk, we obtain from
(A14) ∫

d2k

(2π )2
τ̂3GR(ω, k)τ̂3 = N0

∫ ∞

−∞
dξkτ̂3GR(ω, k)τ̂3 = πN0

−�̃R(ω)τ̂0 + 	R(ω)τ̂1√
(	R(ω))2 − (�̃R(ω))2

, (A15)
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where �̃R(ω) = ω + �R(ω). Substituting this into the r.h.s. of (A12), absorbing the density of states N0 into χ , splitting �̂R(ω)
into normal and anomalous components, and using the fact that −i�̃R(iωn) and 	R(iωn) are real, we obtain

�̃R(ω) = ω − πT
∑
ωm>0

−i�̃(iωm)√
(	(iωm))2 + (−i�̃(iωm))2

(χ (ω + iωm) − χ (ω − iωm))

+
∫

dy[S� (ω − y) Im χR(y)(nF (y − ω) + nB(y))],

(A16)

	R(ω) = πT
∑
ωm>0

	(iωm)√
(	(iωm))2 + (−i�̃(ωm))2

(χ (ω + iωm) + χ (ω − iωm))

+
∫

dy[S	(ω − y) Im χR(y)(nF (y − ω) + nB(y))],

where

S	(ω) = 	R(ω)√
(	R(ω))2 − (�̃R(ω))2

,

S� (ω) = �̃R(ω)√
(	R(ω))2 − (�̃R(ω))2

. (A17)

At a finite T and small y, nB(y) ≈ T/y. Then Im χR(y)nB(y) scales as T/|y|1+γ , and the integrals over dy in the expressions
for �̃(ω) and 	(ω) in (A16) diverge. The divergent contribution can be eliminated by introducing new 	∗,R(ω) and �̃∗,R(ω),
related to 	R(ω) and �̃R(ω) by

�̃∗,R(ω) = �̃R(ω)(1 − Q(ω)), 	∗,R(ω) = 	R(ω)(1 − Q(ω)), (A18)

where

Q(ω) = P√
(	R(ω))2 − (�̃R(ω))

, P =
∫ ∞

−∞
dy Im χ (y)

T

y
= πT χ (0). (A19)

One can easily verify that the equations for 	∗,R(ω) and �̃∗,R(ω) are the same as for 	R(ω) and �̃R(ω), but without the divergent
pieces:

�̃∗,R(ω) = ω + iπT
∑
ωm>0

�̃(ωm)√
(	(ωm))2 + (�̃(ωm))2

(χ (ωm + iω) − χ (ωm − iω))

+
∫

dy Im χR(y)

[
S� (ω − y)(nF (y − ω) + nB(y)) − S� (ω)

T

y

]
,

	∗,R(ω) = πT
∑
ωm>0

	(ωm)√
(	(ωm))2 + (�̃(ωm))2

(χ (ωm + iω) + χ (ωm − iω))

+
∫

dy Im χR(y)

[
S	(ω − y)(nF (y − ω) + nB(y)) − S	(ω)

T

y

]
. (A20)

The ratio 	∗,R(ω)/�̃∗,R(ω) is the same as 	R(ω)/�̃R(ω), i.e., the gap function �R(ω) = ω	R(ω)/�̃R(ω) can be equally
expressed via nonsingular 	∗,R(ω) and �̃∗,R(ω). Furthermore, a little experimentation shows that S	(ω) and S� (ω), given
by (A17), can be equally expressed via 	∗,R(ω) and �̃∗,R(ω), as

S	(ω) = 	∗,R(ω)√
(	∗,R(ω))2 − (�̃∗,R(ω))2

sgn Im �̃∗,R(ω), S� (ω) = �̃∗,R(ω)√
(	∗,R(ω))2 − (�̃∗,R(ω))2

sgn Im �̃∗,R(ω). (A21)

Equations (A20) are free from divergencies and can be readily extended to N �= 1, as we did in the main text. Note that the sign
of Im �̃∗,R(ω) is not fixed by causality and can change between different ω, in distinction to Im �̃R(ω), which has to be positive.

Note by passing that 	R(ω) and �̃R(ω) can be expressed via 	∗,R(ω) and �̃∗,R(ω) in a manner similar to Eq. (A18):

	R(ω) = 	∗,R(ω)(1 + Q∗(ω)), �̃R(ω) = �̃∗,R(ω)(1 + Q∗(ω)), (A22)

where

Q∗(ω) = πT χ (0)sgn Im �̃∗,R(ω)√
(	∗,R)2(ω) − (�̃∗,R)2(ω)

. (A23)
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Equations (A20) have been solved numerically by iterations. For practical purposes, we found that in some cases the
convergence is faster if we do calculations in two steps: first evaluate intermediate 	∗∗,R and �̃∗∗,R, related to 	R and �̃R

by the same formulas as in (A18), but with P = ∫ δ

−δ
dy Im χR(y) T

y , where δ is some finite number, and then compute 	∗,R and

�∗,R by adding the rest of the integral in P. The best convergence is achieved by adjusting the value of δ. In the calculations for
a finite P, we computed 	R(ω) and �̃R(ω) directly, without introducing 	∗,R(ω) and �̃∗,R(ω).

[1] R. Combescot, Phys. Rev. B 51, 11625 (1995).
[2] G. Bergmann and D. Rainer, Z. Physik 263, 59 (1973); P. B.

Allen and D. Rainer, Nature (London) 349, 396 (1991); P. B.
Allen and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

[3] F. Marsiglio, M. Schossmann, and J. P. Carbotte, Phys. Rev.
B 37, 4965 (1988); F. Marsiglio and J. P. Carbotte, ibid. 43,
5355 (1991), for more recent results see F. Marsiglio and J.P.
Carbotte, “Electron-Phonon Superconductivity,” in The Physics
of Conventional and Unconventional Superconductors, edited
by Bennemann and Ketterson (Springer-Verlag, 2006) and ref-
erences therein.

[4] A. Karakozov, E. Maksimov, and A. Mikhailovsky, Solid State
Commun. 79, 329 (1991).

[5] N. E. Bonesteel, I. A. McDonald, and C. Nayak, Phys. Rev. Lett.
77, 3009 (1996).

[6] A. Abanov, A. V. Chubukov, and A. M. Finkel’stein, Europhys.
Lett. 54, 488 (2001).

[7] A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52,
119 (2003).

[8] Ar. Abanov, A. V. Chubukov, and J. Schmalian, J. Electron
Spectrosc. Relat. Phenom. 117-118, 129 (2001).

[9] D. T. Son, Phys. Rev. D 59, 094019 (1999); A. V. Chubukov
and J. Schmalian, Phys. Rev. B 72, 174520 (2005).

[10] S.-S. Lee, Phys. Rev. B 80, 165102 (2009); D. Dalidovich and
S.-S. Lee, ibid. 88, 245106 (2013).

[11] S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80,
155129 (2009); E. G. Moon and S. Sachdev, ibid. 80, 035117
(2009).

[12] E.-G. Moon and A. Chubukov, J. Low Temp. Phys. 161, 263
(2010).

[13] M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127
(2010); 82, 075128 (2010).

[14] D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B
82, 045121 (2010).

[15] R. Mahajan, D. M. Ramirez, S. Kachru, and S. Raghu, Phys.
Rev. B 88, 115116 (2013); A. L. Fitzpatrick, S. Kachru, J.
Kaplan, and S. Raghu, ibid. 88, 125116 (2013); 89, 165114
(2014); G. Torroba and H. Wang, ibid. 90, 165144 (2014); A. L.
Fitzpatrick, G. Torroba, and H. Wang, ibid. 91, 195135 (2015),
and references therein.

[16] P. Monthoux, D. Pines, and G. G. Lonzarich, Nature (London)
450, 1177 (2007).

[17] M. R. Norman in Novel Superfluids, edited by Bennemann
and Ketterson (Oxford University Press, 2014), and references
therein.

[18] D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012); S. Lederer,
Y. Schattner, E. Berg, and S. A. Kivelson, Proc. Natl. Acad.
Sci. USA 114, 4905 (2017); L. Fratino, P. Sémon, G. Sordi,
and A.-M. S. Tremblay, Sci. Rep. 6, 22715 (2016); S. Maiti
and A. V. Chubukov in Novel Superfluids, edited by Bennemann

and Ketterson (Oxford University Press, 2014), and references
therein.

[19] M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil, Phys.
Rev. B 91, 115111 (2015); K. B. Efetov, H. Meier, and C. Pepin,
Nat. Phys. 9, 442 (2013).

[20] Y. Wang and A. V. Chubukov, Phys. Rev. Lett. 110, 127001
(2013); A. V. Chubukov and P. Wölfle, Phys. Rev. B 89, 045108
(2014).

[21] S. Raghu, G. Torroba, and H. Wang, Phys. Rev. B 92, 205104
(2015).

[22] Y. Wang, A. Abanov, B. L. Altshuler, E. A. Yuzbashyan, and
A. V. Chubukov, Phys. Rev. Lett. 117, 157001 (2016).

[23] S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Phys. Rev.
Lett. 114, 097001 (2015).

[24] A. M. Tsvelik, Phys. Rev. B 95, 201112(R) (2017); K.-Y. Yang,
T. M. Rice, and F.-C. Zhang, ibid. 73, 174501 (2006).

[25] M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999).
[26] E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and

A. P. Mackenzie, Annu. Rev. Condens. Matter Phys. 1, 153
(2010).

[27] J. M. Bok, J. J. Bae, H.-Y. Choi, C. M. Varma, W. Zhang, J. He,
Y. Zhang, L. Yu, and X. J. Zhou, Scie. Adv. 2, e1501329 (2016).

[28] T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev.
Condens. Matter Phys. 5, 113 (2014).

[29] D. Vilardi, C. Taranto, and W. Metzner, Phys. Rev. B 99,
104501 (2019); J. Sýkora, T. Holder, and W. Metzner, ibid. 97,
155159 (2018).

[30] M. H. Gerlach, Y. Schattner, E. Berg, and S. Trebst, Phys. Rev.
B 95, 035124 (2017); Y. Schattner, S. Lederer, S. A. Kivelson,
and E. Berg, Phys. Rev. X 6, 031028 (2016); X. Wang, Y.
Schattner, E. Berg, and R. M. Fernandes, Phys. Rev. B 95,
174520 (2017).

[31] K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007); W.
Xu, G. Kotliar, and A. M. Tsvelik, ibid. 95, 121113(R) (2017);
G. Sordi, P. Semon, K. Haule, and A.-M. S. Tremblay, Phys.
Rev. Lett. 108, 216401 (2012).

[32] A. Georges, L. de Medici, and J. Mravlje, Annu. Rev. Condens.
Matter Phys. 4, 137 (2013); W. Wu, M. Ferrero, A. Georges,
and E. Kozik, Phys. Rev. B 96, 041105(R) (2017).

[33] D. V. Khveshchenko and W. F. Shively, Phys. Rev. B 73, 115104
(2006).

[34] T.-H. Lee, A. Chubukov, H. Miao, and G. Kotliar, Phys. Rev.
Lett. 121, 187003 (2018); Y.-M. Wu, A. Abanov, and A. V.
Chubukov, Phys. Rev. B 99, 014502 (2019).

[35] J. Rech, C. Pépin, and A. V. Chubukov, Phys. Rev. B 74, 195126
(2006).

[36] There is a large body of literature on QCP with q = 0. For
recent works, see; S. Sur and S.-S. Lee, Phys. Rev. B 91, 125136
(2015); M. Punk, ibid. 91, 115131 (2015), and references
therein.

144512-27

https://doi.org/10.1103/PhysRevB.51.11625
https://doi.org/10.1103/PhysRevB.51.11625
https://doi.org/10.1103/PhysRevB.51.11625
https://doi.org/10.1103/PhysRevB.51.11625
https://doi.org/10.1007/BF02351862
https://doi.org/10.1007/BF02351862
https://doi.org/10.1007/BF02351862
https://doi.org/10.1007/BF02351862
https://doi.org/10.1038/349396a0
https://doi.org/10.1038/349396a0
https://doi.org/10.1038/349396a0
https://doi.org/10.1038/349396a0
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.12.905
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1103/PhysRevB.37.4965
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1103/PhysRevB.43.5355
https://doi.org/10.1016/0038-1098(91)90556-B
https://doi.org/10.1016/0038-1098(91)90556-B
https://doi.org/10.1016/0038-1098(91)90556-B
https://doi.org/10.1016/0038-1098(91)90556-B
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1103/PhysRevLett.77.3009
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1209/epl/i2001-00266-0
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1016/S0368-2048(01)00251-1
https://doi.org/10.1016/S0368-2048(01)00251-1
https://doi.org/10.1016/S0368-2048(01)00251-1
https://doi.org/10.1016/S0368-2048(01)00251-1
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevB.72.174520
https://doi.org/10.1103/PhysRevB.72.174520
https://doi.org/10.1103/PhysRevB.72.174520
https://doi.org/10.1103/PhysRevB.72.174520
https://doi.org/10.1103/PhysRevB.80.165102
https://doi.org/10.1103/PhysRevB.80.165102
https://doi.org/10.1103/PhysRevB.80.165102
https://doi.org/10.1103/PhysRevB.80.165102
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.88.245106
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.035117
https://doi.org/10.1103/PhysRevB.80.035117
https://doi.org/10.1103/PhysRevB.80.035117
https://doi.org/10.1103/PhysRevB.80.035117
https://doi.org/10.1007/s10909-010-0199-y
https://doi.org/10.1007/s10909-010-0199-y
https://doi.org/10.1007/s10909-010-0199-y
https://doi.org/10.1007/s10909-010-0199-y
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.82.075128
https://doi.org/10.1103/PhysRevB.82.075128
https://doi.org/10.1103/PhysRevB.82.075128
https://doi.org/10.1103/PhysRevB.82.045121
https://doi.org/10.1103/PhysRevB.82.045121
https://doi.org/10.1103/PhysRevB.82.045121
https://doi.org/10.1103/PhysRevB.82.045121
https://doi.org/10.1103/PhysRevB.88.115116
https://doi.org/10.1103/PhysRevB.88.115116
https://doi.org/10.1103/PhysRevB.88.115116
https://doi.org/10.1103/PhysRevB.88.115116
https://doi.org/10.1103/PhysRevB.88.125116
https://doi.org/10.1103/PhysRevB.88.125116
https://doi.org/10.1103/PhysRevB.88.125116
https://doi.org/10.1103/PhysRevB.88.125116
https://doi.org/10.1103/PhysRevB.89.165114
https://doi.org/10.1103/PhysRevB.89.165114
https://doi.org/10.1103/PhysRevB.89.165114
https://doi.org/10.1103/PhysRevB.90.165144
https://doi.org/10.1103/PhysRevB.90.165144
https://doi.org/10.1103/PhysRevB.90.165144
https://doi.org/10.1103/PhysRevB.90.165144
https://doi.org/10.1103/PhysRevB.91.195135
https://doi.org/10.1103/PhysRevB.91.195135
https://doi.org/10.1103/PhysRevB.91.195135
https://doi.org/10.1103/PhysRevB.91.195135
https://doi.org/10.1038/nature06480
https://doi.org/10.1038/nature06480
https://doi.org/10.1038/nature06480
https://doi.org/10.1038/nature06480
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1103/RevModPhys.84.1383
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1073/pnas.1620651114
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1038/srep22715
https://doi.org/10.1103/PhysRevB.91.115111
https://doi.org/10.1103/PhysRevB.91.115111
https://doi.org/10.1103/PhysRevB.91.115111
https://doi.org/10.1103/PhysRevB.91.115111
https://doi.org/10.1038/nphys2641
https://doi.org/10.1038/nphys2641
https://doi.org/10.1038/nphys2641
https://doi.org/10.1038/nphys2641
https://doi.org/10.1103/PhysRevLett.110.127001
https://doi.org/10.1103/PhysRevLett.110.127001
https://doi.org/10.1103/PhysRevLett.110.127001
https://doi.org/10.1103/PhysRevLett.110.127001
https://doi.org/10.1103/PhysRevB.89.045108
https://doi.org/10.1103/PhysRevB.89.045108
https://doi.org/10.1103/PhysRevB.89.045108
https://doi.org/10.1103/PhysRevB.89.045108
https://doi.org/10.1103/PhysRevB.92.205104
https://doi.org/10.1103/PhysRevB.92.205104
https://doi.org/10.1103/PhysRevB.92.205104
https://doi.org/10.1103/PhysRevB.92.205104
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevLett.117.157001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevLett.114.097001
https://doi.org/10.1103/PhysRevB.95.201112
https://doi.org/10.1103/PhysRevB.95.201112
https://doi.org/10.1103/PhysRevB.95.201112
https://doi.org/10.1103/PhysRevB.95.201112
https://doi.org/10.1103/PhysRevB.73.174501
https://doi.org/10.1103/PhysRevB.73.174501
https://doi.org/10.1103/PhysRevB.73.174501
https://doi.org/10.1103/PhysRevB.73.174501
https://doi.org/10.1103/PhysRevLett.83.3916
https://doi.org/10.1103/PhysRevLett.83.3916
https://doi.org/10.1103/PhysRevLett.83.3916
https://doi.org/10.1103/PhysRevLett.83.3916
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1146/annurev-conmatphys-070909-103925
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1103/PhysRevB.99.104501
https://doi.org/10.1103/PhysRevB.99.104501
https://doi.org/10.1103/PhysRevB.99.104501
https://doi.org/10.1103/PhysRevB.99.104501
https://doi.org/10.1103/PhysRevB.97.155159
https://doi.org/10.1103/PhysRevB.97.155159
https://doi.org/10.1103/PhysRevB.97.155159
https://doi.org/10.1103/PhysRevB.97.155159
https://doi.org/10.1103/PhysRevB.95.035124
https://doi.org/10.1103/PhysRevB.95.035124
https://doi.org/10.1103/PhysRevB.95.035124
https://doi.org/10.1103/PhysRevB.95.035124
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevX.6.031028
https://doi.org/10.1103/PhysRevB.95.174520
https://doi.org/10.1103/PhysRevB.95.174520
https://doi.org/10.1103/PhysRevB.95.174520
https://doi.org/10.1103/PhysRevB.95.174520
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.76.104509
https://doi.org/10.1103/PhysRevB.95.121113
https://doi.org/10.1103/PhysRevB.95.121113
https://doi.org/10.1103/PhysRevB.95.121113
https://doi.org/10.1103/PhysRevB.95.121113
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1103/PhysRevLett.108.216401
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevB.73.115104
https://doi.org/10.1103/PhysRevB.73.115104
https://doi.org/10.1103/PhysRevB.73.115104
https://doi.org/10.1103/PhysRevB.73.115104
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevLett.121.187003
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevB.99.014502
https://doi.org/10.1103/PhysRevB.74.195126
https://doi.org/10.1103/PhysRevB.74.195126
https://doi.org/10.1103/PhysRevB.74.195126
https://doi.org/10.1103/PhysRevB.74.195126
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.91.125136
https://doi.org/10.1103/PhysRevB.91.115131
https://doi.org/10.1103/PhysRevB.91.115131
https://doi.org/10.1103/PhysRevB.91.115131
https://doi.org/10.1103/PhysRevB.91.115131


WU, ABANOV, WANG, AND CHUBUKOV PHYSICAL REVIEW B 99, 144512 (2019)

[37] A. Abanov, A. V. Chubukov, and M. R. Norman, Phys. Rev. B
78, 220507(R) (2008).

[38] B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B
52, 5563 (1995); D. Bergeron, D. Chowdhury, M. Punk, S.
Sachdev, and A.-M. S. Tremblay, ibid. 86, 155123 (2012); Y.
Wang and A. Chubukov, ibid. 88, 024516 (2013).

[39] Ar. Abanov, Y.-M. Wu, Y. Wang, and A. V. Chubukov,
arXiv:1812.07634.

[40] P. Anderson, J. Phys. Chem. Solids 11, 26 (1959).
[41] A. A. Abrikosov and L. P. Gor’kov, J. Exp. Theor. Phys. 9, 220

(1959).
[42] A. J. Millis, S. Sachdev, and C. M. Varma, Phys. Rev. B 37,

4975 (1988).
[43] A. A. Abrikosov and L. P. Gor’kov, J. Exp. Theor. Phys. 12, 227

(1961).
[44] K. Maki, Physics Physique Fizika 1, 21 (1964); P. Fulde and

K. Maki, Phys. Rev. Lett. 15, 675 (1965); Y. Wada, Rev. Mod.
Phys. 36, 253 (1964); D. J. Scalapino, Y. Wada, and J. C.
Swihart, Phys. Rev. Lett. 14, 102 (1965).

[45] J. C. Campuzano, M. R. Norman, and M. Randeria, Photoe-
mission in the high-Tc supercondutors, in Superconductivity:
Novel Superconductors, edited by K. H. Bennemann and J. B.
Ketterson (Springer, 2008), Vol. 2.

[46] J. Fink, A. Koitzsch, J. Geck, V. Zabolotnyy, M. Knupfer, B.
Büchner, A. Chubukov, and H. Berger, Phys. Rev. B 74, 165102
(2006).

[47] A. Abanov and A. V. Chubukov, Phys. Rev. Lett. 83, 1652
(1999).

[48] M. Eschrig, Adv. Phys. 55, 47 (2006).
[49] O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and

C. Renner, Rev. Mod. Phys. 79, 353 (2007).
[50] T. J. Reber, N. C. Plumb, Z. Sun, Y. Cao, Q. Wang, K. McElroy,

H. Iwasawa, M. Arita, J. S. Wen, Z. J. Xu, G. Gu, Y. Yoshida,
H. Eisaki, Y. Aiura, and D. S. Dessau, Nat. Phys. 8, 606 (2012);
T. J. Reber, N. C. Plumb, Y. Cao, Z. Sun, Q. Wang, K. McElroy,
H. Iwasawa, M. Arita, J. S. Wen, Z. J. Xu, G. Gu, Y. Yoshida, H.
Eisaki, Y. Aiura, and D. S. Dessau, Phys. Rev. B 87, 060506(R)
(2013); H. Li, X. Zhou, S. Parham, T. J. Reber, H. Berger, G. B.
Arnold, and D. S. Dessau, Nat. Commun. 9, 26 (2018); H. Li,
X. Zhou, S. Parham, K. N. Gordon, R. D. Zhong, J. Schneeloch,
G. D. Gu, Y. Huang, H. Berger, G. B. Arnold, D. S. Dessau,
arXiv:1809.02194.

[51] T. Kondo, A. D. Palczewski, Y. Hamaya, T. Takeuchi, J. S. Wen,
Z. J. Xu, G. Gu, and A. Kaminski, Phys. Rev. Lett. 111, 157003
(2013); T. Kondo, A. F. Santander-Syro, O. Copie, C. Liu, M. E.
Tillman, E. D. Mun, J. Schmalian, S. L. Bud’ko, M. A. Tanatar,
P. C. Canfield, and A. Kaminski, ibid. 101, 147003 (2008).

[52] A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S.
Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi,
T. Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D.
Hinks, L. Ozyuzer, and J. C. Campuzano, Nat. Phys. 2, 447
(2006); A. Kanigel, U. Chatterjee, M. Randeria, M. R. Norman,
S. Souma, M. Shi, Z. Z. Li, H. Raffy, and J. C. Campuzano,
Phys. Rev. Lett. 99, 157001 (2007); H. Ding, J. C. Campuzano,
A. F. Bellman, T. Yokoya, M. R. Norman, M. Randeria, T.
Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki,
and G. Jennings, ibid. 74, 2784 (1995).

[53] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.
75, 473 (2003); M. Hashimoto, I. M. Vishik, R.-H. He, T. P.
Devereaux, and Z.-X. Shen, Nat. Phys. 10, 483 (2014).

[54] P. D. Johnson, T. Valla, A. V. Fedorov, Z. Yusof, B. O. Wells,
Q. Li, A. R. Moodenbaugh, G. D. Gu, N. Koshizuka, C.
Kendziora, S. Jian, and D. G. Hinks, Phys. Rev. Lett. 87, 177007
(2001).

[55] A. A. Kordyuk and S. V. Borisenko, Low Temp. Phys. 32, 298
(2006); A. A. Kordyuk, ibid. 41, 319 (2015).

[56] Y. He, Y. Yin, M. Zech, A. Soumyanarayanan, M. M. Yee, T.
Williams, M. C. Boyer, K. Chatterjee, W. D. Wise, I. Zeljkovic,
T. Kondo, T. Takeuchi, H. Ikuta, P. Mistark, R. S. Markiewicz,
A. Bansil, S. Sachdev, E. W. Hudson, and J. E. Hoffman,
Science 344, 608 (2014).

[57] Y. Peng, J. Meng, D. Mou, J. He, L. Zhao, Y. Wu, G. Liu, X.
Dong, S. He, J. Zhang, X. Wang, Q. Peng, Z. Wang, S. Zhang, F.
Yang, C. Chen, Z. Xu, T. K. Lee, and X. J. Zhou, Nat. Commun.
4, 2459 (2013).

[58] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys. 78,
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