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Possibility of chiral d-wave state in the hexagonal pnictide superconductor SrPtAs
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We discuss the type of pairing in the hexagonal pnictide superconductor SrPtAs, taking into account its
multiband structure. The topological chiral d-wave state with time-reversal symmetry breaking has been
anticipated from the spontaneous magnetization observed by the muon-spin-relaxation experiment. We point out
in this paper that the recent experimental reports on the nuclear-spin-lattice relaxation rate T −1

1 and superfluid
density ns(T ), which seemingly support the conventional s-wave pairing, are also consistent with the chiral
d-wave state. The compatibility of the gap and multiband structures is crucial in this argument. We propose
that the measurement of the bulk quasiparticle density of states would be useful for the distinction between two
pairing states.
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I. INTRODUCTION

The first hexagonal pnictide superconductor SrPtAs [1]
(Tc = 2.4 K) has received attention, since the muon-spin-
relaxation (μSR) experiment [2] observes the internal magne-
tization below Tc. The result suggests the spontaneous time-
reversal symmetry (TRS) breaking in the superconducting
state. From the group theoretical consideration [3,4] and func-
tional renormalization group analysis, [5] the most probable
pairing symmetry is the topological chiral d-wave (dx2−y2 ±
idxy-wave) state with TRS breaking. This state has nonzero
Chern number [6] and supports the surface bound states
with chiral energy spectrum [5,7]. Especially in SrPtAs, it is
expected that the chiral surface state causes spontaneous spin
current and spin polarization [8], the origin of which is the
staggered antisymmetric spin-orbit coupling (SOC) coming
from the hexagonal bilayer structure of the crystal with local
lack of inversion symmetry [9].

We may explain intuitively the stability of the chiral d-
wave pairing in SrPtAs. The hexagonal structure of the crystal
plays a role for supporting the chiral d-wave state, since there
is the two-dimensional (2D) irreducible representation with
dx2−y2 - and dxy-wave functions in the crystal symmetry, and
then the chiral d-wave pairing is easily obtained as the mixing
of these two bases with relative phase ±π/2 [3,4]. More-
over, the band structure also assists the condensation energy
gain, since quasi-2D bands with fully gapped quasiparticle
excitations dominate significantly compared to a minor three-
dimensional (3D) band with point-nodal excitation [5,10,11].

On the other hand, there are still some controversies on the
chiral d-wave pairing. The nuclear spin-lattice relaxation rate
T −1

1 measured by the nuclear quadrupole resonance shows
the Hebel-Slichter (HS) peak near Tc and exponential decay
in the low-temperature region [12]. It has also been found
from the magnetic-penetration-depth measurement that su-
perfluid density ns(T ) exhibits Arrhenius-type behavior (i.e.,
approaches to ns(0) exponentially) at low temperature [13].
The conventional s-wave pairing without any nodal excitation
is naively expected from these experimental results.

We address this issue in this paper and show, based on
the multiband quasiclassical formalism [14], that observed

T −1
1 and ns(T ) are consistent with the chiral d-wave pairing

as well as the s-wave one. The point is that the density of
states (DOS) and root mean square of the Fermi velocity in
the 3D band with nodal excitation are less dominant [10,11]
and the power-law behavior in the low-temperature region is
smeared out. It should also be emphasized that the HS peak
is not only from the coherence effect solely exists for the
conventional s-wave state, but also from the full gap structure
of the quasiparticle excitation [15]. Thus, an unconventional
state without any nodes such as the chiral d-wave state in
major quasi-2D bands is able to have a large HS peak. We
also show that the measurement of the bulk quasiparticle
DOS, which can be measured by the scanning tunneling
spectroscopy/microscopy (STM/STS), would be crucial for
the distinction between two pairing states.

II. NORMAL AND PAIRING STATES

There are two distinct honeycomb-shaped PtAs layers (l =
1, 2) in the unit cell of SrPtAs [1]. Although the entire crystal
is inversion symmetric, each layer does not contain the inver-
sion center in itself, and the system is therefore staggered non-
centrosymmetric [9]. The band-structure calculation reveals
that the Pt 5d orbital is dominant in the conduction bands
and there are six Fermi surfaces with spin degeneracy, five
of which are quasi-2D and the other 3D [10,11]. Including Pt
nearest-neighbor hopping within the plane, as well as nearest-
and next-nearest-neighbor hopping between the planes, and
also the staggered antisymmetric SOC, one finds the one-body
effective tight-binding Hamiltonian at low energy [10,11],

H0 =
∑
kβσ

(
a(β )†

k1σ
a(β )†

k2σ

)

×
(

ε
(β )
k + α(β )λkσ ε

(β )
ck

ε
(β )∗
ck ε

(β )
k − α(β )λkσ

)(
a(β )

k1σ

a(β )
k2σ

)
, (1)

where β(= 1, 2, 3) indicates the unsplit band, a(β )†
klσ (a(β )

klσ )
is the creation (annihilation) operator of an electron with
the wave vector k and spin σ = ±1 in the lth layer of
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FIG. 1. The cross section of Fermi surfaces at (a) kz = 0 and
(b) kz = π/c. Each Fermi surface is labeled by the set of parameters
β = 1, 2, 3 and γ = ± [see also Eq. (2)].

the unit cell, ε
(β )
1k = t (β )

1

∑
n cos k · T n + t (β )

c2 cos(kzc), ε
(β )
ck =

t (β )
c cos(kzc/2)[1 + exp(−ik · T 3) + exp(ik · T 2)], and λk =∑

n sin k · T n with T 1 = (0, a, 0), T 2 = (
√

3a/2,−a/2, 0),
and T 3 = (−√

3a/2,−a/2, 0) the in-plane nearest-neighbor
bond vectors (a and c are in-plane and interlayer lattice
constants). Employing the unitary transformation a(β )

klσ =∑
Ulγ c(β )

kγ σ
with band splitting γ = ±, we diagonalize H0 =∑

ξ
βγ

k c(β )†
kγ σ

c(β )
kγ σ

, where

ξ
βγ

k = ε
(β )
1k − μ(β ) + γ

√∣∣ε (β )
ck

∣∣2 + |α(β )λk|2 (2)

is the normal-state energy spectrum. Using the tight-binding
parameters suggested by the LDA calculation [10,11], we
obtain the Fermi surface structure depicted as Fig. 1.

We utilize the quasiclassical formalism for the multiband
superconductor [14]. Solving the Eilenberger equation, we ob-
tain the quasiclassical Green’s functions of the “βγ ”th bands
with the fermionic Matsubara energy εn = (2n + 1)πkBT ,

g↑↑
(
iεn, kβγ

F

) = ḡ↓↓
(
iεn, kβγ

F

) = εn√
ε2

n + ∣∣
kβγ
F

∣∣2
,

f↑↓
(
iεn, kβγ

F

) = {
f̄↓↑

(
iεn, kβγ

F

)}∗ =

kβγ

F√
ε2

n + ∣∣
kβγ
F

∣∣2
, (3)

where kβγ
F is the Fermi wave vector and 
kβγ

F
the gap function.

We simply assume [14,16]


kβγ
F

= 
(T )φkβγ
F

, (4)

where


(T ) =
{


0 tanh
[

πkBTc

0

√
δ
( Tc

T − 1
)]

(T � Tc)

0 (T > Tc),

with δ = 1.05, and φkβγ
F

shown in Table I is the long-
wavelength expansion (around the center of “βγ ”th Fermi
surface) of the tight-binding pair wave functions for s- and
chiral d-wave states, 1 and

∑3
n=1 ei2πn/3 cos k · T n, respec-

tively [3,4]. We see from Table I that the chiral d-wave gap
function in quasi-2D bands (the 3D band) has no nodes (point
nodes in the kz direction).

We may introduce phenomenologically the quasiparticle
damping (the smearing factor of the quasiparticle DOS) η via
the analytic continuation to obtain the retarded and advanced
Green’s functions:

gR,A
↑↑

(
ε, kβγ

F

) = g↑↑
(
iεn → ε ± iη, kβγ

F

)
,

ḡR,A
↓↓

(
ε, kβγ

F

) = ḡ↓↓
(
iεn → ε ± iη, kβγ

F

)
,

f R,A
↑↓

(
ε, kβγ

F

) = f↑↓
(
iεn → ε ± iη, kβγ

F

)
,

f̄ R,A
↓↑

(
ε, kβγ

F

) = f̄↓↑
(
iεn → ε ± iη, kβγ

F

)
. (5)

For simplicity, we neglect the band dependence of η. We
therefore have two fitting parameters, 
0/kBTc and η, in the
following calculations.

III. NUCLEAR-SPIN-LATTICE-RELAXATION RATE T −1
1

The relaxation rate is [14]

T1(Tc)

T1(T )
= T

Tc

∫ ∞

−∞
dε(N̄s(ε)2 + M̄s(ε)2)

(
−∂ f (ε)

∂ε

)
, (6)

where f (ε) is the Fermi-Dirac distribution function, and N̄s(ε)
and M̄s(ε) denote DOS and anomalous DOS of the Bogoli-
ubov quasiparticle normalized by the entire DOS at the Fermi
level in the normal state N (0). For the multiband spin-singlet

TABLE I. The list of φkβγ
F

, which is the long-wavelength expansions (around the center of “βγ ”th Fermi surface) for s- and chiral d-

wave pair wave functions in the tight-binding scheme [3,4]. We omit the normalization constant from the condition 〈|φβγ

kF
|2〉Fβγ = 1, where

〈· · ·〉Fβγ denotes the average on the βγ th Fermi surface. The abbreviations 3 ± (H )th and 3 ± (H ′)th mean the disconnected Fermi pockets
of 3 ± th band enclosing H and H ′ points, respectively. Note that all the Fermi surfaces are quasi-2D, except for the 3D 3th one. Here,
k̂ = k/|k|, and δk = kβγ

F − k0, δp = kβγ

F − p0, δp′ = kβγ

F − p′
0, δq = kβγ

F − q0, and δq′ = kβγ

F − q′
0 refer to the deviations from the centers

of the long-wavelength expansions, and k0 = (0, 0, kβγ

Fz ), p0 = (2π/
√

3, 2π/3, kβγ

Fz ), p′
0 = (0, 4π/3, kβγ

Fz ), q0 = (2π/
√

3, 2π/3, π/c), and
q′

0 = (0, 4π/3, π/c) the centers of the expansions. We emphasize that δk, δp, and δp′ lie in the 2D plane, whereas δq and δq′ point in 3D
directions. Thus, φk3−

F
for the chiral d-wave state has point nodes in the kz direction, while the others have no nodes. The linear dependence of

the chiral d-wave function of 3 ± th bands is compatible with the Pauli exclusion principle due to the fact that we have an additional minus
sign from the flipping of the valley degrees of freedom H and H ′.

1 ± th 2 ± th 3 + (H )th 3 + (H ′)th 3 − (H )th 3 − (H ′)th

φkβγ
F

of s-wave 1 1 1 1 1 1

φkβγ
F

of chiral d-wave (δk̂x + iδk̂y )2 (δk̂x + iδk̂y )2 δ p̂x − iδ p̂y δ p̂′
x − iδ p̂′

y δq̂x − iδq̂y δq̂′
x − iδq̂′

y
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FIG. 2. Temperature dependence of T −1
1 . Green dots are the

experimental results [12]. Red squares and blue triangles show the
estimations for s-wave and chiral d-wave states. Used fitting param-
eters are 
0/kBTc = 1.765 for both states, and η = 0.14(0.008)kBTc

for the s-wave (chiral d-wave) state.

superconductor [14],{
N̄2

s (ε) = 〈a11
↑↑(−ε, k)〉F 〈a22

↓↓(ε, k)〉F

M̄2
s (ε) = −〈a12

↑↓(−ε, k)〉F 〈a21
↓↑(ε, k)〉F ,

(7)

where

a11
↑↑(ε, k) = 1

2
(gR

↑↑(ε, k) − gA
↑↑(ε, k)),

a22
↓↓(ε, k) = 1

2
(ḡR

↓↓(ε, k) − ḡA
↓↓(ε, k)),

a12
↑↓(ε, k) = i

2
( f R

↑↓(ε, k) − f A
↑↓(ε, k)),

a21
↓↑(ε, k) = i

2
( f̄ R

↓↑(ε, k) − f̄ A
↓↑(ε, k)), (8)

and

〈
aττ ′

σσ ′ (ε, k)
〉
F = 1

N (0)

∑
βγ

∫ d�kβγ
F

(2π )3h̄
∣∣vvvβγ

F

∣∣aττ ′
σσ ′

(
ε, kβγ

F

)
,

h̄vvv
βγ
F = ∇kξ

βγ

k

∣∣∣
k=kβγ

F

(9)

is the Fermi surface average.
The results for both s-wave and chiral d-wave states are

shown in Fig. 2 with experimental data [12]. The fitting
parameters are chosen as 
0/kBTc = 1.765 for both states,
and η = 0.14(0.008)kBTc for the s-wave (chiral d-wave) state.
We clearly see that both pairing states agree well with ex-
perimental data, showing the HS peak just below Tc and
exponential decay at low temperature.

It is renown that M̄s(ε) from the coherence effect appears
only for the s-wave state and contributes to the HS peak signif-
icantly [15]. We should note, however, that the quasiparticle
excitations of quasi-2D bands in the chiral d-wave state is
fully gapped and N̄s(ε) also gives rise to the large enough
HS peak with reduced η. Moreover, the quasiparticle DOS of
the 3D band is less dominant in this system (see Fig. 3), and
then the power-low behavior at low temperature caused by the

FIG. 3. The contrubution from the βγ th band to the normal-
ized quasiparticle DOS N̄s(ε) in the chiral d-wave state, which
is expressed as N̄βγ

s (ε) = ∫
a11

↑↑(ε, kβγ

F )d�
βγ

kF
/{(2π )3N (0)h̄|vvvβγ

F |}.
The gap amplitude at T = 0.5Tc is used in this estimation. We see
that the 3D band (3th band) is less dominant. We note additionally
that the gap maxima, which determines the peak location, of the
point nodal gap function 
(T )φk3−

F
is larger than that of the other

nodeless gap functions due to the normalization condition for the
Fermi surface average 〈|φβγ

kF
|2〉Fβγ = 1 [see also Eq. (4)].

nodal excitation is negligible. These facts are crucial for the
compatibility of the chiral d-wave state with experiment data.

We therefore cannot distinguish between s- and chiral d-
wave states from T −1

1 . We then propose that the measurement
of the bulk quasiparticle DOS would give a decisive distinction.
It should be emphasized that we need to reduce η for the chiral
d-wave state to compensate the absence of the contribution
from M̄s(ε). Namely, the reduction of η causes the significant
difference of N̄s(ε) for s- and chiral d-wave states (see Fig. 4).

FIG. 4. Dashed red and blue lines are the normalized DOS of
quasiparticles N̄s(ε) in s- and chiral d-wave states with the gap
amplitude at T = 0.5Tc. The smearing factor η = 0.14(0.008)kBTc,
and the peaks are reduced (enhanced) in the s-wave (chiral d-wave)
state. The large difference between the magnitudes of the peaks
would be crucial for the experimental distinction of these two pairing
states. Incidentally, the point-nodal excitation of the chiral d-wave
state from the less dominant 3D band causes feeble “V-shaped”
behavior around ε = 0 and tiny peaks at ε � ±2.3kBTc in the blue
line.
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FIG. 5. Temperature dependence of normalized superfluid den-
sity n̄s(T ). Green dots denote experimental data [13]. Dashed red
and blue lines show the estimations for s-wave and chiral d-wave
states. Used fitting parameters are 
0/kBTc = 1.5 for both states, and
η = 0.14(0.008)kBTc for the s-wave (chiral d-wave) state. We note
additionally that the results are insensitive to the choice of η in this
case.

Thus, the observation of N̄s(ε) would be relevant for the
distinction between two pairing states using, for instance,
the STM/STS even in the (0001) surface without the chiral
surface mode. It would be an advantage, since the layered
structure of the crystal enables us to obtain a flat (0001)
surface. The other surfaces may have more roughness and not
be suitable for the measurement, although they host the chiral
surface states causing zero-energy peak as the fingerprint of
the topological chiral d-wave pairing. We note that another
possibility for the distinction using quasiparticle interference
spectroscopy has also been pointed out [17].

IV. SUPERFLUID DENSITY ns(T )

Superfluid density normalized by its zero-temperature
value ns(0) is [14]

n̄s(T ) =
∑
βγ

n̄βγ
s (T ),

n̄βγ
s (T ) =

∑
i=x,y,z

∫ d�
kβγ

F

(2π )3 h̄
∣∣vvvβγ

F

∣∣ (vβγ
Fi

)2(
1 − Ykβγ

F
(T )

)
∑

βγ

∑
i=x,y,z

∫ d�
kβγ

F

(2π )3 h̄
∣∣vvvβγ

F

∣∣ (vβγ
Fi

)2
, (10)

where

Yk(T ) = 1 − πkBT
∞∑

n=−∞

|
k|2(
ε2

n + |
k|2
)2/3

is Yosida function. The parameter is taken as 
0/kBTc = 1.5
for both states [18]. We have also checked that the results
are insensitive to the choice of the quasiparticle damping η

in this case, and we take the values η = 0.14(0.008)kBTc for
the s-wave (chiral d-wave) state, the same ones used in the
estimations of T −1

1 .
We clearly see from Fig. 5 that the results of both states

fit very well to experimental data, namely, both exhibit the

FIG. 6. n̄βγ
s (T ) of the chiral d-wave state. We see that the con-

tribution from the 3D band (3th band) with power-law behavior is
negligibly small.

thermal-activation-type behavior at low temperature. n̄βγ
s (T )

in Eq. (10) shows the contribution from each band and the
result for the chiral d-wave state is plotted in Fig. 6. The
contribution from the 3D band with power-law behavior is
negligibly small, since n̄βγ

s (T ) depends strongly on root mean
square of the Fermi velocity, and its value for the 3D band is
minor (see Table. I in Ref. [11]).

V. SUMMARY

We have shown based on the multiband quasiclassical
formalism [14] that observed T −1

1 and ns(T ) in the super-
conducting phase of SrPtAs [12,13] are consistent with the
chiral d-wave pairing as well as the s-wave one. In other
words, the chiral d-wave state cannot be ruled out from
these experiments. We have found in the fitting of T −1

1 a
significant difference of the quasiparticle damping factors for
these two pairing states due to the absence of M̄s(ε) in the
chiral d-wave state [see Eq. (6)]. This difference causes a
remarkable difference between the magnitudes of the peaks
in the bulk quasiparticle DOS, therefore, a measurement of
which would give a decisive distinction between s- and chiral
d-wave states (see Fig. 4). Such a measurement could be done
by the STM/STS even in the (0001) surface without the chiral
surface mode. It would be an advantage, since we may obtain
a flat (0001) surface due to the layered structure of the crystal.
The essence of our results comes from the fact that the DOS
and root mean square of Fermi velocity are less dominant in
the 3D (3th) band, [10,11] and would be robust even if we
take a further approximation with respect to parameters in the
superconducting state.

We comment on the f -wave pairing suggested as the other
possibility [19]. The quasiparticle excitation of this state is
fully gapped in two bands (3 ± th) around the Brillouin zone
corners, whereas has line nodes in four quasi-2D bands (1 ±
th and 2 ± th) around the zone center. We have checked that
T −1

1 for the f -wave state using the smallest η = 0.0025kBTc

fits well with observed data [12], thanks to the large DOS
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of fully gapped 3 + th band. However, ns(T ), the dominant
contribution for which comes from four line-nodal 1 ± th
and 2 ± th bands with large root mean square of the Fermi
velocity (see Table. I in Ref. [11]), shows an evident power-
law behavior at low temperature and contradicts strongly
with the experiment [13]. The results are summarized in the
Supplemental Material [20]. Besides, it would be hard to
explain the spontaneous magnetization [2] from the f -wave
state as well as the s-wave one. The chiral d-wave state is thus
the only one, which is consistent with all the experiments that
have been done so far [2,12,13].

We should also mention that only polycrystal samples have
ever been used. The experiments with single crystals are
highly desired.
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