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Nanoscale superconducting quantum interference devices (nano-SQUIDS) where the weak links are made
from nanobridges, i.e., nanobridge SQUIDs (NBSs), are one of the most sensitive magnetometers for nanoscale
magnetometry. Because of very strong nonlinearity in the nanobridge-electrode joints, the applied magnetic
flux (�a)–critical current (Ic) characteristics of NBSs differ very significantly from conventional tunnel-junction
SQUIDs, especially when the nanobridges are long and/or the screening parameter is large. However, in most
of the theoretical descriptions, NBSs have been treated as the conventional tunnel-junction SQUIDs, which are
based on the dc Josephson effect. Here, I present a model demonstrating that for long nanobridges and/or large
screening parameters the Ic(�a) of a NBS can be explained by merely considering the fluxoid quantization in the
NBS loop and the energy of the NBS; it is not necessary to take the Josephson effect into consideration. I also
demonstrate that using the model, one can derive useful expressions such as the modulation depth and transfer
function. I discuss the role of the kinetic inductance fraction (κ) in determining Ic(�a). I compare the predictions
of the present model with the experimental data already published by several groups.
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I. INTRODUCTION

Nanoscale superconducting quantum interference devices
(nano-SQUIDS) are the most sensitive magnetometers to
measure the magnetic properties of individual nanoparticles
or to probe the local magnetic properties of a sample in
the submicron scale [1–8]. The other applications of nano-
SQUIDs include measuring persistent current in a phase co-
herent ring [9,10], single-photon detection [11], detecting the
motion of a nanomechanical oscillator [12], and as nonlinear
circuit elements in quantum bits [13]. Consequently, nano-
SQUIDs have been developed from versatile methods and by
using different types of weak links (WLs) [6,14], such as
nanobridges (NBs) [15–22], superconductor–normal-metal–
superconductor proximity junctions [23–25], tunnel junctions
(TJs) [26–28], and carbon nanotubes [29] to mention only
a few. Out of these, NBSs have been most commonly used
primarily because of their easy fabrication method [2,6].

Conventionally, a dc SQUID operation has been under-
stood based on two phenomena: The dc Josephson effect
and the fluxoid quantization in a superconducting loop [30].
An ideal dc Josephson effect predicts the flow of a lossless
current—the supercurrent Is—between two superconductors
interrupted by a WL. Is follows the relation Is = Ic sin(θ ),
where Ic is the critical current and θ is the phase of the WL.
This relation holds provided most of the phase difference
across the superconductor-WL-superconductor drops between
the WL, resulting in a well-defined phase of the WL, for
instance, as it occurs in TJs [31,32]. In the case of a NB, the
phase of the bridge is not well defined in most of the cases
[15,31,33]. The ideal Josephson relation in NBs, therefore,
only manifests in limiting cases, e.g., where the bridge dimen-
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sions are smaller than the temperature dependent Ginzburg-
Landau coherence length [ξ (T )] [15,31,32].

Consequently, in nanobridge SQUIDs (NBSs),
various features in the Ic(�a) have been observed—for
instance, triangular-shaped [15,20,21,34–44], double-
branched [15,34–38,40,45], and a diamond-shaped Ic(�a)
[15,21,35,45]—which are not conceivable by a conventional
dc SQUID theory [6,30]. Thus, alternative theories [15,46]
have been developed which describe some of the features,
such as the nonsinusoidal Ic(�a).

Here, I present a model that explains all of the above-
mentioned experimental features. More importantly, unlike
the previous models, here, I demonstrate that for a NBS
with long NBs and/or large screening parameter, the fluxoid
quantization in the NBS loop and the energy of the NBS can
explain all the experimental features of Ic(�a), without con-
sidering the Josephson effect. Moreover, the model presented
here derives the expression for modulation depth and transfer
function. I also make a quantitative comparison between the
predictions of the present model and already published data by
several groups demonstrating that NBSs made from niobium
(Nb), niobium nitride (NbN), and lead (Pb) indeed follow the
predictions of the present model.

II. MODEL OF A NANOBRIDGE SQUID
BEYOND THE JOSEPHSON LIMIT

I start by presenting a qualitative comparison between a TJ
and a NB—how the phase (�) of the superconducting order
parameter is distributed in these two cases, in the presence of
a finite Is. In presence of a finite Is, � is spatially nonuniform
and the phase gradient is related to the supercurrent density
( js) and the Cooper-pair density (ns), ∇� ∝ js/ns [32]. In
a TJ, the insulating layer has negligible Cooper-pair density,
ns → 0, and most of the � drops across the insulating layer,
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FIG. 1. Schematics showing the spatial distribution of supercur-
rent density js, Cooper-pair density ns, and phase � for a tunnel
junction (TJ) and for a nanobridge (NB). In the case of a TJ, there is
a sharp drop of � across the junction, making θ well defined. In the
case of a NB, � spreads almost uniformly across the whole structure,
resulting in a poorly defined θ .

yielding a well-defined θ , as depicted schematically in Fig. 1.
In the case of a NB, the bridge and the electrodes being
made of the same superconductors, ns is almost the same in
NBs and in the electrodes. The enhancement of the phase
gradient in the NB is a result of the enhancement of js due
to the smallness of the width of the NB in comparison to
the adjacent electrodes. In practical NBSs, the width of the
NB is made typically ∼2–3 times smaller than the adjacent
electrodes (much wider electrodes are not desirable in order to
avoid vortex penetration). Moreover, for a long NB, i.e., when
the NB is longer than ξ (T ), js increases smoothly near the
NB-electrode joint [31]. Altogether, in a typical NB, unlike
a TJ, the phase drop across the NB is of the same order as
the phase drop in the electrodes, resulting in a poorly defined
θ . This can also be viewed as if θ is spread beyond the NB
deep inside the electrodes [15,31,33], allowing one to treat
a NB just as its electrodes with a smaller critical current. In
Fig. 1, I juxtapose a NB alongside a TJ in order to compare
the spatial variation of js, ns, and � in these two types of WLs
schematically.

Now, let me consider a standard NBS geometry, as shown
in Fig. 2. Here, I consider a symmetric NBS where both
NBs have an identical critical current Ic; the asymmetric
case can be straightforwardly generalized. When the NBS is
biased with a dc current Ib, it splits equally into two parallel
branches—a current Ib/2 flows across each NB. That apart,
due to the fluxoid quantization in the NBS loop, another

FIG. 2. Schematic of a symmetric NBS. The bias current Ib and
the circulating current Icir are shown by arrows. Here, Icir is shown
clockwise, but depending on fluxoid number n, it may also circulate
counterclockwise.

current Icir may circulate, especially in the presence of a finite
�a. In Fig. 2, I have schematically shown both Ib and Icir.
Clearly, Icir breaks the symmetry of the net current flow in
two branches—now, the net current flowing across two NBs
is Ib

2 + Icir and Ib
2 − Icir, respectively. Starting from zero, with

increasing Ib, depending on Icir, the net current flow across
one or both the NBs will be Ic, at a particular bias current.
I assume that if the net current flow across at least one of
the NBs becomes Ic, it immediately switches to the voltage
state—the corresponding Ib is identified as the critical current
Ics of the NBS. Therefore, Ics

2 + |Icir| = Ic. Rearranging, Ics can
be written as

Ics = 2(Ic − |Icir|). (1)

Note that maximum Ics is 2Ic, i.e., when Icir = 0 and the net
current flowing across both the NBs is Ic.

For a given �a, Icir can be evaluated from the fluxoid
quantization formula

Lt Icir + �a = n�0, (2)

where Lt = Ll + Lk is the total inductance of the NBS; Ll and
Lk are the loop and kinetic inductance, respectively. The origin
of the Lk is the kinetic energy due to the motion of the Cooper
pairs [47,48]. n is an integer and �0 is the flux quanta. The
magnitude and sign (sense of circulation) of Icir depend on n.

For a given �a, n can have multiple values—the most
probable n corresponds to the minimum energy (E ) of the
NBS which can be written as

E = 1

4
Lk

[(
Ib

2
+ Icir

)2

+
(

Ib

2
− Icir

)2
]

+ 1

2
LlI

2
cir. (3)

The first term within the square brackets is the kinetic energy
of the Cooper pairs; the second term is the magnetic energy
due to the circulation current. Moreover, to remain in the
superconducting (zero-voltage) state, |Icir| cannot exceed Ic.
This imposes restrictions on n, following Eq. (2),∣∣∣∣n�0 − �a

Lt

∣∣∣∣ � Ic. (4)

Equations (1)–(4) lay the foundation to understand Ic(�a) of
NBSs beyond the Josephson limit. It is convenient to express
Eqs. (1)–(4) in terms of dimensionless units. I normalize
currents by the maximum critical current of the NBS I0 = 2Ic,
magnetic flux by �0, and the energy by 1

4 LkI2
0 . With these

normalizations, Eqs. (1)–(4) take the form

ics = (1 − 2|icir|), (5)

icir = n − φa

βL
, (6)

ε =
[(

ib
2

+ icir

)2

+
(

ib
2

− icir

)2
]

+ 2
(1 − κ )

κ
i2
cir, (7)

and

|n − φa| � βL

2
, (8)

respectively.
Here, ics = Ics/I0, icir = Icir/I0, ib = Ib/I0, φa = �a/�0,

ε = E/ 1
4 LkI2

0 , βL = Lt I0/�0 = 2Lt Ic/�0, and κ = Lk/Lt . βL
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FIG. 3. Left panel: The normalized critical current ics of a NBS
as a function of normalized flux φa for three different kinetic induc-
tance fractions κ . All possible ics branches, corresponding to different
allowed fluxoid numbers n, as per Eq. (8), are shown. The values of n
are represented by different colors: black (0), red (−1), and blue (1),
and also indicated in the figures. The expected experimental ics’s are
indicated by dashed lines. All three curves are for the same screening
parameter βL = 2.0. The right panel corresponds to the normalized
energy ε for the identical parameters of the left panel.

is the well-known screening parameter and κ is the kinetic
inductance fraction, 0 � κ � 1. Here, instead of Ll/Lk , I have
preferred to express energy in terms of κ , as this is commonly
used in the literature (see, e.g., Ref. [49] and references
therein).

III. RESULTS, ANALYSIS, AND DISCUSSION

A. Variation of ics and ε as a function of φa

In this section, first I analyze the variation of ics(φa) and
ε(φa), for different values of βL and κ . In Fig. 3, I show the
variation of ics(φa) and ε(φa) for βL = 2.0 and for three dif-
ferent κ . Since, Ics is periodic in �0, i.e., ics is periodic in 1, φa

is restricted in the range −0.5 � φa � 0.5. For this particular
βL, Eq. (8) suggests that the allowed n are n = 0 for the entire
range of φa, −0.5 � φa � 0.5, and 1 and −1 for positive
and negative flux axes, respectively. The corresponding ics are
plotted in different colors, as indicated in the figure by solid
lines. For this particular βL, therefore, a maximum of two Ic

branches are possible. Out of these two, to understand whether
only one or both should be observable in an experiment, I also
plot the corresponding ε on the right-hand panel, keeping in
mind that the probability to occupy the lowest-energy branch
is more than the higher one. For a given φa, to determine
the threshold energy difference 
εth between two branches
below which both the Ics branches should be experimentally
observable, one requires a detailed thermodynamical analysis,
which is not the aim of this paper. Instead, first I shall
analyze the expected experimental ics(φa) qualitatively and
subsequently discuss whether a single- or double-branched
ics(φa) would appear for an arbitrarily chosen 
εth.

Returning to Fig. 3, for κ = 0.02 and 0.62, we note that
the energy is always much smaller for n = 0 in comparison
to n = 1 and −1, except at the boundary, φa = ±0.5. Thus, in
this case, the probability of an n = 0 configuration is much
more than n = 1 and −1 for the entire range of −0.5 <
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FIG. 4. Left panel: The normalized critical current ics of a NBS
as a function of normalized flux φa for different kinetic inductance
fractions κ . All possible ics branches, corresponding to different
allowed fluxoid numbers n, as per Eq. (8), are shown. The values
of n are represented by different colors: black (0), red (−1), blue (1),
green (2), and brown (−2), and also indicated in the figures. The
expected experimental ics’s are indicated schematically by dashed
lines. All three curves are for the same screening parameter βL = 5.0.
The right panel corresponds to the normalized energy ε for the
identical parameters of the left panel.

φa < 0.5. Thus, in ics(φa), experimentally, only the n = 0
branch should be observable, with maxima at φa = 0, as has
been observed quite commonly in several experiments, for
instance, in Refs. [15,20,21,34–44]. The above scenario, quite
interestingly, changes for κ = 0.95. In this case, the energy
is almost the same for n = 0 and 1 or −1. Thus, in ics(φa),
experimentally, all three n (0, −1, and +1) are accessible, and
ics(φa) should look diamond shaped, as has been observed,
for instance, in Refs. [15,21,35,45]. We note that the energy
difference 
εth between two branches becomes smaller and
smaller as we move from the center, i.e., at φa = 0, towards
the edges, i.e., φa = ±0.5. Thus, the possibility of a double-
valued ics(φa) near φa = ±0.5 is more than near φa = 0,
leading to an incomplete-diamond-shaped ics(φa), as has been
observed, for instance, in Refs. [34,36–38,40].

With increasing βL, more features appear. In Fig. 4, I
show the variation of ics(φa) and ε(φa) for βL = 5.0 for three
different κ , identical to the ones chosen in Fig. 3. For this
particular βL, the allowed n are 0, ±1, and ±2 for the entire
range of φa. Thus, as the figures indicate, five ics(φa) branches
are possible, in principle. Here, I would like to mention that
experimentally, to the best of my knowledge, more than two
branches of ics(φa) have not been observed in NBSs [6]. This
indicates that the probability to occupy the third or any of the
higher branches is very small. Following the above discus-
sion, i.e., the βL = 2.0 case, here also we can qualitatively
understand whether one or two branches of ics(φa) is likely to
be observed in experiments. Instead, I shall discuss the other
important salient features, assuming that only single-branched
ics(φa), corresponding to the minimum energy, is observable.
For κ = 0.02, n = 0 corresponds to minimum energy and
accordingly we get a ics(φa) with maxima at φa = 0. The
scenario changes quite dramatically for κ = 0.62. In this case,
n = 1 and −1 correspond to the minimum energy for the
positive and negative flux axes, respectively. Accordingly, we
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FIG. 5. The possibility of single- or double-branched ics(φa) of
NBSs for different choices of threshold energy 
εth. The green color
represents single-branched (also indicated by 1) whereas the yellow
color represents double-branched (also indicated by 2) ics(φa). The
gray area, βL < 1, is within the Josephson limit and yields single-
branched ics(φa).

get a single-branched ics(φa) with minima at φa = 0. So, we
see that, even for a symmetric NBS, φa = 0 can correspond
to minima of ics. This has been experimentally observed,
for instance, in Refs. [21,41,45]. The scenario turns even
more dramatic for κ = 0.95. Here, as κ = 0.62, the minimum
energy is governed by n = ±1, but n = −1 corresponds to
the minimum energy for the positive flux axis whereas n = 1
corresponds to the minimum energy for the negative flux axis.
Accordingly, we get a single-branched ics(φa) with maxima
at φa = 0. It therefore recovers the ics(φa) pattern of the
κ = 0.02 case, despite the fact that different n are stabilized
in these two cases. Here, I would like to point out that ever
since the celebrated Little-Parks experiment [50], the fluxoid
quantization in a superconducting loop has been extensively
studied (see, e.g., Refs. [51–54]). However, in most of the
studies, the focus has been the nearest fluxoid quanta, due to
the small screening parameter.

B. Determining whether single- or double-branched
ics(φa) should be observable

From Figs. 3 and 4, it is apparent that depending upon the
values of βL and κ , ics(φa) can be single or double branched.
In this section, I determine which combinations of βL and κ

yield single-branched and which ones yield double-branched
ics(φa). To do so, I calculate the energy difference 
ε between
the first two branches, close to the edge (i.e., φa = ±0.5), at
an arbitrarily chosen φa = ±0.35. I assume that 
ε � 
εth

yields double-branched, otherwise it leads to single-branched
ics(φa). In Fig. 5, I show the possibility of single- or double-
branched ics(φa) for four different choices of 
εth (1.0, 0.1,
0.01, and 0.001, respectively) as a function of βL and κ . We
see that for βL → 1, irrespective of the values of κ and for
κ → 0, irrespective of the values of βL, yield single-branched

ics(φa), independent of the choices of 
εth. For 
εth = 1 and
0.1, at a fixed βL, higher κ values increase the probability
of double-branched ics(φa). In these cases, the most of the
area in the βL-κ space favors the double-branched ics(φa).
With decreasing 
εth, βL-κ space is divided into different
domains: Certain combinations of βL and κ favor single- and
the remaining combinations favor double-branched ics(φa).
Furthermore, with decreasing 
εth, more and more of the area
of βL-κ space favors single-branched ics(φa). Also note that
with increasing βL and κ , the area of the double-branched
ics(φa) domains increases. For materials with higher κ , such as
niobium and niobium nitride [55], typically also have a higher
critical current density compared to materials with lower κ ,
for instance, Al. Thus, for identical NBS geometries, βL is
also higher for high-κ materials, making the appearance of
double-branched ics(φa) more probable compared to low-κ
ones, as has been reported in several publications, for instance,
in Refs. [15,34,35,40,45].

C. Calculating modulation depth and transfer function

In this section, I shall calculate two important parameters,
namely, the modulation depth and the transfer function. For
simplicity, first let me consider the case where only n = 0
is accessible. From Eq. (5), it is clear that maximum ics,
imax
cs , corresponds to minimum |icir| whereas minimum ics, imin

cs ,
corresponds to maximum |icir|. For n = 0, Eq. (6) suggests
that minimum |icir| is 0 whereas maximum |icir| is 0.5/βL

(corresponding to φa = 0 and ±0.5, respectively). This leads
to imax

cs = 1 and imin
cs = 1 − 1/βL, yielding a modulation depth

imax
cs − imin

cs = Imax
cs − Imin

cs

I0
= 1

βL
, (9)

in normalized scale.
It can be shown that Eq. (9) is valid in general, irrespective

of whether ics(φa) is single or double branched. This is also
evident from both Figs. 3 and 4. Here, I would like to point out
that Eq. (9) can be derived approximately from conventional
dc SQUID theory [6,30] and has often been used in the context
of NBSs.

For the transfer function (Ics�a ), i.e., the slope of the ics(φa),
since the variation of ics(φa) is linear, Ics�a can straightfor-
wardly be derived as

Ics�a = Imax
cs − Imin

cs

�0/2
= 2I0

βL�0
. (10)

D. Comparison with the existing models

In this section, I compare the present model with conven-
tional dc SQUID theory [30] as well as two previous models
for NBSs [15,46]. The conventional dc SQUID theory is based
on an ideal Josephson effect which assumes a well-defined
phase and a sinusoidal relation between the supercurrent and
phase of the junction. This assumption is not valid for NBs,
especially when they are longer than ξ (T ) [15,31]. Conse-
quently, conventional dc SQUID theory cannot explain the
triangular-shaped ics(φa). To demonstrate this, in Fig. 6, I plot
ics(φa) of a conventional dc SQUID for different values of
βL. For comparison, I also plot ics(φa), as predicted from the
present model, assuming a single-branched ics(φa). Clearly, at
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FIG. 6. Comparison of the present model (dashed lines) with the
conventional dc SQUID theory (solid lines) for different values of
βL . The dotted straight lines on the conventional dc SQUID curves
demonstrate that near φa = 0, irrespective of the values of βL , ics(φa)
deviates from the linear variation.

large βL, the ics(φa) prediction from the conventional theory
tends to match with the present model. Moreover, note that,
near the half-flux quanta, irrespective of the values of βL,
the conventional dc SQUID theory shows a linear ics(φa),
whereas near the integer flux quanta, it deviates from the lin-
ear behavior. Another important point worth mentioning here
is that the conventional dc SQUID theory does not provide
an explanation for a double-branched and/or diamond-shaped
ics(φa).

Here, I would like to point out that for most of the Nb-, Pb-,
or NbN-based NBSs reported in the literature, which show
linear ics(φa), have βL in the range ∼5–30, due to their high
critical current density and large kinetic inductance. On the
other hand, Al-based NBSs, which show sinusoidal ics(φa),
have βL ∼ 1 due to their low critical current density and
small kinetic inductance. It therefore appears that at low βL,
typically below ∼2, ics(φa) of a NBS is better described by
the conventional dc SQUID theory.

Hasselbach et al. [15] developed a model for NBSs by ex-
tensively solving the Ginzburg-Landau (GL) equation in two-
dimensional (2D) NBS structures. This model, as the present
model, can explain the triangular-shaped ics(φa) characteris-
tics in the long junction limit. However, in this model, the
authors did not take into account the different fluxoid states
and the energy of the NBSs. Consequently, it cannot explain
for a double-branched and/or a diamond-shaped ics(φa).

Podd et al. [46] developed a one-dimensional model for
NBSs. However, the authors assumed a well-defined phase
of the NB, which contradicts the findings of Refs. [15,31].
Also, the authors did not take into account the different fluxoid
states and the energy of the NBS. Consequently, it too can-
not explain for a double-branched and/or a diamond-shaped
ics(φa).

E. Spatial variation of the phase of the NBs: Material choice
and temperature range

The central assumption of the present model is that the
phase drop across the NBs is not significantly higher than the

FIG. 7. The temperature dependence of LNB/ξ (T ) for a typi-
cal LNB = 200 nm. The horizontal line represents LNB/ξ (T ) = 8.0,
above which, according to Podd et al. [46], a NB behaves as an
infinitely long superconducting wire.

overall phase drop across the electrodes, as depicted schemat-
ically in Fig. 1. By solving 2D GL equations, Hasselbach
et al. [15] has shown that a sharp phase drop across the
NB takes place only when the NB is significantly shorter
than ξ (T ). On the other hand, as the NB becomes longer
than ξ (T ), the phase of the NB starts spreading inside the
electrode. Typically, for NB longer than 3ξ (T ), the current-
phase relation becomes linear, resulting in a triangular ics(φa)
characteristic. Podd et al. [6,46], by solving 1D GL equations,
demonstrated that when the NB is longer than 8ξ (T ), the
critical current is independent of the length of the NB and
is equal to the depairing current of an infinitely long super-
conducting wire. In other words, according to Podd et al.
[46], when the NB is longer than 8ξ (T ), it’s phase can be
disregarded.

Based on these findings, now let me analyze whether one
can disregard the phase of the NBs in a NBS, made from two
most commonly used materials, Nb and Al. For completeness,
I also include Pb [41] and NbN [45] which have also been
reported in the literature. In Fig. 7, I show the variation of
LNB/ξ (T ) as a function of normalized temperature T/Tc for
NBs with a typical NB length of 200 nm (see Table I). The
bulk ξ0 are ∼1600, 40, 80, and 10 nm, respectively, for Al,
Nb, Pb, and NbN. However, in a thin-film configuration, due
to the reduced mean free path, the effective ξ0 is reduced
considerably. Taking the numbers reported in the literature,
ξ0’s are chosen as 100, 10, 25, and 5 nm, respectively, for
Al [15], Nb [56], Pb [57], and NbN [58,59] thin films. For
the temperature dependence, I use the expression ξ (T ) =
ξ (0)/

√
1 − T/Tc [32]. The graph shows that except for very

close to Tc, for Nb, Pb, and NbN, LNB remains quite larger than
ξ (T ). Consequently, the phase of the NBs can be disregarded
except for close to Tc. For Al, on the other hand, LNB is
always close to ξ (T ). Hence, the phase drop across the NBs
is more significant. Here, I would like to point out that using
a modern electron beam lithography technique, it is possible
to reduce LNB below 50 nm. However, Nb, Pb, and NbN also
have very high critical current densities which further increase
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TABLE I. Summary of the various parameters. Here, LNB is the length and WNB is the width of the NBs. d is the thickness of the films.
N� is the number of the square contributing to the kinetic inductance. Imax

cs is the maximum observed critical current of the NBSs, 
Ics is the
modulation depth, N is the number of observed branches in ics(φa), βL is the screening parameter, κ is the kinetic inductance fraction, and λeff

is the effective magnetic penetration depth.

LNB WNB d Imax
cs 
Ics λeff Adopted from

NBS material (nm) (nm) (nm) N� (μA) (μA) N βL κ (nm) Ref.

Nb 184 100 30 16 2022.5 94.3 2 21.4 0.93 169.5 [15]
Nb 300 30 30 15 662.0 37.0 2 17.9 0.97 192 [34]
W-Nb-Al 180 40 80-25-20 43 17.5 1.5 2 11.9 0.99 802 [21]
Nb 280 120 30 15 500 100 1 5 0.93 174 [62]
NbN 120 50 30 18 67 2.5 2 26.8 0.99 884 [45]
NbN 120 50 20 18 26 1.4 1 18.6 0.99 965 [45]
Cr-Pb-Cr 350 80 5-40-8 21 1778 203.5 1 8.74 0.86 115 [41]

with decreasing length, resulting in an undesirably large Joule
heating while switching to the voltage state [60,61].

It is quite clear from the above discussion that for identical
geometry, the phase is more robustly defined for NBs made
from the materials with longer ξ compared to the materials
with shorter ξ . Consequently, ics(φa) of NBSs made from
the materials with longer ξ closely follows the predictions
of conventional dc SQUID theory compared to the materials
with shorter ξ . In other words, ics(φa) of NBSs made from
the materials with longer ξ is more nonlinear compared to
materials with shorter ξ . On the other hand, Fig. 6 indicates
that lower βL yields more nonlinearity in the ics(φa) of NBSs.
Therefore, for identical NBS geometry, longer ξ should lead
to lower βL and vice versa. To verify this, we note that, for
most of the NBSs, Lk � Lg, i.e., κ ∼ 1 (see Table I). Thus,
βL ∝ LkIc. Ic, for a long NB, varies as Ic ∝ 1/(λ2ξ ) [32]
whereas Lk varies as Lk ∝ λ2, resulting in βL ∝ 1/ξ .

IV. COMPARISON WITH EXPERIMENTS

In this section, I provide a quantitative comparison between
the predictions from the present model with the experimental
data already published by several groups.

A. Shape of ics(φa)

It appears from the discussion of the previous section that
the shape of ics(φa) for a Nb NBS is expected to follow the
present model whereas an Al NBS should show significant
deviation. To verify this, first we compare experimental data,
adopted from Hasselbach et al. [15] who studied temperature-
dependent ics(φa) for both Al and Nb NBSs. In Fig. 8, I
plot ics(φa) and check whether it follows the linear variation
predicted from the present model. The Al NBS has a diameter
∼1.25 μm with NBs 289 nm long and 66 nm wide and the
arms are 237 nm wide. The Nb NBS has a diameter ∼1.25
μm with NBs 184 nm long and 100 nm wide and the arms are
285 nm wide. The graph clearly shows that for the Al NBS
there is a clear departure from the linear variation whereas
for the Nb NBS there is indeed a linear variation. As Nb, the
linear (triangular) ics(φa) have also been observed for Pb [41]
and NbN [45] NBSs. For Al NBSs, the departures from the
linear variation of ics(φa) have also been observed by other
groups, e.g., see Vijay et al. [19].

B. Comparing �Ics

According to the present model, 
Ics = �0/(Lg + Lk ). Lg

can be estimated from the geometry (also reported in the
referred papers of Table I). Lk is related to the effective
penetration depth λeff [55], Lk = N�μ0λ

2
eff/d , where d is the

thickness and N� is the number of squares contributing to the
kinetic inductance, μ0 is the free-space permeability, and d
is the thickness of the films. N� can be estimated from the
geometry. Thus, the only unknown parameter is λeff. Since
λeff depends on d and is also very susceptible to the detailed
deposition method, condition, and parameters, it is difficult to
estimate λeff for the particular reported sample. Thus, from
the known values of 
Ics, I extract λeff at low temperatures
for NBSs reported in the literature (see Table I) and compare
whether the extracted λeff is in the expected range. In Table I, I
summarize the geometry of the NBSs and report the extracted
λeff at the lowest temperature.

For Nb NBSs, the extracted λeff is in the range 170–
190 nm. This is close to λeff(0) ∼ 140 nm measured by Gubin
et al. [63] for 30-nm-thin Nb film. For trilayer W-Nb-Al
NBS [21], the extracted λeff (∼800 nm) is much higher than
the usual value. This may be due to the increased disorder
because of the presence of a thick W layer underneath. This
is also evident from the fact that the trilayer W-Nb-Al film
has very low Tc ∼ 2 K in comparison to 30-nm-thin Nb films,
Tc ∼ 8 K. For NbN, we extract λeff(0) ∼ 900 nm which is of
the same order (∼500 nm) of what is reported by Kamlapure
et al. [64]. The remaining discrepancy may be due to the
fact that while estimating N�, I have only considered the
NBS loop area, though a significant contribution may come

FIG. 8. The variation of Ics as a function of applied magnetic field
(B) at different temperatures for Al and Nb NBSs. The solid lines
represent straight lines. The data are adopted from Ref. [15].
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FIG. 9. The variation of λeff(T )/λeff(0) for Nb (blue star) and Pb
(black dot) NBSs. The solid line is a fit with the BCS theory. The
data are extracted from Refs. [15,41], respectively.

from the other portion of the NBSs, especially for a high-κ
material such as NbN [55,65]. Moreover, for a disordered
material such as NbN, the superconducting parameters are
very susceptible to disorder and therefore depend very signif-
icantly on the exact deposition method [58,66,67]. For Pb, the
extracted λeff is close to what is reported by Ozer et al. [57],
∼145 nm.

In most of the studies, ics(φa) have been reported at
the lowest measuring temperature, allowing to estimate
λeff only at a particular temperature. However, Hasslbach
et al. [15] and Paul et al. [41] have reported temperature-
dependent ics(φa) for Nb and Pb NBSs, respectively, al-
lowing to see how λeff evolves with the temperature and
verify whether they are consistent with the dirty limit BCS
expression [32],

λeff(T )

λeff(0)
= 1√

δ(T ) tanh
[
βδ(T ) Tc

T

] , (11)

where δ(T ) = 
(T )/
(0) is the normalized energy gap and
β = 
(0)/2kBTc. In Fig. 9, I fit the data extracted from
Hasslbach et al. [15] and Paul et al. [41] with Eq. (11), taking
λeff(0) as a fit parameter. The fit is quite good and I extract
λeff(0) = 180 nm for Nb and 120 nm for Pb NBSs, which are
close to the numbers reported in the literature, as has already
been mentioned in the previous section.

C. Tracing the number of branches

In this section, I explore the number of branches (N) ob-
served in experiments and compare them with the prediction
from the present model. In Table I, I summarize the N as
observed at the lowest measuring temperature by different
groups. Moreover, Hasselbach et al. [15] and Paul et al.
[41] have reported temperature-dependent ics(φa) that give
additional data points. βL is estimated from Lt × Imax

cs /�0.
In Fig. 10, I show the experimental (βL, κ ) data points on
the color map of the theoretical prediction from the present
model. 
εth is intuitively chosen as 0.002 to be consistent
with the most number of data points. Taking a typical error bar
∼25% for both βL and κ , except for one data point highlighted

FIG. 10. Number of branches: Comparison between theory and
experiments. The theoretical color plot is for 
εth = 0.002 and the
color code is identical to Fig. 5. (βL, κ ) points are adopted from
Ref. [15] (black dots) and Ref. [41] (red oval). The solid lines are
guide for eyes. The arrows show the direction of the increasing
temperature. The stars show the (βL, κ ) points from Table I for the
remaining references. The circle shows the data point where there is
a mismatch between theory and experiment.

by the circle, the experimentally observed N matches well
with the prediction from the present model. A complete match
is not expected as 
εth is arbitrarily chosen and it might also
have a temperature dependence.

V. SUMMARY AND CONCLUSION

In summary, I have developed a model for NBSs beyond
the Josephson limit, i.e., for long NBs and/or large screening
parameter. In this limit, the ics(φa) of a NBS can be understood
by considering the fluxoid quantization in the NBS loop and
the energy of the NBS. The model explains various experi-
mental features, such as triangular-shaped, double-branched,
and a diamond-shaped Ic(�a), reported in the literature. From
the model, I derive the expression for the modulation depth
and the transfer function. Using the model, I have shown
that both the screening parameter and the kinetic inductance
fraction play a vital role in deciding the number of ics(φa)
branches. I compare the prediction of the model with the
experimental data, already published by several groups, on
Al, Nb, NbN, and Pb NBSs. As expected, the shape of the
Ic(�a) for Al NBSs shows a significant departure from the
predictions of the present model whereas the NBSs made from
the remaining materials show good agreement. Likewise, the
present model also makes a good prediction about the number
of Ic(�a) branches for an arbitrarily chosen 
εth. In future, it
will be interesting to calculate 
εth as well as to see whether
it depends on the material properties and whether it has a
temperature and magnetic field dependence.
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