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Spin polarization and orbital effects in superconductor-ferromagnet structures
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We study theoretically spontaneous currents and magnetic field induced in a superconductor-ferromagnet
(S-F) bilayer due to direct and inverse proximity effects. There are two types of contributions to the induced
currents. One is the Meissner current, which appears even in the absence of an external magnetic field due to the
magnetic moment in the ferromagnet and to the magnetization in the superconductor. The second contribution is
due to a space-dependent magnetization in the superconductor which is induced by the inverse proximity effect
over a distance of the order of the superconducting correlation length ξS . In contrast, the magnetic induction
B, caused by the Meissner currents, penetrates the S film over the London length λS . Even though λS usually
considerably exceeds the correlation length, the amplitude and sign of B at distances much larger than ξS depend
crucially on the strength of the exchange energy in the ferromagnet and on the magnetic moment induced in the
S layer.
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I. INTRODUCTION

Besides the orbital effects, it is well known that con-
ventional superconducting pairing is also suppressed by a
magnetic field when acting on the spins of electrons via the
Zeeman interaction. Whereas superconducting correlations
couple pairs of electrons in a singlet state (Cooper pairs),
the Zeeman interaction tends to align both spins in the di-
rection parallel to the magnetic field. These two antagonistic
tendencies can, nevertheless, coexist when the Zeeman energy
is small enough in comparison to the superconducting gap.
This coexistence implies the appearance of Cooper pairs in
a triplet state. This situation occurs, for example, in thin
superconducting films (S films) in the presence of an in-plane
magnetic field and also in the superconductor-ferromagnet
(S-F) heterostructure in which Cooper pairs from the S layer
can penetrate into the ferromagnet, where the intrinsic ex-
change field J acts on the spins of electrons (see review
articles [1–5]).

Leakage of Cooper pairs from S to F is the so-called
proximity effect. The wave function of the Cooper pairs
penetrating into the F region with a uniform magnetic moment
M contains not only the singlet but also the triplet component
with zero spin projection on the vector M. In this case, Cooper
pairs penetrate into a diffusive F over a short length ξF,s−r ≈√

DF /J and experience oscillations in space. This leads to
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the appearance of the so-called π state in Josephson SFS
junctions [6–12]. If the magnetic moment M is nonuniform,
the triplet Cooper pairs with a nonzero projection pene-
trate into F over a much longer distance ξF,l−r ≈ √

DF /2πT
[13–24]. Interestingly, if the S-F interface is transparent
enough, the triplet pairs can leak into the superconductor. This
is the inverse proximity effect that leads to a finite magnetic
moment in S [25–29].

The size of this spin-polarized region within the super-
conductor is of the order of the superconducting correla-
tion length, which in the diffusive limit is given by ξS ≈√

DS/2πTc. The magnetic moment MS induced in S has a
direction opposite to the magnetization vector MF in the F
layer. Under certain conditions the total magnetic moment in
the S region compensates the total magnetic moment of the
F film, resulting in a full spin screening [25,26,30]. In the
ballistic case, the induced magnetization MS (x) may spatially
change sign [27,28].

These predictions for the inverse proximity effect were
eventually confirmed experimentally [31,32]. However, quan-
titative interpretation of the experimental results is quite subtle
[33,34] since the magnetic field arising in S is caused not
only by the induced magnetization MS but also by Meissner
currents that arise in the S/F structure [26,35,36]. For this
reason a detailed understanding of the inverse proximity effect
is a key issue for interpretation of experimental data on S/F
structures.

In this work we study the proximity effect in S-F struc-
tures, taking into account explicitly the generated spontaneous
currents. This topic was first addressed by the authors in
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2004 [26] and more recently in Ref. [36]. These two works
predict a magnetic induction Bs(x) induced in the S layer
which penetrates over the London penetration depth λS . The
authors of Ref. [26] focused on the magnetic field caused by
MS (x) and estimated the orbital effects. They showed that
the spin polarization effects are stronger than those related to
the Meissner currents screening the magnetic moment MF . In
Ref. [36] the orbital effects were studied in more detail, but
the inverse proximity effect was completely neglected. Since
in dirty superconducting films λS is usually larger than the
coherence length ξS characterizing penetration of a magnetic
moment MS into S, it might look at first glance as if the
magnetic field measured in a superconducting film with a
large thickness dS (ξS � dS � λS) cannot be affected by the
magnetic moment MS localized close to the S-F interface. In
contrast to this scenario, we demonstrate here that for a correct
interpretation of the experimental data one does need to take
into account the magnetic moment in the S layer induced by
the inverse proximity effect.

To be specific, we show that the spatial dependence of the
magnetic induction BS (x) induced in the S region consists
of a long-range component Bl−r (x) which decreases over the
London penetration depth λS and of a short-range component
Bs−r caused by the induced magnetization which decays over
the superconducting coherence length ∼ξS . The magnetic
inductance BS in a thick superconducting film ( ξS � dS �
λS) thus has the form

BS (x) = Bl−r (0) exp(x/λS ) + Bs−r (x). (1)

At large distances from the S/F interface, |x| � ξS , BS (x)
is mainly determined by the long-range term Bl−r (x). Its
amplitude consists of two contributions:

Bl−r (0) = Borb(0) + Bsp(0). (2)

The first term is the contribution from the spontaneous Meiss-
ner currents (orbital effects) and equals

Borb(0) = −4πM0θ
2
F /2, (3)

where θF = (dF /λF ) and dF and λF are the thickness of the F
layer and the London penetration depth in the ferromagnet,
respectively. This expression coincides with the result for
the magnetic induction obtained in Ref. [36]. One of our
main findings is that there is an additional contribution to the
magnetic induction, the term Bsp in Eq. (2). This contribution
is caused by the inverse proximity effect that was neglected in
Ref. [36]. For a wide range of parameters this contribution due
to spin polarization near the S/F interface is much larger than
that due to orbital effects, i.e., Bsp(0) � Borb(0). Moreover,
this contribution might be crucial in determining the sign of
the magnetic induction in the S layer since, as we show below,
Bsp(0) and Borb(0) have different signs. Moreover, the relative
magnitude between these two contributions depends on the
exchange field J in the F layer. The contribution Bsp(0) due to
spin polarization in S can be neglected only in the case of the
F film with sufficiently large exchange energy J .

In the next sections we investigate the spatial distribution
of the Meissner currents jS (x) and the fields B(x), H (x) =
B(x) − 4πM(x). Our main findings are the following: (i)
Eq. (3) describes the orbital effect only in the case of rather
large exchange energy J . (ii) In the full-screening case, both
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FIG. 1. The S-F structure under consideration. We assume that
the ferromagnet has a homogeneous magnetization in the z direction.

short- and long-range components in Eq. (2) are determined
by spin polarization effects. (iii) Meissner currents in the S
region change sign at some point x0 ∼ ξS away from the S/F
interface. (iv) The total Meissner currents in the F (or S) film
calculated with or without accounting for the spin screening
effect may have opposite directions, and (v) in the case of
an out-of-plane magnetization of the F layer no spontaneous
currents, and hence no magnetic induction, are induced.

This article is organized as follows. In the next section we
consider a diffusive S/F bilayer and derive the expressions
for the magnetic moment MS induced by the spin polariza-
tion. Although this was presented in our earlier publications
[25,26], for completeness and to set the notation, we rederive
it here. In Sec. III we solve the magnetostatic equations for
the vector potential and find the spatial distribution of the
spontaneous supercurrents j in the system which arise in the
absence of an external magnetic field. In particular we show
that the current density jS in the S film can change its sign
near the S/F interface. In the last section we summarize our
results.

II. PROXIMITY EFFECT IN THE S-F
HETEROSTRUCTURE

In this section we study the proximity effect in an
S-F structure. We assume the diffusive limit, such that the
conditions �τ � 1 and Jτ � 1 are satisfied, where τ is the
momentum relaxation time. The presence of a spin-dependent
term in the F region means that the condensate induced in this
layer consists of singlet and triplet components. In turn, triplet
Cooper pairs may penetrate into the S region and induce a
finite spin polarization. To describe this processes in a diffu-
sive system, we use the quasiclassical Green’s functions (GF)
ĝS (ω) [37,38] and the generalized Usadel equation [3,39].

Specifically, we consider the structure shown in Fig. 1.
It consists of a ferromagnetic layer of thickness dF and a
superconducting layer of thickness dS . In the absence of the
proximity effect the Green’s function in S corresponds to the
bulk BCS matrix Green’s function ĝS (ω), which has the form

ĝS (ω) = GS τ̂3 + FS τ̂1, (4)

where τ̂1,3 are the Pauli matrices operating in the particle-hole
space and GS = ω/ζω = (ω/�)FS , ζω = √

ω2 + �2. Here ω

is the fermionic Matsubara frequency.
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In the presence of an exchange field J , the quasiclassical
Green’s function ĝ maintains its structure in the particle-hole
space, but its components are matrices in the spin space.
We consider here only a monodomain ferromagnet with a
homogeneous J , and therefore the general form of ĝ in S and
F is

ĝa(ω) = (ga01̂ + ga3σ̂3)τ̂3 + ( fa01̂ + fa3σ̂3)τ̂1, (5)

where σ̂3 is the third Pauli matrix in the spin space and the
index a means a = S, F .

In Eq. (5) the terms proportional to τ3 are the normal GFs
which determine the electronic charge and spin densities. The
terms proportional to τ1 are the anomalous GF describing
the singlet and zero-spin-projection triplet components of the
condensate. Without losing generality we assume that the
exchange field J points in the z direction, J = J ẑ.

The GFs can be calculated by solving the Usadel equa-
tion complemented with proper boundary conditions (see
Appendix A for details). The GFs calculated in this way
determine the current and electron magnetization density M =
M ẑ as follows:

ja = 1

4e
σ (2π i)T Tr

∑
ω

(τ3ĝa∇ĝa), (6)

Ma(x) = M0(x) + 1

4
(2π i)T μBνTr

∑
ω

(τ3σ3ĝa). (7)

Here σa is the conductivity of the S and F layers (a = S, F), μB

is the effective Bohr magneton, and ν is the normal density of
states at the Fermi level. M0 is the magnetization in the normal
state, which is finite and spatially homogeneous only in the F
layer.

Clearly, the matrix ĝ defined in Eq. (5) is diagonal in the
spin space. This simplifies the calculation of ĝ since the equa-
tions for up and down spins decouple from each other. In other
words, one can write the GF as ĝa± = ga±τ3 + fa±τ1 and
solve the problem independently for ± spins. Qualitatively,
due to the conventional proximity effect, a spin-dependent
condensate function f̂F± is induced in the F layer. Such
a spin-polarized condensate can penetrate back into the S
region, inducing a local magnetic moment described by the
corrections to the GF δĝS± defined as δĝS± = ĝS± − ĝS . All
these functions can be obtained from the Usadel equation, as
explained in Appendix A.

In order to solve the problem analytically we assume that
the F film is thin enough, dF � √

DF /J , and therefore the
matrix ĝF can be considered almost constant in space. We also
assume that the S-F interface has a finite interface resistance
per unit area Rb. This allows us to use the Kupriyanov-
Lukichev boundary condition (A4). Then we can integrate
spatially the Usadel equation, Eq. (A2), in the F region to
obtain the following algebraic equation for ĝF±:

[ω̃±τ̂3 + �̃τ̂1, ĝF±] = 0, (8)

where ω̃± = ω + εbF GS ± iJ , �̃ = εbF FS , and σF is the con-
ductivity of the F layer. The characteristic energy εbF is
defined as

εbF = DF

RbσF dF
, (9)

with Rb being the S/F interface resistance per unit area.
Equation (8) has to be solved together with the normalization
condition ĝ2

± = 1. The solution has the same structure as
the bulk BCS solution with the renormalized ω and � [see
Eq. (4)],

ĝF± = (ω̃±τ̂3 + �̃τ̂1)/ζ̃ω±, (10)

where ζ̃ω± =
√

ω̃2± + �̃2.
On the superconducting side of the interface, the GFs are

modified due to the inverse proximity effect. Provided the
transmission of the S/F interface is finite, a correction δĝS to
the BCS Green’s functions arises in the S film. We assume that
the elements of the matrix δĝS are small: |δĝS| � 1. Then, in
the leading-order approximation we obtain gS± ≈ GS + δgs±
and fS± ≈ FS + δ fS±. So the magnetization density induced
in the S film is given by

MS (x) = 2iπT μBνS

∑
ω�0

gS3(ω, 0) exp(xκω ) (11)

≡ −
∑
ω�0

mS (ω) exp(xκω ),

where mS (ω) ≡ −2π iT μBνSg(S)
S3 (ω, 0) and κ2

ω =
2
√

ω2 + �2/DS . The function gS3(ω, 0) is defined in
Eq. (5) and explicitly given in the Eq. (A9). The total
magnetic moment induced in the superconductor MS is
obtained by integrating the previous expression in the interval
−∞ < x < 0,

MS =
∫ 0

−∞
dxMz(x) = −

∑
ω�0

mS (ω)

κω

. (12)

Using Eqs. (5) and (A9), we reduce Eq. (12) to the form

MS = −M0dF (εbF /J )(2πT )Im
∑
ω�0

�2

ζ 3
ω

ω + iJ

ζ̃ω

, (13)

where the functions ζω and ζ̃ω are defined in Eqs. (4) and (10).
In Fig. 2 we represent the dependence of the normalized total
magnetic moment in the S region MS on the exchange energy J
for two values of εbF : εbF > � and εbF < �. One can clearly
see a kink at J ∼= εbF . When εbF < �, the characteristic
energy εbF describes the subgap induced in the F film due to
the proximity effect. In this case the induced magnetization
is small, and there is no full screening. In contrast, in the
limit εbF > � an almost full screening takes place provided
J < εbF .

One can analytically calculate the total magnetization
MS in the superconducting region in the limit �(T ), T �
J � DF /(RbσF dF ) ≡ εbF . This condition combined with
Eq. (A10) can be written as

ρSξS � Rb � ρF dF
DF

d2
F �

, (14)

J � ETh ≡ DF /d2
F , (15)

where ρa = 1/σa is the resistivity of the a = S or F film. In
this limit one obtains ω̃± ≈ εbF (GS + iJ̃ ) and ζ̃ω+ ≈ εbF (1 +
iJ̃GS ), where J̃ = J/εbF . The term mS (ω)/κω in Eq. (12) is
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FIG. 2. The total magnetization induced in the S layer as a
function of J for two different values of εbF , defined in Eq. (9),
and dF = ξS , dS = 2ξS , and κFb = 1/(RbσF ) = 5κSb = 5/(RBσS ) =
0.5ξ−1

S .

approximately equal to

mS (ω)

κω

∼= (2πT μBνS )
2κSb

κ2
ω

F 2
S J̃ = M0dF

(2πT )�2

(�2 + ω2)3/2
,

(16)
where M0 = νF μBJ is the magnetic moment in F in the
absence of the proximity effect and we used the relation
σF /σ s = νF DF /νSDS . At low temperatures T � �, the sum-
mation in Eq. (12) is transformed into integration over ω,
which gives [26]

MS = −M0dF = −MF . (17)

This means that in the limiting case considered here the total
magnetic moment of Cooper pairs induced in the S region
compensates the magnetic moment of the F film [29]. If the
condition (14) is not fulfilled or the temperature is not low
enough, the screening is not complete, and |MS| < |MF |. In
the other limiting case of a large exchange field J � εbF the
induced magnetic moment in S is given by

MS = −M0dF ε2
bF /2J2 � MF , (18)

and therefore the screening is very weak.
The magnetic moment MS (0) induced to the right of the

S-F interface can be calculated from Eq. (16) in the limit of
low temperatures when the function mS (ω) is approximated,

mS (ω) ∼= M0
dF

ξS

2πT

�[1 + (ω/�)2]5/4
, (19)

with ξ 2
S = DS/

√
2�. We then obtain

MS (0) = −M0
dF

ξS
c0, (20)

with c0 = ∫ ∞
0 dt (1 + t2)−5/4 ∼= 1.18.

The magnetization in the F film can be written in the form
MF = M0 + δMF , where M0 is the uniform magnetization
of the ferromagnet in the absence of the proximity effect
and δMF is a correction due to the proximity effect. As we
consider a thin F layer with dF � ξF ≈ √

DF /J , the correc-
tion δMF can be assumed to be constant in space. It can be

shown that δMF is negative, which leads to a decrease in the
magnetization of the F film [25]. However, in what follows
we neglect δMF since it does not affect qualitatively the main
results.

We note that the condition, Eq. (14), can be fulfilled
in experiments with weak ferromagnets, for example, in
Nb/CuNi structures such as those used in Ref. [9]. By tak-
ing Rb = RLyLz

∼= 30 μ� × 10 × 10 μm2, dF
∼= 20 Å, DF

∼=
5 cm2/s, and ρF

∼= 60 μ� cm, we obtain dF ρF /Rb
∼= 0.4 and

εbF = DF ρF /RbdF = 0.4DF /d2
F

∼= 1200 K. For these param-
eters the condition in Eq. (14) is satisfied, provided the energy
J is not too large.

In this section we analyzed the proximity effect on the
magnetic moment induced in S. In the next section we find
the spatial distribution of the Meissner currents and magnetic
fields in the whole S-F bilayer.

III. MAGNETOSTATICS OF A S-F BILAYER

In this section we determine the currents and fields in-
duced in the S/F structure shown in Fig. 1. The total current
consists of two contributions: the Meissner contribution and
the current jm stemming from the finite magnetization in the
system, jm = c∇ × M [40]. The magnetic induction B and the
magnetic field H obey the Maxwell equation in both the F and
S films,

∇ × B = 4π

c
j + 4π∇ × M, (21)

∇ × H = 4π

c
j, (22)

where j is the Meissner current denoted as jS,F in S and F
films, respectively. The second term on the right-hand side of
Eq. (21) is the magnetization current. In the F film, the current
jF is carried by Cooper pairs induced due to the proximity
effect. Both currents jS,F are related to the vector potential
AS,F via the London equation:

jS,F = − c

4π

1

λ2
S,F

AS,F , (23)

where λS,F is the London penetration length. We neglect
variation of λS,F due to the proximity effect and assume that
it is constant. Moreover, in the case of superconducting films
with a short mean free path l the coherence length ξS is usually
much smaller than λS , which is equivalent to the limit of a
large Ginzburg-Landau parameter κG−L,

κ−2
G−L = (ξS/λS )2 = e2nl2/mc2 � 1, (24)

where n, m, and l = vτ are the concentration of free carriers,
effective mass, and mean free path, respectively. For typical
values of the electron density the above approximation is valid
for values of the mean free path up to l � 1000 Å.

As follows from Eqs. (21)–(23) the vector potential AS,F

satisfies the equation

∇2AS,F − 1

λ2
S,F

AS,F = −4π∇ × M. (25)

In what follows we solve Eq. (25) for two different cases: in-
plane and out-of-plane orientations of M0.
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A. In-plane magnetization

In this case M0||ez, B||M||ez, and A||ey. This means that
B = (0, 0, B) and A = (0, A, 0). Then, Eq. (25) reduces to

∂2
xxAS,F − 1

λ2
S,F

AS,F = 4π∂xMS,F . (26)

As mentioned above, in the thin F film the magnetization is
assumed to be almost constant, and therefore one can neglect
the right-hand side of the previous equation in the F region.
The solution of Eq. (26) in the F layer within the limit dF �
λF can be written as

AF (x) = a0

(
1 + 1

2

x2

λ2
F

)
+ (h0 + 4πM0)x

(
1 + 1

6

x2

λ2
F

)
,

(27)
where the coefficients a0 and h0 are integration constants.

However, in the S region the equation for A is obtained by
using Eq. (11) for the MS (x) induced in S:

∂2
xxAS − AS

λ2
S

= −4π
∑
ω�0

mS (ω)κω exp(xκω ). (28)

As demonstrated in the previous section, the induced magne-
tization [right-hand side of Eq. (28)] decays on a length of the
order ξS . Since we consider the case ξS � λS , the solution in
the superconductor can be written as

AS (x) = aS
cosh[(x + dS )/λS]

cosh θS

− 4π
∑
ω�0

mS (ω)

κω

[
1 + δ2

S

]
exp(xκω ), (29)

where aS is a third integration constant, δS = 1/λSκω is a small
parameter [see Eq. (24)], and θS = dS/λS . From Eq. (29), one
can obtain the expressions for BS (x) = ∂xAS (x) and HS (x) =
BS (x) − 4πMS (x), as shown in Appendix B.

The integration constants a0, b0, and aS in Eqs. (27) and
(29) are determined by the following boundary conditions:

[A]|x=0 = 0, [H]|x=0 = 0,
(30)

HS (−dS ) = 0, HF (dF ) = Hext,

where [A]|x=0 ≡ AF (0+) − AS (0−). The first and second
equations provide the continuity of the vector potential A
and the field H at the interface. The condition assumes the
presence of an external magnetic field, but in what follows we
assume that Hext = 0.

In the main approximation we find three coupled equations
determining as, a0, and h0. Their solution is given by

aS = −4π
M0λSθ

2
F /2 + MSθF λS/λF − �

DS
, (31)

a0 = aS + 4πMS , (32)

h0 = aS

λS
tanh θS − 4π

�

λS
, (33)

where θF,S = (d/λ)F,S � 1, DS = tanh θS + θF λS/λF , and
� = ∑

mSδ
2
SλS . In deriving these equations we have used

Eq. (12) for the total magnetization MS induced in the S
region.

Before analyzing the full spatial solution of the boundary
problem let us focus on the value of the vector potential at the
outer interface, x = −dS . The expression can be straightfor-
wardly obtained from the above equation and reads

AS (−dS ) = −4π
MSθF λS/λF + (

θ2
F /2

)
M0λS − �

cosh θSDS
. (34)

From this expression one can already draw important conclu-
sions regarding the vector potential and supercurrents at large
distances from the boundary. Let us consider two cases.

(a) If one neglects the inverse proximity effect as done in
Ref. [36], the first and third terms in the numerator of Eq. (34)
are zero, and one obtains (MS = 0)

AS,a(−dS ) ≈ −4πM0λS
θ2

F

2 sinh θS
. (35)

The corresponding magnetic induction at large distances from
the S/F interface coincides with Eq. (3)

(b) If one takes into account the inverse proximity effect,
then the second contribution anticipated in Eq. (2) appears.
Specifically, in the full-screening situation (MS = −M0dF ),
one obtains

AS,b(−dS ) = 4πM0dF
γS + θF λS/λF

sinh θS
, (36)

where γS = (c2κSξS ) = 0.85(ξS/λS ) � 1 and c2 =∫ ∞
0 dt (1 + t2)−7/4 ≈ 0.85. Clearly, these two limiting cases

describe very different situations, in which the spontaneous
currents have even different signs. It is important to emphasize
that even though the magnetization induced in the S layer
occurs over the coherence length ξS � λS , it changes
drastically the vector potential at distances of the order of λS .

From the knowledge of the vector potential one can write
the current density j(x) using the London equation, Eq. (23),
as j(x) = −(c/4π )A(x)/λ2

S,F . The total currents through the
F and S layers are then defined as

IS,F =
∫

S,F
dx jS,F . (37)

From Eqs. (27) and (29) and in the leading order in our
approach we find that

4π

c
IF ≈ −4πM0

θ2
F

2
− 4πMSθ

2
F /dF (38)

and

4π

c
IS ≈ 4πM0

θ2
F

2
+ 4πMSθ

2
F /dF . (39)

As there is no external field the currents IS,F sums to zero,
IF + IS = 0. Remarkably, in the two limiting cases, the total
current in the S and F films has a different sign, i.e., IS,a =
−IS,b = 2πM0θ

2
F .

J is large enough, J � εbF , that there is a transition from
positive to negative AS (−dS ) determined by a critical Jc.
Indeed, we obtain from Eq. (18)

AS (−dS ) = −2πM0θ
2
F λS

DS cosh θS

[
1 −

(
Jc

J

)2
]
, (40)

with Jc = εbF (λF /λS )
√

c2(ξS/dF ).
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FIG. 3. Spatial dependence of the vector potential A (top panel)
and the spontaneous current j̄ ≡ jAξ 2

S /cM0dF (bottom panel). The
solid line represents the case which accounts for the inverse proxim-
ity effect [case (b) in the text], whereas the dashed line shows the
behavior when the inverse proximity effect is neglected [case (a)].
Other parameters are chosen to be εbF = 5�, dS = 2ξS , dF = 0.5ξS ,
κSbξS = 0.1, κFbξS = 1, and λF = (5/3)λS = 5ξS .

In Fig. 3 we compare the spatial dependence of AS (x) (top
panel) and of the current density j(x) induced in the system
(bottom panel) in the two cases, no spin polarization [case
(a)], MS = 0, and when the inverse proximity effect is taken
into account [case (b)]. One clearly sees qualitative differ-
ences between these two cases. In case (b) the spontaneous
currents change sign at a certain distance from the interface of
the order of ξS , whereas in case (a) the sign of the current in
S is constant. In addition, the amplitude of the spontaneous
currents, and hence of the magnetic inductance [Eq. (2)],
generated far from the S/F interface is much larger in case (b).
These results demonstrate that for a correct interpretation of
experiments the induced magnetization in the superconductor
cannot simply be neglected.

B. Out-of-plane magnetization

Finally, in this section we consider the case of a F layer
with out-of-plane magnetization: M0||ex. The field HS (x) =
(HS (x), 0, 0) with HS (x) is determined from the equation

divBS (x) = 0:

∂xHS (x) = −4π∂xMS (x). (41)

Thus we obtain

HS (x) = −4πMS (x). (42)

The equation ∇ × HS (x) = (4π/c)j then yields

j = 0. (43)

The magnetic induction B does not depend on x and equals
zero in both the S and F films.

IV. CONCLUSIONS

We have studied the spatial dependence of the Meissner
currents jS (x) and magnetic induction BS (x) that sponta-
neously arise in an S/F structure even in the absence of an
external field. The fields BS (x) and HS (x) originate due to the
orbital and spin polarization effects and contain long-range
and short-range components [see Eq. (1)]. The amplitude
of the short-range component Bs−r (0) is due to the inverse
proximity effect and is much larger than Bl−r (0). On the other
hand, the amplitude of the long-range component Bl−r (0, J ) is
caused by both the Meissner currents and the spin polarization
and depends on the magnitude of the exchange energy J in
the F film. It changes sign at J ∼ εbF = DF /(RbσF dF ), being
negative for J � εbF and positive for J < εbF . Note that at
large J the field BS and HS are small because both spin polar-
ization [see Eq. (18)] and orbital effects are small. In Ref. [36]
the inverse proximity effect was neglected, and therefore only
the orbital contribution Borb(0) = −4πM0θ

2
F /2 was obtained,

where θ2
F = (dF /λF )2 � 1. However, as explained above, by

decreasing the exchange energy J , the inverse proximity effect
prevails, leads to a finite magnetic moment MS 
= 0, and leads
to a change in the sign of Bl−r (0). In such a case its magnitude
clearly exceeds the value of |Borb(0)|.

Moreover, the results for the vector potential A(x), and
hence for the current density j(x), depend crucially on the
inverse proximity effect [case (b) in Sec. III A] and are quali-
tatively different from the case in which this effect is neglected
(case (a) in Sec. III A and Ref. [36]). In particular, we find that
the Meissner current density jS changes sign in the S region if
the induced magnetization is taken into account.
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APPENDIX A: SOLUTION OF THE USADEL EQUATION
IN THE S-F STRUCTURE

The Usadel equations have the form

−DS∂x(ĝS∂xĝS ) + ω[τ3, ĝS] + �[τ1, ĝS] = 0, (A1)

−DF ∂x(ĝF ∂xĝF ) + ω[τ3, ĝF ] + iJ[τ3σ3, ĝF ] = 0 (A2)
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for the S and F films, respectively. Equations (A1) and (A2)
are complemented by the normalization relation

(ĝĝ) = 1̂ (A3)

and the boundary conditions [41]

(ĝ∂xĝ)F = κbF [ĝS, ĝF ], (ĝ∂xĝ)S = κbS[ĝS, ĝF ], (A4)

where κbF (S) = (RbσF (S) ) −1 and Rb is the interface resistance
per unit area.

The linearized Eq. (A1) is

−∂2
xxδĝS + κ2

ωδĝS = 2δ�ω(ωτ1 − �τ3)/DS, (A5)

where κ2
ω = 2

√
ω2 + �2/DS . We used the relation

δĝSĝS + ĝSδĝS = 0, (A6)

which follows from the normalization condition, Eq. (A3).
The induced magnetization is determined by the compo-

nent δgS3 = Tr(τ3ĝS )/4 [see Eq. (6)]. We multiply Eq. (A5)
by τ3σ3 and calculate the trace. We find the solution

gS3(x) = gS3(0) exp(xκω ). (A7)

The integration constant is found from the boundary condition
(A4), which yields

∂xgS3(x)|x=0 = 2κSbFS[FSgF3 − GS fF3], (A8)

where fF3 = εbF FSIm(1/ζ̃ω+) and gF3 = Im(ω̃+/ζ̃ω+). The
function ζ̃ω+ is defined in Eq. (10).

We obtain for gS3(x)

gS3(x, ω) = 2κbS

κ
FS[FSgF3 − GS fF3] exp (xκω )

≡ g(S)
33 (0, ω) exp(xκω ). (A9)

One can see that this correction δĝS is small if the condition

κbSξS � 1 (A10)

is fulfilled, that is, RSb � ρSξS .

APPENDIX B: THE MAGNETIC FIELD

For completeness we show in this Appendix the expres-
sions for the magnetic induction B(x) = ∂xA(x) and mag-
netic field H (x) = B(x) − 4πMF which can be obtained from
Eqs. (27) and (29):

BF (x) ∼= a0
x

λ2
F

+ (h0 + 4πM0)

(
1 + x2

2λ2
F

)
, (B1)

HF (x) ∼= a0
x

λ2
F

+ h0

(
1 + x2

2λ2
F

)
+ 4πM0

x2

2λ2
F

, (B2)

BS (x) = aS

λS

sinh[(x + dS )/λS]

cosh θS
+ 4πMS (x)

− 4π
∑
ω�0

mS (ω)δS exp(xκω ), (B3)

HS (x) = aS

λS

sinh[(x + dS )/λS]

cosh θS
− 4π

∑
ω�0

mS (ω)δ2
S exp(xκω ),

(B4)
where δS = 1/λSκω.

[1] A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod.
Phys. 76, 411 (2004).

[2] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[3] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).
[4] M. Eschrig, Phys. Today 64(1), 43 (2011); Rep. Prog. Phys. 78,

104501 (2015).
[5] J. Linder and J. W. A. Robinson, Nat. Phys. 11, 307 (2015).
[6] L. N. Bulaevskii, V. V. Kuzii, and A. A. Sobyanin, Pis’ma Zh.

Eksp. Teor. Fiz. 25, 314 (1977) [JETP Lett. 25, 290 (1977)].
[7] A. I. Buzdin and M. Y. Kuprianov, Pis’ma Zh. Eksp. Teor. Fiz.

53, 308 (1991) [JETP Lett. 53, 321 (1991)].
[8] V. V. Ryazanov, V. A. Oboznov, A. Yu. Rusanov, A. V.

Veretennikov, A. A. Golubov, and J. Aarts, Phys. Rev. Lett. 86,
2427 (2001).

[9] V. A. Oboznov, V. V. Bol’ginov, A. K. Feofanov, V. V.
Ryazanov, and A. I. Buzdin, Phys. Rev. Lett. 96, 197003 (2006).

[10] H. Sellier, C. Baraduc, F. Lefloch, and R. Calemczuk, Phys.
Rev. B 68, 054531 (2003).

[11] T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephanidis, and
R. Boursier, Phys. Rev. Lett. 89, 137007 (2002).

[12] M. Weides, M. Kemmler, E. Goldobin, D. Koelle, R. Kleiner,
H. Kohlstedt, and A. Buzdin, Appl. Phys. Lett. 89, 122511
(2006).

[13] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.
86, 3140 (2001).

[14] M. Eschrig, J. Kopu, J. C. Cuevas, and G. Schon, Phys. Rev.
Lett. 90, 137003 (2003).

[15] R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao,
G. Xiao, and A. Gupta, Nature (London) 439, 825 (2006).

[16] I. Sosnin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys. Rev.
Lett. 96, 157002 (2006).

[17] M. S. Anwar, F. Czeschka, M. Hesselberth, M. Porcu, and
J. Aarts, Phys. Rev. B 82, 100501(R) (2010); Supercond. Sci.
Technol. 24, 024016 (2011); M. S. Anwar, M. Veldhorst, A.
Brinkman, and J. Aarts, Appl. Phys. Lett. 100, 052602 (2012).

[18] T. S. Khaire, M. A. Khasawneh, W. P. Pratt Jr., and N. O. Birge,
Phys. Rev. Lett. 104, 137002 (2010); C. Klose, T. S. Khaire, Y.
Wang, W. P. Pratt Jr., N. O. Birge, B. J. McMorran, T. P. Ginley,
J. A. Borchers, B. J. Kirby, B. B. Maranville, and J. Unguris,
ibid. 108, 127002 (2012).

[19] W. M. Martinez, W. P. Pratt, Jr., and N. O. Birge, Phys. Rev.
Lett. 116, 077001 (2016).

[20] D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, and H.
Kohlstedt, Phys. Rev. B 82, 060505(R) (2010).

[21] J. W. A. Robinson, J. D. S. Witt, and M. G. Blamire, Science
329, 59 (2010); J. W. A. Robinson, G. B. Halász, A. I. Buzdin,
and M. G. Blamire, Phys. Rev. Lett. 104, 207001 (2010).

144506-7

https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.76.411
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1063/1.3541944
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1038/nphys3242
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevLett.96.197003
https://doi.org/10.1103/PhysRevB.68.054531
https://doi.org/10.1103/PhysRevB.68.054531
https://doi.org/10.1103/PhysRevB.68.054531
https://doi.org/10.1103/PhysRevB.68.054531
https://doi.org/10.1103/PhysRevLett.89.137007
https://doi.org/10.1103/PhysRevLett.89.137007
https://doi.org/10.1103/PhysRevLett.89.137007
https://doi.org/10.1103/PhysRevLett.89.137007
https://doi.org/10.1063/1.2356104
https://doi.org/10.1063/1.2356104
https://doi.org/10.1063/1.2356104
https://doi.org/10.1063/1.2356104
https://doi.org/10.1103/PhysRevLett.86.3140
https://doi.org/10.1103/PhysRevLett.86.3140
https://doi.org/10.1103/PhysRevLett.86.3140
https://doi.org/10.1103/PhysRevLett.86.3140
https://doi.org/10.1103/PhysRevLett.90.137003
https://doi.org/10.1103/PhysRevLett.90.137003
https://doi.org/10.1103/PhysRevLett.90.137003
https://doi.org/10.1103/PhysRevLett.90.137003
https://doi.org/10.1038/nature04499
https://doi.org/10.1038/nature04499
https://doi.org/10.1038/nature04499
https://doi.org/10.1038/nature04499
https://doi.org/10.1103/PhysRevLett.96.157002
https://doi.org/10.1103/PhysRevLett.96.157002
https://doi.org/10.1103/PhysRevLett.96.157002
https://doi.org/10.1103/PhysRevLett.96.157002
https://doi.org/10.1103/PhysRevB.82.100501
https://doi.org/10.1103/PhysRevB.82.100501
https://doi.org/10.1103/PhysRevB.82.100501
https://doi.org/10.1103/PhysRevB.82.100501
https://doi.org/10.1088/0953-2048/24/2/024016
https://doi.org/10.1088/0953-2048/24/2/024016
https://doi.org/10.1088/0953-2048/24/2/024016
https://doi.org/10.1088/0953-2048/24/2/024016
https://doi.org/10.1063/1.3681138
https://doi.org/10.1063/1.3681138
https://doi.org/10.1063/1.3681138
https://doi.org/10.1063/1.3681138
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.108.127002
https://doi.org/10.1103/PhysRevLett.108.127002
https://doi.org/10.1103/PhysRevLett.108.127002
https://doi.org/10.1103/PhysRevLett.108.127002
https://doi.org/10.1103/PhysRevLett.116.077001
https://doi.org/10.1103/PhysRevLett.116.077001
https://doi.org/10.1103/PhysRevLett.116.077001
https://doi.org/10.1103/PhysRevLett.116.077001
https://doi.org/10.1103/PhysRevB.82.060505
https://doi.org/10.1103/PhysRevB.82.060505
https://doi.org/10.1103/PhysRevB.82.060505
https://doi.org/10.1103/PhysRevB.82.060505
https://doi.org/10.1126/science.1189246
https://doi.org/10.1126/science.1189246
https://doi.org/10.1126/science.1189246
https://doi.org/10.1126/science.1189246
https://doi.org/10.1103/PhysRevLett.104.207001
https://doi.org/10.1103/PhysRevLett.104.207001
https://doi.org/10.1103/PhysRevLett.104.207001
https://doi.org/10.1103/PhysRevLett.104.207001


VOLKOV, BERGERET, AND EFETOV PHYSICAL REVIEW B 99, 144506 (2019)

[22] M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter
26, 453201 (2014).

[23] D. Massarotti, N. Banerjee, R. Caruso, G. Rotoli,
M. G. Blamire, and F. Tafuri, Phys. Rev. B 98, 144516
(2018).

[24] M. S. Kalenkov, A. D. Zaikin, and V. T. Petrashov, Phys. Rev.
Lett. 107, 087003 (2011).

[25] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 68,
064513 (2003).

[26] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Europhys. Lett.
66, 111 (2004).

[27] F. S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, Phys.
Rev. B 72, 064524 (2005).

[28] M. Yu. Kharitonov, A. F. Volkov, and K. B. Efetov, Phys. Rev.
B 73, 054511 (2006).

[29] Here and in the rest of the article, when talking about spin
screening, we refer to the screening of the magnetic moment of
free electrons (itinerant ferromagnet), which equals μBνF J . The
contribution to the magnetization of F stemming from localized
magnetic moments is not screened by the inverse proximity
effect [25].

[30] Note that induced magnetization in S was also considered
in a ferromagnetic-insulator/superconductor structure
[42,43], whereas in Ref. [43] a diffusive S/F bilayer
was analyzed. In contrast to our results, in the latter
work the induced magnetization obtained has the
same orientation as the magnetic moment in the
ferromagnet.

[31] R. I. Salikhov, I. A. Garifullin, N. N. Garif’yanov, L. R.
Tagirov, K. Theis-Brohl, K. Westerholt, and H. Zabel, Phys.
Rev. Lett. 102, 087003 (2009).

[32] J. Xia, V. Shelukhin, M. Karpovski, A. Kapitulnik, and A.
Palevski, Phys. Rev. Lett. 102, 087004 (2009).

[33] A. Di Bernardo et al., Phys. Rev. X 5, 041021 (2015).
[34] M. G. Flokstra et al., Nat. Phys. 12, 57 (2016).
[35] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. B 64,

134506 (2001).
[36] S. Mironov, A. S. Mel’nikov, and A. Buzdin, Appl. Phys. Lett.

113, 022902 (2018).
[37] The derivation of formulas for the induced magnetic moments

MS,F was briefly given in [25, 26]. We use here a slightly
different structure of the quasiclassical Green’s functions ĝ that
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