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We work out a unified theory describing both nonlocal electron transport and cross-correlated shot noise
in a three-terminal normal-superconducting-normal (NSN) hybrid nanostructure. We describe noise cross
correlations both for subgap and overgap bias voltages and for arbitrary distribution of channel transmissions
in NS contacts. We specifically address a physically important situation of diffusive contacts and demonstrate
nontrivial behavior of nonlocal shot noise exhibiting both positive and negative cross correlations depending on
the bias voltages. For this case, we derive a relatively simple analytical expression for cross-correlated noise
power which contains only experimentally accessible parameters.
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I. INTRODUCTION

It is well known that a normal metal attached to a su-
perconductor also acquires superconducting properties. At
low enough temperatures proximity-induced superconducting
correlations may spread at long distances inside the nor-
mal metal, leading to a wealth of interesting phenomena
[1]. Furthermore, electrons in two different normal metals
may become coherent, provided these metals are connected
through a superconducting island with effective thickness d
shorter than the superconducting coherence length ξ . This
effect has to do with the phenomenon of the so-called crossed
Andreev reflection (CAR), in which a Cooper pair may split
into two electrons going in two different normal leads [2]
[see Fig. 1(d)]. This Cooper pair splitting process may be
used to generate pairs of entangled electrons in different
metallic electrodes [3–5], i.e., to experimentally realize a
quantum phenomenon that could be of crucial importance for
developing quantum communication technologies.

Crossed Andreev reflection is a quantum coherent pro-
cess, which strongly affects electron transport in three-
terminal normal-metal–superconductor–normal-metal (NSN)
hybrid structures at sufficiently low temperatures. This issue
triggered substantial theoretical (see [6–13] and references
therein) and experimental [14–22] interest over the past years
and is presently quite well understood.

Consider, e.g., the NSN structure depicted in Fig. 1(a).
Applying bias voltages V1 and V2 to two normal-metallic
electrodes and measuring electric currents I1 and I2 (depend-
ing on both voltages V1 ad V2), it becomes possible to iden-
tify the contribution of CAR to nonlocal electron transport
in such a structure. In fact, CAR is not the only process
which contributes to the nonlocal transport in this case. It
competes with the so-called elastic cotunneling (EC), which
does not produce entangled electrons. In the course of the
latter process an electron is being transferred from one normal
metal to another, overcoming the effective barrier created by
the energy gap inside the superconductor [see Fig. 1(c)]. In

the zero-temperature limit EC and CAR contributions to the
low-bias nonlocal conductance ∂I1/∂V2 cancel each other in
NSN structures with low-transparency contacts [6].

One possible way to discriminate between CAR and EC
processes is to investigate fluctuations of the currents I1 and
I2. It is well known that in normal (i.e., nonsuperconducting)
multiterminal structures cross correlations of current noise
in different terminals are always negative due to the Pauli
exclusion principle for electrons [23]. In the presence of su-
perconductivity such cross correlations may become positive
due to CAR. Hence, by measuring cross-correlated current
noise in a system like the one depicted in Fig. 1(a) it is possible
to provide clear experimental evidence for the presence of
CAR in the system.

A theoretical treatment of cross-correlated nonlocal current
noise in NSN structures was pioneered in Refs. [24,25] for
the case of tunnel barriers at NS interfaces and in Ref. [26]
for a chaotic cavity coupled to normal and superconducting
electrodes. This treatment indeed demonstrated that at certain
voltage bias values CAR can dominate nonlocal shot noise,
giving rise to positive cross correlations. Later on, theoretical
analysis of noise cross correlations was extended to the case of
arbitrary barrier transmissions [27–32]. In particular, for fully
open barriers and at low enough temperature positive cross
correlations were predicted to occur at any nonzero voltage
bias value [29]. Positively cross correlated nonlocal shot noise
was also observed in several experiments [33,34].

In this work we extend the existing theory of nonlocal
shot noise in NSN hybrids [29], developed for noninteracting
electrons, in at least two important aspects. First, here we relax
the assumption [29] restricting the energy to subgap values
and develop the analysis of both nonlocal electron transport
and nonlocal shot noise at any voltage bias value V1,2 and
temperature T both below and above the superconducting
gap �. Second, we no longer assume (unlike in [29]) that
transmission probabilities for all conducting channels in the
junction are equal and allow for an arbitrary transmission
distribution. Following the analysis in [29], we perform the
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FIG. 1. (a) Schematics of the NSN structure under consideration.
The contacts between the normal leads and the superconductor
(located at a distance d from each other) may be described by an arbi-
trary distribution of channel transmissions or may have the shape of
short diffusive wires. (b) Equivalent circuit of the same system in the
normal state. Here RN

1 and RN
2 are the junction resistances, and RS

0 is
the normal-state resistance of the superconducting lead. (c) Schemat-
ics of the elastic cotunneling (EC) process in which an electron
is transferred from one normal terminal to another one through an
effective barrier formed by a superconductor. (d) Schematics of the
crossed Andreev reflection (CAR) process corresponding to splitting
a Cooper pair into two entangled electrons located in two normal
terminals.

lowest-order expansion in the small ratio between the normal-
state resistance of the superconducting lead RS

0 and the in-
terface resistances RN

1,2 [see Fig. 1(b)], which allows us to
perform disorder averaging in a superconducting terminal ex-
actly. In this way, we derive a general analytical expression for
the cross-correlated nonlocal noise in the two contacts (A2).
We specifically address an important case of diffusive con-
tacts, where the expression for the noise (59) greatly simplifies
and contains only experimentally accessible parameters.

The structure of this paper is as follows. In Sec. II we derive
a general expression for the cumulant generating function in
an NSN structure with arbitrary distribution of conducting
channel transmissions. In Sec. III we briefly recollect the
results for both local electron transport and local shot noise in
a single NS contact, thereby preparing our subsequent consid-
eration of nonlocal effects. Nonlocal transport and nonlocal
shot noise are addressed in detail in Sec. IV, paying special

attention to an important physical situation of diffusive NS
junctions. A couple of general and rather lengthy results are
relegated to the Appendix.

II. CUMULANT GENERATING FUNCTION

In what follows we will consider the NSN structure de-
picted in Fig. 1(a). Normal metallic leads are connected to
a bulk superconductor by two junctions characterized by a
set of transmission probabilities τ1,n and τ2,n, where n is the
integer number enumerating all conducting channels. The two
junctions are located at a distance d from each other, which
is assumed to be shorter than the superconducting coherence
length ξ .

Let Pt (N1, N2) be the probability for N1 and N2 electrons
to be transferred, respectively, through junctions 1 and 2
during the observation time t . It is instructive to introduce the
so-called cumulant generating function (CGF) F (χ1, χ2) by
means of the relation

eF (χ1,χ2 ) =
∑
N1,N2

e−iN1χ1−iN2χ2 Pt (N1, N2). (1)

The parameters χ1 and χ2 are denoted as counting fields. The
average currents through the junctions Ir = 〈Îr (t )〉 and the
correlation functions of the currents

Srr′ = 1

2

∫
dt[〈Îr (t0 + t )Îr′ (t0) + Îr′ (t0)Îr (t0 + t )〉

− 2〈Ir (t0)〉〈Ir′ (t0)〉] (2)

are expressed via the CGF as follows:

Ir = lim
t→0

ie

t

∂F
∂χr

∣∣∣∣
χr=0

, Srr′ = − lim
t→0

e2

t

∂2F
∂χr∂χr′

∣∣∣∣
χr=0

. (3)

In order to evaluate the CGF for the system depicted in
Fig. 1 we will make use of the effective action approach [29].
The Hamiltonian of our system is expressed in the form

H = H1 + H2 + HS + HT,1 + HT,2, (4)

where H1,2 are the Hamiltonians of the normal leads,

Hr =
∑

α=↑,↓

∫
dx ψ̂†

r,α (x)

(
−∇2

2m
− μ − eVr

)
ψ̂r,α (x), (5)

ψ̂†
r,α (x), ψ̂r,α (x) are the creation and annihilation operators for

an electron with a spin projection α at a point x, m is the
electron mass, μ is the chemical potential, Vr is the electric
potential applied to the lead r,

HS =
∫

dx
[ ∑

α

ψ̂
†
S,α (x)

(
−∇2

2m
− μ + Udis(x)

)
ψ̂S,α (x)

+�ψ̂
†
S,↑(x)ψ̂†

S,↓(x) + �∗ψ̂S,↓(x)ψ̂S,↑(x)

]
(6)

is the Hamiltonian of a superconducting electrode with the
order parameter � and disorder potential Udis(x), and the
terms

HT,r =
∫
Ar

d2x
∑

α=↑,↓
[tr (x)ψ̂†

r,α (x)ψ̂S,α (x)

+ t∗
r (x)ψ̂†

S,α (x)ψ̂r,α (x)] (7)
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describe electron transfer through the contacts between the
superconductor and the normal leads. In Eq. (7) the sur-
face integrals run over the contact areas Ar , and tr (x) are
the coordinate-dependent tunneling amplitudes. Note that
here we do not consider the case of spin-active interfaces
[9]; hence, the amplitudes tr (x) do not depend on the spin
projection.

One can introduce the wave functions in the leads corre-
sponding to incoming and outgoing scattering states in the nth
conducting channel of the rth junction ψr,n(x) and expand the
electronic operators as

ψ̂r,α (x) =
∑

n

ψr,n(x)ân,α,

ψ̂S,α (x) =
∑

n

ψS,n(x)ĉn,α. (8)

The Hamiltonians (7) then acquire the form

HT,r =
∑

α=↑,↓

∑
n

[tr,nâ†
n,α ĉn,α + t∗

r,nĉ†
n,α ân,α], (9)

where tr,n = ∫
Ar

d2xψ∗
S,n(x)tr (x)ψr,n(x) are the matrix ele-

ments of the tunneling amplitude. These matrix elements are
related to the channel transmission probabilities τr,n by means
of the standard relation [35]

τr,n = 4αr,n/(1 + αr,n)2, (10)

with αr,n = π2νrνS|tr,n|2 and ν j being the density of states in
the corresponding electrode (here j = 1, 2, S).

The CGF (1) can formally be expressed as

F = ln[tr(e−iχ1N̂1−iχ2N̂2 e−iHt eiχ1N̂1+iχ2N̂2 ρ̂0eiHt )], (11)

where N̂r = ∑
α=↑,↓

∑
n â†

α,nâα,n are the electron num-
ber operators in the normal leads and ρ̂0 = exp(−H/T )/
tr[exp(−H/T )] is the equilibrium density matrix of the sys-
tem. The above expression can identically be transformed to

F = ln[tr(e−iH (χ1,χ2 )t ρ̂0eiH (−χ1,−χ2 )t )], (12)

where

H (χ1, χ2) = e−i(χ1N̂1+χ2N̂2 )/2Hei(χ1N̂1+χ2N̂2 )/2

= H1 + H2 + HS + HT,1(χ1) + HT,2(χ2) (13)

and

HT,r (χ ) = e−iχr N̂r/2HT,reiχr N̂r/2

=
∑

α=↑,↓

∑
n

[tr,neiχr/2ĉ†
n,α ân,α + t∗

r,ne−iχr/2â†
n,α ĉn,α].

The CGF (12) can be evaluated in a straightforward manner
with the aid of the path integral technique [29], which yields

F (χ1, χ2) = tr [ln Ĝ−1(χ1, χ2)], (14)

where Ĝ−1 is the Keldysh Green’s function of our system,

G−1(χ1, χ2) =
⎛
⎝ Ǧ−1

1 ť1(χ1) 0
ť†
1 (χ1) Ǧ−1

S ť2(χ2)
0 ť†

2 (χ2) Ǧ−1
2

⎞
⎠, (15)

the 4 × 4 matrices Ǧ−1
j represent the inverse Keldysh Green’s

functions of isolated normal and superconducting leads, and

ťr is the diagonal 4 × 4 matrix in the Nambu-Keldysh space
describing tunneling between the leads,

ťr (χr ) =

⎛
⎜⎜⎝

−tre−i χr
2 0 0 0

0 trei χr
2 0 0

0 0 trei χr
2 0

0 0 0 −tre−i χr
2

⎞
⎟⎟⎠. (16)

The CGF (14) can be cast in the form

F = tr ln[Ǐ − ť†
1 Ǧ1ť1ǦS − ť†

2 Ǧ2ť2ǦS], (17)

where Ǐ is the unity operator.
The Fourier transformed Green’s function of a supercon-

ducting island, ǦS (E ) = ∫
dt eiE (t−t ′ )ǦS (t − t ′, x, x′), reads

ǦS (E ) = ĜR(E ) + ĜA(E )

2
⊗ σ̂z

+ ĜR(E ) − ĜA(E )

2
⊗ Q̂S (E )σ̂z. (18)

Here

ĜR,A(E ) =
(

GR,A(E , x, x′) F+
R,A(E , x, x′)

FR,A(E , x, x′) G+
R,A(E , x, x′)

)

=
∑

n

ϕn(x)ϕ∗
n (x′)

(E ± i0)2 − ξ 2
n − |�|2

×
(

E + ξn �∗
� E − ξn

)
(19)

are retarded and advanced Green’s functions, and the matrix

Q̂S (E ) =
(

1 − 2nS (E ) 2nS (E )
2 − 2nS (E ) 2nS (E ) − 1

)
(20)

depends on the quasiparticle distribution function nS (E ) in a
superconductor and has the property Q̂2(E ) = 1. The wave
functions ϕn(x) appearing in Eq. (19) are the eigenfunctions
of a single-electron Hamiltonian of the superconducting lead
with eigenenergies ξn; that is, they are the solutions of the
Schrödinger equation(

−∇2

2m
− μ + Udis(x)

)
ϕn(x) = ξnϕn(x). (21)

Note that the wave functions ϕn(x) differ from the functions
ψr,n(x) introduced earlier in Eqs. (8). The expressions for
the Green’s functions in the normal leads are recovered from
Eqs. (18)–(20) by replacing S → r = 1, 2 and setting � = 0.

Following the analysis [29] let us define the self-energies
�̌r (χr ) = ť†

r Ǧrťr and derive their matrix elements in the basis
of the scattering states’ wave functions in the corresponding
contact. We obtain

�̌mn
r (χr, E ) =

∫
Ar

d2xd2x′ ψ∗
S,m(x)ť†

r (χr, x)

× Ǧr (E , x, x′)ťr (χr, x′)ψS,n(x′)

= αr,n

π iνS
δmn

(
σ̂ze−i σ̂zχ

2 Q̂(E −eVr )ei σ̂zχ

2 0
0 σ̂zei σ̂zχ

2 Q̂(E +eVr )e−i σ̂zχ

2

)
, (22)
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where the matrices Q̂r (E ) are defined in the same way as in
Eq. (20), i.e.,

Q̂r (E ) =
(

1 − 2nr (E ) 2nr (E )
2 − 2nr (E ) 2nr (E ) − 1

)
, (23)

and nr (E ) are the distribution functions of electrons in the
normal leads. Note that by performing a proper rotation in
the basis of the scattering wave functions in the superconduc-
tor one can always diagonalize the self-energies �̌mn

r ∝ δmn.
Hence, the CGF (17) can be expressed in the form

F (χ1, χ2) = tr ln[Ǐ − �̌1(χ1)ǦS − �̌2(χ2)ǦS]. (24)

Unfortunately, the CGF (24) cannot be evaluated exactly.
In order to proceed and to account for the effects of CAR
we carry out a perturbative expansion of the CGF (24) in
powers of the “off-diagonal” component of the supercon-
ductor Green’s function ǦS (x, x′), in which points x and
x′ belong to different junctions. This expansion is justified
provided the normal-state resistance of the superconducting
lead RS

0 remains small compared to the contact resistances
RN

1 , RN
2 , and it is essentially equivalent to linearizing the Us-

adel equation. The latter simplification is routinely performed
[36] in order to fully analytically describe various nontrivial
nonequilibrium effects in superconducting hybrid structures,
such as the sign inversion of the Josephson critical current
in SNS-like junctions [37,38]. To this end, we define the
operator Ǎ = �̌1(χ1)ǦS + �̌2(χ2)ǦS and formally rewrite the
expression (24) in the form

F (χ1, χ2) = tr ln

[(
Ǐ11 − Ǎ11 −Ǎ12

−Ǎ21 Ǐ22 − Ǎ22

)]
, (25)

where the subscripts indicate the contact at which the co-
ordinates x (first index) and x′ (second index) are located.
Expanding in the small off-diagonal components Ǎ12, Ǎ21 to
the lowest nonvanishing order, we arrive at the result

F (χ1, χ2) = F1(χ1) + F2(χ2) + F12(χ1, χ2), (26)

where

Fr (χr ) = tr ln[Ǐ − �̌r (χr )ǦS,rr], r = 1, 2, (27)

are the local contributions and the term

F12(χ1, χ2) = −t
∫

dE

2π
tr{[Ǐ11 − �̌1(χ1)ǦS,11]−1Ǎ12

× [Ǐ22 − �̌2(χ2)ǦS,22]−1Ǎ21} (28)

accounts for nonlocal effects. Note that in Eq. (28) we re-
placed the double time integration by a single integral over
energy which is appropriate in the long-time limit.

Expressions (27) and (28) contain the Green’s functions
of the superconductor GR,A, which oscillate at the scale of
the Fermi wavelength. One can simplify these expressions by
averaging over disorder. Such averaging can be handled with
the aid of the following relations [39]:∑

n

〈ϕn(x)ϕ∗
n (x′)〉δ(ξ − ξn) = νSw(|x − x′|), (29)

∑
mn

〈ϕn(x)ϕ∗
n (x′)ϕm(x′)ϕ∗

m(x)〉δ(ξ − ξn)δ(ξ ′ − ξm)

= ν2
Sw2(|x − x′|) + νS

π
Re D(ξ − ξ ′, x, x′)

+ νS

π
w2(|x − x′|) Re C

(
ξ − ξ ′,

x + x′

2
,

x + x′

2

)
. (30)

Here w(r) = e−r/2le sin(kF r)/kF r, le is the mean free path of
electrons, and D(ω, x, x′), C(ω, x, x′) are, respectively, the
diffusion and the cooperon.

In what follows we will assume that the distance between
the two junctions is shorter than the effective dephasing
length for electrons, in which case the diffusion and the
cooperon coincide with each other, D(ω, x, x′) = C(ω, x, x′),
being determined by the fundamental solution of the diffusion
equation (−iω − DS∇2

x

)
D(ω, x, x′) = δ(x − x′), (31)

where DS = vF le/3 is the diffusion constant in the supercon-
ductor.

Let us, for simplicity, ignore the influence of the proximity
effect on local transport properties of the contacts and replace
the Green’s functions ǦS,11 and ǦS,22 appearing in Eqs. (27)
and (28) by their disorder-averaged values 〈ǦS,11〉 and 〈ǦS,22〉.
Averaging of pairwise products of the Green’s function com-
ponents ǦS,12 and ǦS,21 [contained in the nonlocal terms Ǎ12

and Ǎ21 in Eq. (28)] is carried out with the aid of Eq. (30).
Further simplifications occur if we recall that the distance
between the contacts d remains shorter than the superconduct-
ing coherence length ξ = √

DS/2�. In this case one can set
ω = 0 in the argument of the diffusion; that is, we replace
D(ω, x, x′) → D(0, x, x′). Finally, we also assume complete
randomization of the electron trajectories connecting the two
contacts inside a disordered superconductor, meaning that
an electron leaving junction 1 via the conduction channel n
has the same probability to arrive at contact 2 in any of its
conduction channels. In this way we bring the CGF (28) to
the form

F12 = t
2e2RS

0

π

∑
n,m

∫
dE tr([Ǐ11 − �̌1(χ1)〈ǦS,11〉]−1

n

×α1,nQ̌1[Ǐ22 − �̌2(χ2)〈ǦS,22〉]−1
m α2,mQ̌2

−{1 − [Ǐ11 − �̌1(χ1)〈ǦS,11〉]−1
n }

× {1 − [Ǐ22 − �̌2(χ2)〈ǦS,22〉]−1
m }), (32)

where the sum runs over all conducting channels of contact 1
(index n) and of contact 2 (index m),

Q̌r (E ) =
(

Q̂r (E − eVr ) 0
0 −Q̂r (E + eVr )

)
, (33)

and RS
0 is the characteristic resistance which sets the scale for

nonlocal effects in our system. It is defined as

RS
0 = 1

2e2νSA1A2

∫
A1

d2x1

∫
A2

d2x2 D(0, x1, x2), (34)

which is approximately equal to the total resistance of the
superconducting electrode measured in the normal state be-
tween the ground and the region to which the normal leads
are attached [see Fig. 1(b)].
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Equation (32) for the nonlocal part of CGF represents the
main result of this section, which will be directly employed in
our subsequent analysis.

III. LOCAL TRANSPORT AND NOISE IN
A SINGLE NS JUNCTION

Before turning to nonlocal effects let us briefly recollect
the well-known results for both electron transport and noise
in single NS junctions, paying special attention to the case
of a diffusive interface between the two metals. Following
a seminal work by Blonder et al. [40], we define the prob-
abilities for scattering processes in the junction for every
conducting channel. Specifically, these are the probabilities
of Andreev reflection (Ar,n), of normal reflection (Br,n), of
normal transmission (Cr,n), and of the transmission with the
conversion of an electron into a hole (Dr,n) in the junction r.
At subgap energies |E | < � we have [40]

Ar,n(E ) = 4α2
r,n�

2(
1 + α2

r,n

)2
�2 − (

1 − α2
r,n

)2
E2

, (35)

Br,n = 1 − Ar,n, Cr,n = Dr,n = 0, while at |E | > � we get [40]

Ar,n(E ) = 4α2
r,n

[
N2

S (E ) − 1
]

[
1 + α2

r,n + 2αr,nNS (E )
]2 ,

Br,n(E ) =
(
1 − α2

r,n

)2

[
1 + α2

r,n + 2αr,nNS (E )
]2 ,

(36)

Cr,n(E ) = 2αr,n(1 + αr,n)2[NS (E ) + 1][
1 + α2

r,n + 2αr,nNS (E )
]2 ,

Dr,n(E ) = 2αr,n(1 − αr,n)2[NS (E ) − 1][
1 + α2

r,n + 2αr,nNS (E )
]2 ,

where NS (E ) = θ (|E | − �)|E |/√E2 − �2 is the density of
states in the superconductor and θ (x) is the Heaviside step
function.

The CGF of a single contact (27) can be evaluated exactly;
it is presented in the Appendix [see Eq. (A1)]. This result
allows one to immediately reconstruct the well-known expres-
sion for the (local) current (3) in the rth junction [40]

Ir = e

2π

∑
n

∫
dE g(E , αr,n)(n−

r − n+
r ). (37)

Here n−
j and n+

j are the distribution functions for electrons and
holes in the normal leads, respectively,

n±
r = 1

1 + e(E±eVr )/Tr
, (38)

and

g(E , αr,n) = 2Ar,n(E ) + Cr,n(E ) + Dr,n(E ) (39)

is the dimensionless spectral conductance in the nth channel.

The expression for local current noise in the rth junction,
given by the derivative (3),

Srr = 1

2

∫
dt[〈Îr (t )Îr (0) + Îr (0)Îr (t )〉 − 2〈Îr (0)〉], (40)

is recovered analogously. We get [41,42]

Srr = e2

2π

∑
n

∫
dE

{
4 θ (� − |E |) Ar,n(1 − Ar,n)

×w(n−
r , n+

r ) + [Cr,n + Dr,n − (Cr,n − Dr,n)2]

× [w(n−
r , nS ) + w(n+

r , nS )]

+ (2Ar,n + Cr,n + Dr,n)2 w(n−
r , n−

r ) + w(n+
r , n+

r )

2

+ (Cr,n − Dr,n)2w(nS, nS )

}
. (41)

Here we introduced the following combination of the distri-
bution functions:

w(nr, nr′ ) = nr (1 − nr′ ) + (1 − nr )nr′ . (42)

Let us specify the above results in the important case of
diffusive contacts. Provided the contact has the form of a short
diffusive wire with the Thouless energy exceeding the super-
conducting gap �, the transmission probability distribution is
determined by the Dorokhov’s formula [43]

Pr (τr ) = π

2e2RN
r

1

τr
√

1 − τr
, r = 1, 2. (43)

Here RN
1,2 are the resistances of diffusive contacts in the

normal state. Introducing the dimensionless parameters αr in
a way, (10), which translates the distribution (43) to the form

Pr (αr ) = π

2e2RN
r

1

αr
(44)

and replacing the sum over conducting channels in Eq. (37) by
the integral

∑
n → ∫ 1

0 dαrPr (αr ), we arrive at the expression
for the current through a diffusive junction between normal
and superconducting metals:

Ir = 1

2e

∫
dE Gr (E )(n−

r − n+
r ). (45)

Here Gr (E ) = (1/RN
r ) f1(E/�) is the spectral conductance of

the rth short diffusive wire, and the dimensionless function
f1(x), defined as f1(x) = ∫ 1

0 dα g(x�,α)/2α [here g(E , α) is
the conductance (39)], reads

f1(x) = 1

2

(
θ (1 − |x|)

|x| + θ (|x| − 1)|x|
)

ln

∣∣∣∣ |x| + 1

|x| − 1

∣∣∣∣. (46)

The I-V curve defined by Eqs. (45) and (46) is illustrated in
Fig. 2(a).

The local current noise power in the rth NS contact with
a diffusive boundary between metals is constructed analo-
gously. It reads

Srr = 1

RN
r

∫
|E |<�

dE

[
f1

(
E

�

)
− f2

(
E

�

)]
w(n−

1 , n+
1 )

+ 1

2RN
r

∫ +∞

−∞
dE f2

(
E

�

)
[w(n−

1 , n−
1 ) + w(n+

1 , n+
1 )]

144504-5



DMITRY S. GOLUBEV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 99, 144504 (2019)

(a)

(b)

FIG. 2. (a) The current I1 (45) in a diffusive contact 1 and (b) the
corresponding differential Fano factor e−1dS11/dI1 [determined from
Eqs. (45) and (47)] as functions of the voltage bias V1 at T = 0. Here
we define GN

1 ≡ 1/RN
1 .

+ 1

2RN
r

∫
|E |>�

dE

{[
f1

(
E

�

)
−

(
2 − �2

E2

)
f2

(
E

�

)]

× [w(n+
1 , nS ) + w(n−

1 , nS )]

+ 2 f2

(
E

�

)(
1 − �2

E2

)
w(nS, nS )

}
, (47)

where the dimensionless function f2(x), defined as f2(x) =∫ 1
0 dα g2(x�,α)/4α, equals

f2(x) = θ (1 − |x|)
2x2

(
1 + x2

2|x| ln
1 + |x|
1 − |x| − 1

)

+ θ (|x| − 1)
x2

2

(
|x| ln

|x| + 1

|x| − 1
− 2

)
. (48)

The differential Fano factor e−1dS11/dI1 following from the
above results is displayed in Fig. 2(b). At high voltage bias
values it approaches the universal value of 1/3 expected for
the normal metal, while at low bias eV1 � � the Fano factor
becomes two times bigger due to the well-known charge
doubling effect in the Andreev reflection regime [44–46].

At this stage we have completed our preparations and now
can turn to a discussion of nonlocal effects.

IV. NONLOCAL TRANSPORT AND NOISE
IN AN NSN SYSTEM

To begin with, let us we evaluate the nonlocal correction to
the current flowing through the contact r due to the presence
of another contact r′. We obtain

Ir = 1

2

∫ (
e

π

∑
n

gr,n(E )

)
(n−

r − n+
r )

+ 1

2e

∫
dE G12(E )(n−

r′ − n+
r′ ), (49)

where the nonlocal spectral conductance G12(E ) reads [13]

G12(E ) = e4RS
0

π2

∑
n,m

[
θ (� − |E |)�

2 − E2

�2

+ θ (|E | − �)
E2 − �2

E2

]
gr,n(E )gr′,m(E ). (50)

Note that for simplicity in Eq. (49) we omitted disorder-
induced corrections to the local junction conductance [47–49],
which are insignificant for our present discussion.

One can also work out a full analytical expression for
the cross-correlated noise of the contacts S12. For the sake
of completeness we present this rather lengthy expression
in the Appendix in Eq. (A2). In the important limit of low
voltages and temperatures, eV1,2, T � � one can derive a
simple analytical expression,

S12 = G12(0)

[
−4(2 − β1 − β2)T − 4β1eV1 coth

eV1

T

− 4β2eV2 coth
eV2

T
+ γ+e(V1 + V2) coth

e(V1 + V2)

2T

− γ−e(V1 − V2) coth
e(V1 − V2)

2T

]
, (51)

where

βr = lim
E→0

∑
n Ar,n[1 − Ar,n]∑

n Ar,n
(52)

are the effective Fano factors of the junctions in the regime
where Andreev reflection dominates the transport properties
and the parameters γ± are defined as

γ± =
∑

n,m A1,nA2,m

[
1−2A1,n−2A2,m+4A1,nA2,m√

A1,nA2,m
± 1

]
∑

n,m A1,nA2,m
. (53)

Here the limit E → 0 should be taken in the same way as in
Eq. (52).

Equations (51)–(53) constitute an important generalization
of our previous result [29], where the assumption about equal
transmissions of all conducting channels has been made.
This assumption is lifted here, thus allowing us to analyze
the results for a variety of transmission distributions in the
contacts.

In the tunneling limit A1,n, A2,m � 1 we find

γ+ = γ− ≡ γT =
∑

n,m

√
A1,nA2,m∑

n,m A1,nA2,m
. (54)

Obviously, in this regime we have γ± � 1. Since in the other
terms the prefactors are much smaller, we can keep only the
terms ∝ γ± in the expression (51), thereby reproducing the
result [25]

S12 = γT G12(0)

[
e(V1 + V2) coth

e(V1 + V2)

2T

− e(V1 − V2) coth
e(V1 − V2)

2T

]
. (55)

The first and second terms on the right-hand side of this
formula are attributed, respectively, to CAR and EC processes.
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We observe that the noise cross correlations remain positive,
S12 > 0, provided V1 and V2 have the same sign, and they turn
negative, S12 < 0, if V1 and V2 have different signs.

In the opposite limit of perfectly conducting channels in
both junctions with τ1,n = τ2,m = 1 one gets γ+ = 2, γ− = 0,
β1 = β2 = 0. Hence, in this case we have [29]

S12 = G12(0)

[
−8T + 2e(V1 + V2) coth

e(V1 + V2)

2T

]
. (56)

This result is always positive at nonzero bias and low enough
temperatures, indicating the importance of CAR processes in
this limit. Note, however, that in contrast to the tunnel limit
(55), the last term in Eq. (56) is not necessarily proportional to
the CAR probability. Indeed, it may contain disorder-averaged
contributions of mixed processes involving both CAR and EC
amplitudes [31,32], originating from the general expression
for the noise in terms of the scattering matrix [42].

Provided superconductivity gets totally suppressed (i.e.,
we set � → 0), it is straightforward to verify that our general
expression for the cross-correlated noise (A2) reduces to the
result [50]

S12 = − RS
0

RN
1 RN

2

[
F1eV1 coth

eV1

2T
+ F2eV2 coth

eV2

2T

+ (2 − F1 − F2)2T

]
, (57)

where Fj = ∑
n τ j,n(1 − τ j,n)/

∑
n τ j,n are the Fano factors of

the contacts in the normal state. We also note that in the large-
bias limit eV1, eV2 � �, Eq. (A2) equals the normal-state
result (57) plus voltage-independent excess noises related to
both CAR and EC.

Finally, let us analyze an important case of diffusive con-
tacts. Making use of Eq. (50) and integrating over the trans-
mission distribution (43), we arrive at the nonlocal spectral
conductance in the form

G12(E ) = GN
12

4RN
1 RN

2

[
θ (� − |E |)�

2 − E2

E2

+ θ (|E | − �)
E2 − �2

�2

](
ln

∣∣∣∣ |E | + �

|E | − �

∣∣∣∣
)2

,

(58)

where GN
12 = RS

0/(RN
1 RN

2 ) is the nonlocal conductance in the
normal state. This result can easily be derived by applying
Kirchhoff’s law to the equivalent circuit depicted in Fig. 1(b)
and assuming that RS

0 � RN
1,2. At T = 0 the differential con-

ductance ∂I1/∂V2 exhibits the re-entrance effect (see Fig. 3).
Namely, one finds that ∂I1/∂V2|V2=0 = limV2→∞ ∂I1/∂V2 =
GN

12.
One can also work out a relatively simple analytical ex-

pression for S12. After averaging over the distributions (43),
expression (A2) reduces to the form

S12 = GN
12

∫
dE{−K1(E/�)[w(n−

1 , n+
2 ) + w(n+

1 , n−
2 ) − w(n−

1 , n−
2 ) − w(n+

1 , n+
2 )]

+ K2(E/�)[w(n−
1 , n+

2 ) + w(n+
1 , n−

2 ) + w(n−
1 , n−

2 ) + w(n+
1 , n+

2 )] − K3(E/�)[w(n−
1 , n+

1 ) + w(n−
2 , n+

2 )]

− K4(E/�)[w(n−
1 , nS ) + w(n+

1 , nS ) + w(n−
2 , nS ) + w(n+

2 , nS )]

− K5(E/�)[w(n−
1 , n−

1 ) + w(n+
1 , n+

1 ) + w(n−
2 , n−

2 ) + w(n+
2 , n+

2 )] + 2K4(E/�)w(nS, nS )}. (59)

Here we define five dimensionless functions Kj (x). At |x| < 1 (i.e., at |E | < �) these functions read

K1 = x2( f1 − f2)2, K2 = (1 − x2) f 2
1 /4,

K3 = (1 − x2)( f1 − f2) f1,

K4 = 0, K5 = (1 − x2) f1 f2/2,

where the functions f1(x) and f2(x) are defined, respectively, in Eqs. (46) and (48). For |x| > 1 we have

K1 = ( f1 − f2)2

4x2
, K2 = − (x2 − 1) f 2

2

4x4
, K3 = 0,

K4 = x2 − 1

2x2

[
f 2
1 − 2 f1 f2 − f 2

2

x2

]
, K5 = (x2 − 1) f1 f2

2x2
.

The cross-correlated noise power for diffusive junctions
(59) is plotted in Figs. 4(b) and 4(e). For comparison, in the
same figure we also display the result (A2) in the tunneling
limit [Figs. 4(a) and 4(d)] and for fully transparent junctions
[Figs. 4(c) and 4(f)]. For simplicity, in both these limiting
cases we assume that all conducting channels in the junctions

have the same transparency (τ = 0.1 for the tunnel limit and
τ = 1 for fully open NS junctions). The dependence of S12

on the bias voltage is asymmetric, being very sensitive to the
transparency of the junctions. Curves of a similar shape were
also obtained numerically [27] for a ballistic NSN structure
within the scattering matrix approach [42]. Interestingly, for
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FIG. 3. Zero-temperature nonlocal conductance ∂I1/∂V2 [deter-
mined by Eq. (58) with E → eV2] as a function of the bias voltage
V2.

good contacts S12 remains positive even for e|V1,2| > �,
although at high bias it becomes voltage independent [see
Fig. 4(c)].

In the limit of low voltages and temperatures eV1,2, T � �

the energy integrals in Eq. (59) can be performed analytically,
and we obtain

S12 = GN
12

[
− 16

3
T − 4

3
eV1 coth

eV1

T
− 4

3
eV2 coth

eV2

T

+ e(V1 + V2) coth
e(V1 + V2)

2T

+ e(V1 − V2) coth
e(V1 − V2)

2T

]
. (60)

Note that the last two terms in this expression for the cross-
correlated current noise in NSN structures with diffusive con-
tacts resemble those of the result (55) derived in the tunneling
limit, except the last term in Eq. (60) enters with the opposite
sign of that in Eq. (55). Expression (60) also follows from the
general formula (51) since for diffusive junctions one finds
β1 = β2 = 1/3 and γ± = ±1. Depending on the bias voltages
V1 and V2 the cross-correlated noise (60) can take both positive
and negative values, as illustrated in Figs. 4(b) and 4(e). We
also stress that the results for the nonlocal noise power derived
here for the case of diffusive contacts cannot be correctly
reconstructed within a simple one-dimensional ballistic model
[27]. Indeed, it is easy to check that, e.g., in order to get
γ± = ±1 within the latter model, for both barriers one should
choose the same channel transmission value τ = 2(

√
2 − 1).

FIG. 4. Nonlocal shot noise in an NSN structure at zero temperature, T = 0, with various types of contacts: (a) and (d) tunnel contacts,
Eq. (A2), with τ1,n = τ2,m = 0.1; (b) and (e) diffusive contacts, Eq. (59); and (c) and (f) fully open contacts, Eq. (A2), with τ1,n, τ2,m = 1 for all
conducting channels. Graphs in (a), (b), and (c) show the dependence of the cross-correlated noise power S12 on the bias voltage V1 for several
fixed values of V2. Color plots in (d), (e), and (f) show the dependence of the noise cross correlations on both bias voltages V1,V2, with red and
blue colors indicating, respectively, positive and negative cross correlations.
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This choice, however, would then yield both subgap and
overgap Fano factors, β1,2 and F1,2, respectively, which do
not correspond to the diffusive limit. Hence, e.g., the result
in Eq. (60) cannot be recovered from the model [27].

In summary, we have developed a detailed theory de-
scribing both nonlocal electron transport and nonlocal shot
noise in three-terminal NSN hybrid structures with arbitrary
distribution of transmissions for conducting channels in both
NS junctions. Our theory does not employ any restrictions
imposed on the electron energy and hence remains applicable
at all voltage bias values and at any temperature. In our anal-
ysis we paid particular attention to the physically important
limit of diffusive NS junctions, in which case a nontrivial
behavior of nonlocal shot noise is recovered, exhibiting both
positive and negative cross correlations depending on the bias

voltages. Our predictions allow us to better understand the
process of Cooper pair splitting in NSN structures and call
for experimental verification.
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APPENDIX

Performing the averaging outlined in Sec. II, we derive the
local part of the CGF (27) in the form

Fr (χr ) = tr ln[Ǐrr − �̌r (χr )〈ǦS,rr〉] = t
∑

n

∫
dE

2π
ln{1 + Ar,nW (2χr, n+

r , n−
r ) + (Cr,n + Dr,n)[W (χr, n+

r , nS )

+W (−χr, n−
r , nS )] + (Cr,n − Dr,n)2W (χr, n+

r , nS )W (−χr, n−
r , nS )}, (A1)

where W (χ, nr, nr′ ) = (eiχ − 1)nr (1 − nr′ ) + (e−iχ − 1)(1 − nr )nr′ . The CGF (A1) is equivalent to that derived in [41].
The general expression for the cross-correlated current noise S12 which follows from our analysis in Sec. IV reads

S12 = e4RS
0

π2

∑
n,m

∫
|E |<�

dE
�2 − E2

�2
A1,nA2,m

{[
(1 − 2A1,n)(1 − 2A2,m)√

A1,n(0)A2,m(0)
− 4E2(1 − A1,n)(1 − A2,m)

�2 − E2

]

× [w(n−
1 , n+

2 ) + w(n+
1 , n−

2 ) − w(n−
1 , n−

2 ) − w(n+
1 , n+

2 )]

+w(n−
1 , n+

2 ) + w(n+
1 , n−

2 ) + w(n−
1 , n−

2 ) + w(n+
1 , n+

2 ) − 4[(1 − A1,n)w(n−
1 , n+

1 ) + (1 − A2,m)w(n−
2 , n+

2 )]

− 2A1,n[w(n−
1 , n−

1 ) + w(n+
1 , n+

1 )] − 2A2,m[w(n−
2 , n−

2 ) + w(n+
2 , n+

2 )]

}

+ e4RS
0

π2

∑
n,m

∫
|E |>�

dE

(
1 − �2

E2

)
g1,ng2,m

{
− �2

4(E2 − �2)

(
1 − g1,n

2

)(
1 − g2,m

2

)
[w(n−

1 , n+
2 ) + w(n+

1 , n−
2 )

−w(n−
1 , n−

2 ) − w(n+
1 , n+

2 )] − �2

16E2
g1,ng2,m[w(n−

1 , n+
2 ) + w(n+

1 , n−
2 ) + w(n−

1 , n−
2 ) + w(n+

1 , n+
2 )]

+
(

�2

8E2
g1,ng2,m − 1 − g1,n

2

)
[w(n−

1 , nS ) + w(n+
1 , nS ) − w(nS, nS )] +

(
�2

8E2
g1,ng2,m − 1 − g2,m

2

)

× [w(n−
2 , nS ) + w(n+

2 , nS ) − w(nS, nS )] − g1,n

4
[w(n−

1 , n−
1 ) + w(n+

1 , n+
1 )] − g2,m

4
[w(n−

2 , n−
2 ) + w(n+

2 , n+
2 )]

}
. (A2)
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