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Subgap states in two-dimensional spectroscopy of graphene-based superconducting hybrid junctions
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Several recent works have predicted that unconventional and topological superconductivity can arise in
graphene, either intrinsically or by proximity effect. Then, the analysis of the spectroscopic and transport
properties in graphene would be a valuable source of information in the study of the emergent superconducting
order parameter. Using Green’s functions techniques, we study the transport properties of a finite size
ballistic graphene layer placed between a normal state electrode and a graphene lead with proximity-induced
unconventional superconductivity. Our microscopic description of such a junction allows us to consider the effect
of edge states in the graphene layer and the imperfect coupling to the electrodes. The tunnel conductance through
the junction and the spectral density of states feature a rich interplay between graphene’s edge states, interface
bound states formed at the graphene-superconductor junction, Fabry-Pérot resonances originated from the finite
size of the graphene layer, and the characteristic Andreev surface states of unconventional superconductors.
Within our analytical formalism, we identify the separate contribution from each of these subgap states to the
conductance and density of states. Our results provide an advisable tool to determine experimentally the pairing
symmetry of unconventional superconductivity that can arise in graphene.
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I. INTRODUCTION

Unconventional superconductivity involves all pairing
states that deviate from the ordinary s-wave, spin-singlet
Cooper pairs [1], and are thus classified according to the
symmetry of their order parameter. For example, high-Tc

superconductors feature an anisotropic d-wave spin-singlet
pairing state [2,3] and there is increasing evidence for the
compounds UPt3 and Sr2RuO4 to be spin-triplet chiral su-
perconductors [4]. Recently, topological superconductors [5]
have triggered an intense research activity as they host gap-
less Majorana surface states, a candidate for fault-tolerant
quantum computing [6,7]. Topological superconductivity can
be artificially engineered in proximity-induced semiconductor
nanowires [8–10] or naturally arises on chiral superconductors
[11–13], which have a fully gapped bulk spectrum and exhibit
a nonzero Chern number (N = ±1 for p wave and N = ±2
for d wave). The related chiral Andreev bound states can
give rise to a rich phenomenology like spontaneous edge
currents [14–16], domain walls [15], zero-energy vortices
[15,17], quantized spin and thermal Hall effects [18,19], and
the possibility of Majorana fermions [15,20,21]. In graphene,
the peculiar hexagonal lattice allows for the formation of
unconventional pairing correlations [22–27]. Indeed, it has
been proposed that chiral d-wave superconductivity can arise
intrinsically by dopping graphene near the Van Hove singular-
ity [23,24] or from repulsive interactions [25], whereas chi-
ral p-wave superconductivity intrinsically appears in chemi-
cally modified, metal coated graphene [26] or by proximity
to an electron-doped oxide superconductor [27]. Tunneling

conductance measurements at normal metal-superconductor
junctions are a very useful tool to detect signatures of all these
types of unconventional superconductivity [2]. In a ballistic
junction, transport at voltages below the superconducting gap
is mediated by Andreev reflections, where incident electrons
are converted into holes in the normal metal creating Cooper
pairs in the superconductor [28,29]. The presence of surface
states in unconventional superconductors is connected to reso-
nance peaks in the Andreev reflection probability, resulting in
conductance peaks below the superconducting gap [30–35].

Unfortunately, tunneling spectroscopy of subgap reso-
nances presents several experimental challenges, specially for
nanoscale devices [29]. When considering hybrid junctions
where the reservoirs and the intermediate scattering region
are built from different materials, as sketched in Fig. 1(a),
each interface between the intermediate region and the reser-
voirs may present a different transmission [36]. Additionally,
quantum-coherent transport across the junction results in the
emergence of Fabry-Pérot resonances [37,38]. In most of
materials these effects can mask the experimental detection of
novel phenomena associated to unconventional superconduc-
tivity [29]. However, recent experimental advances involving
graphene-based nanoscale devices provide new ways to cir-
cumvent these challenges.

Graphene is a two-dimensional Dirac semimetal with high
carrier mobility [39–41]. High-quality graphene nanoscale
transistors have been achieved [42] and fabrication of
graphene nanoribbons with well-defined edges is an exper-
imental possibility [43]. Early reports of graphene-based
Josephson junctions were assumed to work in the diffusive
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FIG. 1. Graphene N-G-S junction. (a) Schematic of the N-G-S
junction, including the energy profile. (b) IBS are formed at the
G-S junction and can be interpreted as standing waves located at
an intermediate graphene layer G’ of width d → 0 (left). Sequences
of Andreev specular and retro reflection processes involved in the
formation of IBS are sketched: (solid) dashed arrows represent group
velocities for (electron-) holelike quasiparticles. The right panel
shows the dispersion relation for the IBS when the superconductor
is conventional s-wave.

regime with low-transmitting interfaces [44]. Recent ex-
periments, however, have achieved good quality ballistic
graphene–superconductor contacts [45–47]. In particular, en-
capsulation in hexagonal boron nitride provides high-quality
transparent junctions that work in the ballistic regime [46,47].
Control over the independent doping of the graphene layer
has allowed to measure specular Andreev reflections [48]—an
unusual type of Andreev process that only manifests when
the doping is smaller than the applied voltage and the su-
perconducting gap [49]. Advances in experimental control of
graphene devices are leading to a series of remarkable works
reporting spectroscopy of Andreev bound states in Josephson
junctions [50], splitting of Cooper pairs [51], and possible
proximity-induced superconductivity in graphene, either by
growing graphene layers on superconductors [52] or by dop-
ing it with adatoms [53,54]. Graphene has been recently
grown on top of unconventional (nonchiral) d-wave super-
conductors, revealing an interesting induced p-wave pairing
state [27]. Additionally, a recent experiment reports evidence
of intrinsic unconventional superconductivity in graphene
superlattices [55]. More experimental and theoretical work
is required to fully understand the emergent unconventional
superconductivity in graphene and determine if it is chiral and
topological.

In this work, we analyze the transport properties of ballistic
junctions consisting of a finite graphene layer contacted by

a normal state and a superconducting macroscopic lead [cf.
Fig. 1(a)]. Within our model, we study the most representative
two-dimensional unconventional superconducting states that
can emerge in graphene’s lattice, including nodal d-wave and
chiral p- and d-wave states. Our combination of scattering
and microscopic Green’s function techniques allows us to go
beyond previous works in graphene-based superconducting
hybrids [49,56–65] by including many of the most rele-
vant experimental issues appearing at nanoscale graphene–
superconductor junctions. Namely, by considering a finite
size graphene layer we take into account the Fabry-Pérot
resonances (FPR) present in experiments. Additionally, we
describe imperfect coupling between the graphene layer and
the reservoirs—including the effect of graphene’s zigzag edge
states (ZZES)—and analyze the effect of doping the layer
close or away from the Dirac point. As a result, we present
differential conductance calculations with very rich subgap
features, where the unconventional surface Andreev bound
states (SABS) at the edge of the superconductor are mixed
with FPRs, graphene’s zigzag edge states, and interface bound
states (IBS) formed at the graphene–superconductor junction
[63], see Fig. 1(b). We analytically describe the contribution
of each process to the density of states (DOS) and differential
conductance. We thus analyze the optimal conditions to detect
signatures of unconventional superconductivity in graphene.

The rest of the paper is organized as follows. In Sec. II,
we introduce our model and derive the main formulas for
transport observables. We describe the spectral properties of
G-S and N-G-S junctions in Secs. III and IV, respectively.
Next, in Sec. V, we discuss the tunneling spectroscopy of
unconventional superconductors. We present our conclusions
in Sec. VI. The details of some of the calculations are given in
Appendixes A and B.

II. MODEL

Our system consists of a graphene sheet (G) of length d
and width W connected to reservoirs as sketched in Fig. 1(a).
We consider transport along the x direction and assume that
W � d , so that there is translational invariance along the
graphene-reservoir interfaces. The left and right semi-infinite
graphene contacts are in the normal (N) and superconducting
(S) states, respectively. Valley degeneracy allows to describe
the low-energy excitations of the coupled system by the
single-valley Dirac-Bogoliubov-de Gennes (DBdG) equations
Ȟψ = Eψ , with Ȟ the DBdG Hamiltonian

Ȟ =
(

(Ĥ± − εFσ̂0)ŝ0 �̂σ̂0

�̂†σ̂0 (εFσ̂0 − Ĥ±)ŝ0

)
, (1)

ψ = (φe
A, φe

B, φh
A, φh

B)T eik·r the quasiparticle wave function
in Nambu (particle-hole) and sublattice space (A and B
the two triangular lattices), E � 0 the excitation energy,
k = (k, q) the in-plane momentum vector and σ̂ν (ŝν), with
ν = 0, 1, 2, and 3, the Pauli matrices acting in lattice (spin)
space (see Appendix A and Refs. [22,49,60,66,67] for details).
The electrostatic potential of each region can be indepen-
dently fixed and we take εF = EFN, EF, and EFS for regions
N, G, and S, respectively. In the Hamiltonian (1), the pair
potential is proportional to the identity matrix in lattice space
σ̂0, and couples electrons and holes in the same sublattice from
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different valleys [22,49,60,61,66–69]. For each valley, we use
the Dirac Hamiltonian Ĥ± = −ivF∂xσ̂1 ± vFqσ̂2, with vF the
Fermi velocity and q the conserved component of the wave
vector parallel to the interfaces. Since the DBdG equations for
each valley contain the same dynamics and are related by time
reversal operation, we initially describe Ĥ+ only and later we
discuss the role of the other valley.

In the vicinity of the Dirac point for the weak-coupling
approximation, the superconducting order parameter depends
only on the momentum direction [22,60] and is only nonzero
in region S, i.e., �̂(θ, x) = �̂(θ )
(x), with 
(x) the Heavi-
side function, θ = sin−1(q/kFS) the angle in reciprocal space
and kFS the Fermi wave vector. We only consider spin-
degenerate unconventional superconductors which allows us
to decouple the spin degree of freedom in Eq. (1) [1,33,70].
Indeed, for spin-singlet states, we have �̂(θ ) = �(θ )eiφ (iŝ2),
with φ the global U(1) gauge phase. Analogously, for spin-
triplet superconductors we take �̂(θ ) = eiφd(θ ) · ŝ(iŝ2), with
the odd vector function d(θ ) = −d(π − θ ). As long as the
vector d is perpendicular (d ∝ ẑ) or parallel to the x-y
graphene plane, the spin degree of freedom can be decoupled
in Eq. (1).

Under these approximations, the resulting DBdG equations
read as(
vF kα · σ̂ − εF σ̂0 �(θα )eiφσ̂0

�∗(θα )e−iφσ̂0 εF σ̂0 − vF kα · σ̂

)(
φe

α

φh
α

)
=E

(
φe

α

φh
α

)
, (2)

with α = ± for right and left movers, respectively. We notice
here that, since the lattice is acting as a pseudospin degree of
freedom, the reduced Hamiltonian of Eq. (2) is also suitable
to describe induced pairing amplitudes with an structure in
lattice space [22,26,27,67,71], with the appropriate redefini-
tion of the pair potential. More details about Eq. (2) and its
solutions can be found in Appendix A.

To take into account the sign change of the triplet state
with the wave vector, we only consider kx � 0 and define
kα = (αkx, q). We thus set θ+ = θ and θ− = π − θ for right
and left movers, respectively. We adopt the following form for
the order parameter [35,72,73]

�(θ±) = �0[r1 cos(nθ±) + ir2 sin(nθ±)], (3)

with �0 � 0 the potential amplitude, and r1, r2 =
√

1 − r2
1

the relative weights of the real and imaginary parts of the
pair potential. The integer n = 0, 1, 2, . . . determines the
orbital symmetry of the pairing state, i.e., the values n = 0, 2
correspond s- and d-wave states, respectively, while n = 1
represents a p-wave state.

The retarded/advanced Green functions associated to the
Hamiltonian in Eq. (2) satisfy the nonhomogeneous DBdG
equation

[Ȟ − (E ± i0+)Ǐ]ǧr,a
q (x, x′) = δ(x − x′)Ǐ , (4)

where ǧr,a
q (x, x′) is the Fourier transform of the spatial Green

function on the coordinates parallel to the interfaces, Ǐ is the
four-dimensional identity matrix and Ȟ is given by Eq. (2) in
real space (h̄kx → −ih̄∂x). The unperturbed Green’s function
ǧr,a

q (x, x′) is obtained combining asymptotic solutions that
obey boundary conditions at the edges of a finite length
graphene sheet, following a generalization of the method

developed in Refs. [2,68,74–78] for unconventional supercon-
ductors and described in Appendix B).

Once the Green functions for the isolated finite graphene
layers have been obtained, the Green functions of the coupled
system Ǧ are calculated by means of an algebraic Dyson
equation of the form [68,79]

Ǧr,a
q,i j = ǧr,a

q,i j + ǧr,a
q,ik t̂kl Ǧ

r,a
q,l j , (5)

with short-hand notation ǧr,a
q,i j = ǧr,a(xi, x′

j, E , q). Since the
expression for Green functions with zigzag edges depends on
the order of spatial arguments [68,79], it is necessary to keep
an infinitesimal distance between spatial arguments in order to
define “local” Green functions. The hopping matrix t̂kl (k �= l)
couples two different regions and depends on the type of
edges between these [68]. For the zigzag boundary conditions
adopted in this work, opposite edges of the graphene layer
correspond to atoms from a different sublattice and the wave
functions have null A (B) components at the right (left) edges.
This leads to a specific form of the hopping matrix as defined
below.

Transport observables

The spectral density of states is calculated from the re-
tarded Green function as

A(x, E , q) = − 1

π
Im

{
TrǦr

ee(x, x, E , q)
}
, (6)

where the trace is taken over the electron-electron component
in Nambu space. The local density of states (DOS) is given by

ρ(x, E ) =
∫

dqA(x, E , q). (7)

The current for a setup with three regions L,C, R [like the
one sketched in Fig. 1(a) for regions G, G′, S] is obtained
following the Hamiltonian approach [79,80]. To do so, we
define the total Hamiltonian

Ĥ (τ ) = ĤL + ĤC + ĤR + ĤTL (τ ) + ĤTR (τ ), (8)

where ĤL,C,R are the unperturbed Hamiltonians for the left (L),
central (C) and right (R) regions, given by Eq. (1) evaluated
with the appropriate parameters described in the next sections
(e.g., � = 0 for L and C and so forth). Each region is also
described by an unperturbed Green function obtained from
Eq. (4). ĤTL,R (τ ) are the tunneling Hamiltonians between the
central and the exterior regions, namely,

ĤTL (τ ) =
∑

σ

∫
dqtLeiφL (τ )/2ĉ†

q,LBσ b̂q,LAσ + H.c., (9)

ĤTR (τ ) =
∑

σ

∫
dqtReiφR (τ )/2ĉ†

q,RAσ b̂q,RBσ + H.c., (10)

where tL(R) are the left and right hopping amplitudes,
φL(R)(τ ) = φ0 + 2(μL(R) − μC )τ/h̄ are the time-dependent
gauge phase induced by the difference of chemical potentials
at the interfaces, ĉq,ν jσ , with ν = L, R and j = A, B, are
annihilation operators for electrons at the edges of the L and
R regions with parallel momentum q and spin σ , and b̂q,ν jσ

are the analogous annihilation operators for the L and R edges
of the central region. We assume that the central region C is
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terminated by zigzag edges formed by atoms from sublattice
A (B) on the right (left) side. The average current through the
left interface is given by

I (τ ) = −e

〈
d

dτ
N̂L(τ )

〉

= ie

h̄

∑
σ

∫
dq{tL〈ĉ†

q,LBσ (τ )b̂q,LAσ (τ )〉

− t†
L〈b̂†

q,LAσ (τ )ĉq,LBσ (τ )〉}. (11)

This average can be expressed in terms of the Keldysh or
nonequilibrium Green functions defined as [79,80]

Ǧαβ
q,i j (τα, τ ′

β ) = −i〈T̂ [D̂q,i(τα )D̂†
q, j (τ

′
β )]〉, (12)

where superscripts α, β correspond to the temporal branches
of the Keldysh contour, T̂ is the Keldysh time-ordering oper-
ator and

D̂†
q,i(τ ) = (d̂†

q,iA↑(τ ), d̂†
q,iB↑(τ ), d̂q,iA↓(τ ), d̂q,iB↓(τ )),

i, j = L,C,C′, R label the edges and are defined accord-
ing to the relations d̂q,L jσ (τ ) = ĉq,L jσ (τ ), d̂q,C jσ (τ ) =
b̂q,L jσ (τ ), d̂q,C′ jσ (τ ) = b̂q,R jσ (τ ), d̂q,R jσ (τ ) = ĉq,R jσ (τ ).
Here, C and C′ correspond to the leftmost and rightmost edges
of the central region, respectively. Then, the average current
takes the form

I (τ ) = e

h̄

∫
dqTr(τ̌z[ťLǦ+−

q,CL(τ, τ ) − ť†
L Ǧ+−

q,LC (τ, τ )]),

where τ̌z is the z Pauli matrix in Nambu space and ťL(R) =
(tL(R)/2)τ̂z(σ̂x − iσ̂y) are the hopping matrices associated to
Eqs. (9) and (10). Since we are studying a stationary situation,
the Green functions would depend only on the difference of
temporal arguments. Then, by taking the Fourier transform of
Green functions to energy space, we have

I = e

h̄

∫
dq

dE

2π
Tr(τ̌z[ťLǦ+−

q,CL(E ) − ť†
L Ǧ+−

q,LC (E )]).

Using the properties of the nonequilibrium Green functions,
the last expression can be written in terms of local nonequi-
librium Green functions

I = e

h

∫
dqdETr(τ̌zť

†
L [ǧ+−

q,LLťLǦ−+
q,CC − ǧ−+

q,LLťLǦ+−
q,CC]), (13)

where ǧ+−
q,ii = 2π iρ̌q,i f̌i and ǧ−+

ii = −2π iρ̌q,i(τ̂0σ̂0 − f̌i ) are
the nonequilibrium Green functions for the uncoupled elec-
trodes evaluated at the edges, with ρ̌q,i = ∓ Im(ǧr(a)

q,ii )/π the

related local density of states matrix, and f̌i the Fermi-
Dirac distribution matrix of electrode i for an applied volt-
age Vi = (μi − μC )/e, defined as f̌i(E ,Vi ) = diag( f (E −
eVi )σ̂0, f (E + eVi )σ̂0) with f (E ) = [1 + exp (βE )]−1 and β

the inverse temperature (we have adopted the limit T → 0 and
for simplicity of notation the E dependence of the Green func-
tions has been omitted). The coupled nonequilibrium Green
functions can be written in terms of the retarded/advanced
Green functions by means of the following Dyson equation:

Ǧγ
q,CC = Ǧr

q,CCť†
L ǧγ

q,LťLǦa
q,CC + Ǧr

q,CC′ ťRǧγ
q,Rť†

RǦa
q,C′C, (14)

where γ = +−,−+ are Keldysh contour indexes. Finally,

I = 4π2e

h

∫
dqdETr{τ̌zť

†
L ρ̌q,L

× ([ f̌LťLǦr
q,CCť†

L ρ̌q,L − ťLǦr
q,CCť†

L ρ̌q,L f̌L]ťLǦa
q,CC

+ [ f̌LťLǦr
q,CC′ ťRρ̌q,R − ťLǦr

q,CC′ ťRρ̌q,R f̌R]ť†
RǦa

q,C′C )}.
The differential conductance at zero temperature reads [79]
(V = VL − VR)

σ (V ) = ∂I

∂V
= σA + σQ, (15)

where σA is the contribution of Andreev processes,

σA =
∫

dq
16e2

h
Tr

[
Re

{
ρ̄q,LeeĜr

q,CCehρ̄q,LhhĜa
q,CChe

}]
, (16)

with ρ̄q,Lμν the Nambu components of the matrix ρ̄q,L =
π ť†

L ρ̌q,LťL. The contribution due to quasiparticles is given by

σQ =
∫

dq
8e2

h
Tr

[
Re

{
ρ̄q,Lee

× (
Ĝr

q,CC′ee

[
ρ̄q,ReeĜa

q,C′Cee − ρ̄q,RehĜa
q,C′Che

]
− Ĝr

q,CC′eh

[
ρ̄q,RheĜa

q,C′Cee − ρ̄q,RhhĜa
q,C′Che

])}]
, (17)

where ρ̄q,Rμν are the Nambu components of ρ̄q,R = π ťRρ̌q,Rť†
R.

We use a highly doped semi-infinite graphene lead in order
to model the normal electrode. Conductances are normal-
ized to the normal-state graphene conductance. Equation (15)
provides a generalized formula to calculate the differential
conductance in graphene-superconductor hybrid structures.

III. SPECTRAL PROPERTIES OF
GRAPHENE-SUPERCONDUCTOR JUNCTIONS

The spectral properties of the full N-G-S system con-
tain information from many different sources: ZZES, FPR,
IBS, and SABS. We analyze the N-G-S setup numerically
in the next section. In some particular cases, however, we
can obtain simple analytical formulas for the contribution
from some of these states. In this section, we consider a
simpler setup where the left electrode is removed, resulting
in a graphene-superconductor (G-S) junction, where we have
taken the highly doped limit for the superconductor region,
see Fig. 1(b). The coupled Green function is given by Dyson’s
equation introduced in Eq. (5) (see Appendix B for more
details). The denominator of this perturbed Green function
encodes information about the different states present in the
junction. By finding its zeros, we obtain the dispersion relation
of the induced resonances in the junction. In this section, we
assume a perfect coupling between the graphene layer and the
superconductor to avoid the formation of ZZES at the G-S
interface. However, for finite graphene layers, there is another
ZZES at the opposite edge. Analyzing the Green function at
the G-S interface, we can minimize the impact of ZZES on the
spectrum and focus on the other resonances.

First, a N-S interface with an unconventional supercon-
ductor always manifests with the emergence of SABS with
a dispersion relation given by [81]

ESABS = ±|�(θ )| cos �ϕ/2, (18)
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FIG. 2. Order parameter and angle dependence of the phase
difference between pair potentials, given in Eq. (18), for the d-wave
and p-wave symmetries considered. See text for more details.

with �ϕ = ϕ+ − ϕ− the phase difference between the pair
potentials �(θ+) and �(θ−) defined in Eq. (3). Eq. (18)
takes different forms depending on the symmetry of the
pair potential, cf. Fig. 2. For symmetries s, dx2−y2 and py

(�ϕ = 0), we get E = ±|�(θ )|. For dxy and px symmetries,
we have �ϕ = π which corresponds to zero energy states
E = 0. Chiral symmetries feature an angle dependence as fol-
lows: chiral d-wave symmetry χd (�ϕ = 4θ ) results in E =
±|�(θ )| cos 2θ , and chiral p-wave χp (�ϕ = sgn(r1)2θ +
π ) gives E = ±|�(θ )| sin θ . However, the chirality feature
requires a full analysis of the numerator of the coupled
Green function [see the last expression in Appendix B].
The spectral density of states in Figs. 3(b) and 3(h) shows
the two topological co-propagating chiral modes associated
to the Chern number N = 2 for chiral d-wave symmetries,
while in Figs. 3(e) and 3(k) the unique chiral p-wave state
corresponding to N = 1 can be appreciated [23,24].

In addition to the SABS, the special properties of the
graphene layer lead to the emergence of IBS [63], describing
how the linear dispersion of graphene adapts to the presence of
the gapped superconducting density of states [see Fig. 1(b)].
Moreover, a finite graphene layer will feature ZZES and
discrete energy bands, labeled here FPR. A general expression
that describes IBS and FPR reads as

EG-S = ±
(

C cos (�ϕ/2) + i sin (�ϕ/2)√
C2 − 1

)
|�(θ )|,

(19)

with

C = 1 + e−iαe eiαh h+h−
e−iαe h+ + eiαh h−

, h± = e±2idke(h) − 1

e∓2iαe(h) e±2idke(h) + 1
.

Here, eiαe(h) is associated with the angle of incidence of quasi-
particles in the graphene region and is defined in Appendix B).
For s-wave Eq. (19) coincides with the results in Ref. [63]. For
this symmetry, the dispersion relation of the IBS tends to zero
at q → 0 and approaches asymptotically the superconducting
gap for large q as it is sketched in Fig. 1(b). The IBS are
localized at the G-S interface for EF � � (retroreflection
regime) but can decay over long distances inside the graphene
region when EF � �(specular reflection regime). We now
consider two specific cases where Eq. (19) can be simplified
to isolate the contribution from either IBS or FPR (both in the
presence of SABS).

A. Low-doped semi-infinite graphene layer:
interface bound states

By considering now a semi-infinite graphene layer coupled
to a superconductor, we can ignore the geometrical FPR
and ZZES and focus on the dispersion relation correspond-
ing to the SABS and IBS. By coupling transparently the
semi-infinite graphene Green function to the superconducting
electrode, we obtain a dispersion relation for the IBS that

(a) (b)

(d) (e)

(c) (g)

(f) (j)

(h) (i)

(k) (l)

FIG. 3. Spectral density of states of a semi-infinite graphene sheet coupled to a semi-infinite anisotropic superconductor evaluated at
the interface. EF = 0 in (a)–(f) and EF = 10� in (g)–(l). SABS (solid green lines) and IBS (dashed red lines) are depicted for the different
symmetries.
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corresponds to taking the limit d → ∞ in Eq. (19), where
h± → −1. In the heavily doped regime with EF � E ,�, the
dispersion relation is given by Eq. (18)—the IBSs only appear
for low doping levels comparable to the superconducting gap.

At the opposite limit, i.e., close to the Dirac point, EF = 0,
we find that Eq. (19) yields

EIBS ≈ ±ε|�(θ )|
√

(1 − η2)(ε2 + |�(θ )|2)

ε4 + |�(θ )|4 − 2ε2|�(θ )|2(2η2 − 1)
,

(20)

with ε = h̄vF q and η = sin (�ϕ/2).
We show the spectral density of states, Eq. (6), for a

semi-infinite graphene layer coupled to a superconductor in
Fig. 3. We evaluate Eq. (6) at the graphene-superconductor
interface and consider different pairing symmetries according
to Fig. 2. All results are evaluated for one of graphene’s
valleys and can show an asymmetry in the momentum h̄q.
This asymmetry is explained in detail in the next section. The
continuous band is shown in gray, with the subgap resonances
appearing in bright over the dark background of the super-
conducting gap. The resonances have been fitted using the
formulas derived in this section, solid green lines for SABS
[Eq. (18)] and dashed red lines for IBS [Eq. (20) for EF = 0
and Eq. (19) for EF �= 0, which reduces practically to Eq. (18)
in the heavily doped regime]. The close similarity between
red and green lines demonstrates how SABS and IBS are
connected in the semi-infinite layer. This setup corresponds
to an ideal case where induced pairing in graphene is mostly
given by the unconventional pair amplitude in the supercon-
ductor, without spurious effects from FPR or ZZES. Indeed,
for symmetries s, dx2−y2 , and py, the dispersion relation in
Eq. (20) reduces to E = ±ε|�(θ )|[ε2 + |�(θ )|2]−1/2 as can
be seen in Fig. 1(b) (for s-wave symmetry) and in the red
dashed plot of Figs. 3(a) and 3(f). For dxy and px symmetries,
Eq. (20) features a ZES, see Figs. 3(c) and 3(d). For chiral
symmetries, η = sgn(r1) sin (�ϕ/2) and |�(θ )| = �/

√
2 in

Eq. (20) [Figs. 3(b) and 3(e)].

B. Heavily doped finite graphene layer: Fabry-Pérot resonances

A finite graphene layer develops FPR and ZZES. By taking
the heavily doped limit, we get rid of the effect of both ZZES
and IBS, leaving only the interplay between the geometric
FPR and the proximity-induced SABS. The dispersion rela-
tion Eq. (19) takes the simple form

EFPR = ±|�(θ )| cos

(
(ke − kh)d − �ϕ

2

)
. (21)

where ke and kh are defined in Appendix B). Following
Ref. [81], we approximate ke − kh � 2E/h̄vF to obtain

E = h̄vF

2d

(
±2πn + �ϕ

2
+ cos−1 (±E/|�(θ )|)

)
. (22)

Note that the separation between energy levels decreases with
the length d of the stripe and, therefore, the number of levels
per unit of energy—and thus the number of conductance
peaks—increases with d . Eq. (21) can be interpreted as the
intersection points between a straight line with slope |�(θ )|−1

and a harmonic function with frequency 2d/h̄vF and phase

�ϕ/2. For pairing symmetries with a dependence on the angle
of incidence θ , as �ϕ continuously changes from 0 to π , the
harmonic function in Eq. (21) shifts from cos x to sin x and the
intersection points approach to E = 0. This induces a gradual
shifting of the crests to the center and finally the emergence
of a ZES state. As a result, there is a shifting of resonance
peaks in the differential conductance σ until the appearance
of a ZBCP (more details in Sec. V).

IV. DENSITY OF STATES OF THE N-G-S JUNCTION

We now focus on the N-G-S junction sketched in Fig. 1(a).
The intermediate region is a graphene layer with zigzag edges
along the y direction. When uncoupled from the reservoirs, the
isolated graphene layer features localized zigzag edge states
(ZZES) at E = −EF. The coupling to the leads, controlled
by the interface transparencies tL,R, splits the ZZES which
completely vanish at perfect transparency [58,63,68,82–84].
The ZZES have a resonant contribution to the density of
states, with magnitude much bigger than that of any other
resonances or Andreev states considered here. They thus play
an important role in the tunneling properties, as shown in the
next section. In what follows, we take tL = 0.1 and tR = 1.
A perfect coupling to the superconductor (tR = 1) guarantees
that at the interface there is no ZZES and only Andreev
reflections take place. By considering the coupling to the N
lead in the tunnel regime (tL = 0.1), we include an important
contribution from normal backscattering processes and from
the ZZES at that edge. We choose the width of the graphene
layer to be d = 2ξ , with ξ = h̄vF /� the superconducting
coherence length. This is enough for Andreev processes to
contribute to the conductance to the leftmost electrode, but
it also reduces the effect of the ZZES on the density of
states calculated close to the G-S interface. Additionally, the
reduced N-G tunneling increases the finite-size effects at the
intermediate region.

Under such conditions, we plot in Fig. 4 the spectral
density and DOS, calculated, respectively, from Eqs. (6) and
(7) close to the G-S interface (x → 0), for the d-wave sym-
metries. An equivalent plot for p-wave symmetries is shown
in Fig. 5. Before analyzing the effect of the different pairing
symmetries, we first comment on some common effects stem-
ming from the band structure of the finite graphene layer.

The asymmetry of the bands with respect to the wave vec-
tor is better explained in Fig. 6 using chiral p-wave symmetry.
The results in Figs. 4 and 5 are calculated for one of the
valleys. For the other valley, the pair potential is also given
by Eq. (3) but with the change q → −q. As a consequence,
the asymmetric FPR bands inside the Dirac cone are reflected
in the q axis for the other valley. The symmetry with respect to
the energy in the DOS is thus recovered when the contribution
from both valleys is considered together, see Fig. 6(c). The
change of valley does not affect the dispersion relation of
the IBS and SABS for chiral symmetries, and chirality is
preserved in the total contribution of the spectral density, as
it is shown in Fig. 6.

The finite size is manifested by the appearance of discrete
bands instead of a continuous spectrum like in Fig. 3. For
the undoped cases with EF = 0, e.g., Figs. 4(a)–4(d), a band
appears inside the gap at the Dirac point. A second band

144502-6



SUBGAP STATES IN TWO-DIMENSIONAL SPECTROSCOPY … PHYSICAL REVIEW B 99, 144502 (2019)

(a) (b) χd    d 2    2x -y

(d)    dxy
1.5−

1.0−

0.5−

0.0

0.5

1.0

1.5

E/
Δ

1.5−

1.0−

0.5−

0.0

0.5

1.0

E/
Δ

01− 01− q/kFSq/kFSρ 0 0

(f) χd(e)    d 2    2x -y

(g)    r = 0.41 (h)    dxy

01− 01− q/kFSq/kFS
0 01 1

0

Sp
ec

tra
l d

en
si

ty
 (a

rb
. u

ni
ts

)

0.1 0.1 0.1 0.1
0

Sp
ec

tra
l d

en
si

ty
 (a

rb
. u

ni
ts

)

ρ ρ ρ1 1

(c)    r = 0.41

FIG. 4. Spectral density and DOS of the graphene N-G-S junction at x = 0. Results for d-wave superconductors with different values of the
pairing phase. The Fermi energy of the graphene layer is EF = 0� in (a)–(d) and EF = 10� in (e)–(h). In all cases, EFN = EFS = 30�, tL =
0.1, tR = 1, and d = 2ξ .

can be perceived close to the gap edge, for the symmetries
with a full gap around q ∼ 0, like dx2−y2 in Fig. 4(a) and
px in Fig. 5(a). To better analyze the FPR, we consider a
heavily doped regime with EF = 10� in Figs. 4(e)–4(h) and
5(e)–5(h). The extra bands emerging from high doping appear
as wavy arc-shaped bands framed by the anisotropic super-
conducting gap and no ZZES band is present as predicted by
Eq. (21).

We now focus on the effect of an unconventional pairing in-
duced in graphene. For the dx2−y2 -wave symmetry, graphene’s
band structure is deformed according to the cos 2θ depen-
dence of the pairing amplitude, cf. Fig. 4(a). As a result, the
DOS features a V -shaped gapped profile, even in the presence
of FPR, see Fig. 4(e). Even after adding up all the momentum
channels in the DOS, we can still observe in the left panel of
Fig. 4(a) a small contribution from the layer’s second band
as a small peak below the gap edge. For dxy-wave symmetry,
where the gap edge now follows a sin 2θ dependence, there
is a clear zero-energy peak in the DOS coming from the
emergence of a flat band in the spectrum, see Figs. 4(d) and
4(h). The intermediate instance between these symmetries is
well represented by the chiral case with r1 = 0.4, Figs. 4(c)
and 4(g), where the flat band acquires a dispersion for the
chiral topological SABS at the same time that the gap edge is
deformed similarly to the dxy-wave case. The DOS captures
such a superposition of d-wave states displaying a smaller
effective gap region with increased DOS due to the presence
of the chiral states but still featuring the increased DOS in

the gap region and a minimum at zero energy. The FPR can
now mask this effect in the DOS, cf. Fig. 4(g), but the local
minimum at E = 0 remains. The situation where both dx2−y2

and dxy weight exactly the same in the pairing states is the
chiral d-wave (χd ) case, shown in Figs. 4(b) and 4(f). For this
chiral symmetry the effect of the topological chiral SABS is
better perceived: the DOS is finite but features a U -shaped gap
profile with sharp edges and the chiral SABS crossing the gap
is clearly visible in the spectral density.

For p-wave symmetries, we find analogous results with
some important differences. Similarly to the dxy-wave case,
px-wave symmetry features a zero-energy peak in the DOS
from a flat band, independently of the doping level, see
Figs. 5(a) and 5(e). Analogously, py-wave symmetry features
a V -shaped DOS comparable to that of dx2−y2 wave, as shown
in Figs. 5(d) and 5(h). It is important to notice that for py wave
there are two nodes instead of the resonances at E = ±�,
a characteristic feature of p-wave superconductors. In the
presence of disorder, dxy and px waves (and, correspondingly,
dx2−y2 and py waves) display different behavior and can be
thus distinguished better [34,35].

The chiral p-wave symmetry, χp, shows an interesting
difference with respect to the χd case. The topological χp

SABS have a linear dispersion which results in a convex
enhanced DOS below the gap. Interestingly, there is still a
minimum at E = 0, stemming from graphene’s band struc-
ture. Indeed, the convex enhanced DOS is suppressed around
|E | ∼ 0 in Figs. 5(b) and 5(c) for the undoped case. For the
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FIG. 5. Spectral density and DOS of the graphene N-G-S junction at x = 0. Results for different types of p-wave superconductors. The
Fermi energy of the graphene layer is EF = 0� in (a)–(d) and EF = 10� in (e)–(h). In all cases, EFN = EFS = 30�, tL = 0.1, tR = 1, and
d = 2ξ .

doped situation, the linear chiral SABS have two different
contributions. Outside graphene’s band, it mixes with the IBS
and features a linear dispersion responsible for the enhanced
DOS. Close to zero energy, however, the SABS contribution
to DOS mixes with that of FPR resonance that always crosses
zero at h̄q ∼ 0. As explained at the end of Sec. III B, the sign
change in �ϕ changes the harmonic function in Eq. (21)to
a sinelike one, resulting in the emergence of a zero energy
state. Additionally, the wavy FPR bands become small peaks
in the DOS for subgap energies, which also happens in the

(a) (b) (c)

FIG. 6. Valley dependence of the spectral density and DOS of
the graphene N-G-S junction at x = 0. All plots are calculated for
the chiral p-wave symmetry.

doped case. Comparing Figs. 4(e), 4(f) 4(g) and 5(e), 5(f)
5(g), we immediately observe that, for the same set of system
parameters, the d-wave symmetry cases, with the notable
exception of r1 = 0, feature an even number of FPR bands
while the number is odd for p-wave symmetry. Additionally,
one of the p-wave bands is always zero at h̄q ∼ 0 due to the
presence of nodal pairings at normal incidence like dxy-wave
and px-wave symmetries. All these signatures are the result
of the rich interplay between the induced symmetries and the
graphene’s IBS and FPR bands, but can still be understood
in the framework of the topological classification of pairing
symmetries in two dimensions [85–89].

V. DIFFERENTIAL CONDUCTANCE

We now analyze the differential conductance in the N-G-S
junction sketched in Fig. 1(a). To this end, we plot Eq. (15) in
Fig. 7 for d-wave (left column) and p-wave symmetries (right
column). Results for s wave are similar to those of dx2−y2 .

We start analyzing s- and d-wave symmetries. In Fig. 7(a),
we plot the conductance at EF = 0 for different values of
r1, see Fig. 1(c). In all cases, there is a strong zero-bias
conductance peak (ZBCP). When r1 �= 0, we also observe two
small peaks at the position of the effective superconducting
gap. The ZBCP in this setup is mostly due to the contribution
of graphene’s ZZES at the N-G interface, where tL = 0.1.
However, for the case with r1 = 0 where the superconductor
features a nodal, flat band, the ZBCP is greatly enhanced since
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FIG. 7. Differential conductance of the graphene N-G-S junction. [(a)–(c)] Conductance for d-wave superconductors with different values
of the pairing phase. The inset in (b) shows the dependence of the first resonance on r1 for different values of the Fermi energy of the graphene
stripe. [(d)–(f)] Similar results for p-wave superconductors. The Fermi energy of the graphene layer is taken at EF = 0 [(a) and (d)], EF = 0.4�

[(b) and (e)], and EF = 10� [(c) and (f)]. In all cases, EFN = EFS = 30�, tL = 0.1, tR = 1, and d = 2ξ .

now merges the SABS with the ZZES. This is a signature
of the gap closing and edge state for dxy-wave pairing. As r1

increases from zero, and the dxy-wave mixes with the dx2−y2 -
wave, a fraction of this zero-energy state splits giving rise to
the effective gap flatness related to the V -shaped DOS showed
in cf. Fig. 4(a). We show the evolution of the split conductance
peaks from finite r1 in the inset of Fig. 7(b).

By setting EF �= 0, as it is done in Figs. 7(b) and 7(c), the
ZZES moves away from zero voltage at eV = −EF . In these
doped cases, a ZBCP only appears for dxy-wave symmetry
(r1 = 0). As we increase the doping of the central graphene
region, the FPR become more pronounced, see Figs. 7(b)
and 7(c). The main reason is that the Andreev processes at
the G-S interface become retroreflections for EF > �, which
favors the formation of closed trajectories in the G region. The
geometric origin of the FPR is more clearly shown in Fig. 8,
where we plot the conductance with the same parameters as in
Fig. 7(c) but with L = ξ (top) and L = 3ξ (bottom). This is in
perfect concordance with Eq. (21) where the constant energy
step between Andreev levels is inversely proportional to d .

We now consider p-wave pairing symmetries. As in the
previous section, we only consider px-, py-, and chiral p-wave
symmetries. For the undoped graphene layer with EF = 0,
shown in Fig. 7(d), the conductance features a clear ZBCP. For
py-wave pairing, the ZBCP is mostly due to the ZZES and has
the smallest value because of the absence of any SABS band,

cf. Fig. 5(d). For the other symmetries, both the ZZES and the
SABS contribute to the ZBCP. The highest value of the peak
corresponds to px-wave state, where the SABS-IBS is a flat
nodal surface state, as it is shown in Fig. 5(a).

Setting EF �= 0 in Figs. 7(e) and 7(f), we clearly see that
the ZBCP survives for all symmetries except for the nodal py

wave. In the strongly doped case with EF = 10�, the ZBCP
coexists with the FPRs for the px- and chiral p-wave cases.
Comparing Figs. 7(c) and 7(f), calculated with L = 2ξ , it
is clear that the d-wave cases (with r1 �= 0) feature an even
number of peaks, while the px- and chiral p-wave cases have
the additional ZBCP. As was explained above, the number of
resonances is determined by the length of the graphene layer
as shown in Fig. 8.

It is interesting to note that the magnitude of the ZZES
peak at eV = −EF in relation to the ZBCP seems to follow
the opposite behavior for p- and d-wave cases, cf. Figs. 7(b)
and 7(e). The ZZES peak in Fig. 7(e) is rather small for the
nodal px- and chiral p-wave states, but has a quite pronounced
contribution in the py-wave case, whereas the ZBCP is high
for px and chiral p and disappear for py symmetry. In contrast,
strong ZZES and ZBCP peaks appear when nodal dxy-wave
symmetry becomes dominant but gradually faded when the
dx2−y2 -wave contribution begins to dominate. The magnitude
of the ZZES peak is completely determined by the ratio
between the real and imaginary parts of the pairing as defined
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FIG. 8. Differential conductance of the graphene N-G-S junction for different widths. (Left) Conductance for d-wave superconductors
with different values of the pairing phase. (Right) Similar results for p-wave superconductors. The graphene layer’s width is d = ξ (top) and
d = 3ξ (bottom). In all cases, EFN = EFS = 30�, EF = 10�, tL = 0.1, and tR = 1.

in Eq. (3). For r1 → 1 (px and dx2−y2 waves), the effective
gap peaks located at |�(r1, θ = 0)| move away from E = 0
and momentarily merge with the ZZES to finally reach their
maximum separation for r1 = 1.

The dependence of the effective gap with h̄q for the differ-
ent pairings is clearly observed in Figs. 4(a), 4(d) and 5(a),
5(d). The ZZES appears for values of h̄q that are close to
zero for dxy and py waves (r1 → 0) and far away from zero
for dx2−y2 and px waves (r1 → 1). After averaging over the
incident modes, the ZZES thus provides a stronger contribu-
tion around |h̄q| ∼ 0 for pairings with r1 → 0, resulting in the
strong peaks at eV = −EF in Figs. 7(b) and 7(e).

Finally, for the strongly doped case in Fig. 7(f), we clearly
observe some of the characteristic behaviors of p-wave su-
perconductors. Chiral p- and px-wave states feature a clear
ZBCP due to the ZES bands showed in Figs. 5(f) and 5(g).
The py-wave pairing displays a V -shape gap, with a finite
minimum even though the conductance is calculated in the
tunnel limit.

VI. CONCLUSION

Motivated by recent experimental advances in the im-
plementation of graphene–superconductor ballistic junctions
[46–48], we have theoretically studied the transport properties
of a ballistic, finite-size graphene layer contacted by a nor-
mal and a superconducting lead. We particularly considered
the emergence of unconventional superconductivity in the
graphene layer [27,55].

Using a microscopic description based on Green’s func-
tions techniques, we included in our model several experimen-
tally relevant issues like the Fabry-Pérot resonances originated
by the finite length of the graphene layer, the different trans-
mission of the graphene-reservoir interfaces, and the presence
of graphene’s edge states. We calculated the spectral density,

DOS and differential conductance of the graphene junction
in the presence of unconventional superconductivity with
different forms of d- or p-wave symmetry. We find that for en-
ergies below the effective gap, both the DOS and conductance
show a very intricate profile due to the presence of several
types of resonances. In addition to the Fabry-Pérot resonances
and graphene’s edge states, we identify the emergence of
Andreev surface states and interface bound states with differ-
ent dispersions. Our analytical results allows us to identify the
separate contribution from each state to the DOS and their
impact on the differential conductance. We thus determine
the optimal conditions for the detection of unconventional
superconductivity in graphene-based hybrid junctions.

In particular, we find that the presence of graphene’s zigzag
edge states for EF close to zero bias can mask the emergence
of a ZBCP if the superconducting pairing allows for one.
A finite doping is enough to separate and distinguish the
contributions from ZZES and SABS to the conductance. In
the presence of high doping compared to the superconducting
gap, the geometrical FPRs become stronger. However, the
subgap SABS from the induced unconventional pairing still
have clear signatures in the spectral density and the DOS.
The SABS are responsible for the effective gap region (|eV | <

|�(r1, q = 0)|) in the DOS, which presents a V -shape profile
for py and d-wave symmetries with r1 > 0, and a convex
shape for chiral p-wave cases. On the other hand, for dxy and
px, the ZES flat band of SABS induces a strong ZBCP.

The SABS resonances do not hide the ZBCP originating
from dxy-, px-, or chiral p-wave states, for lengths of the
graphene layer comparable to the superconducting coherence
length. Additionally, these pairings always display an odd
number of conductance resonances. Even in the presence of
high doping, the FPRs mix with the SABS but the zero energy
states are still present in the spectral density and result in
additional zero bias peaks in the conductance.
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Topological chiral SABS have distinctive signatures in the
spectral density and DOS. For chiral d-wave symmetries the
SABS present two co-propagating arc-shape chiral bands in
the spectral density, and an enhanced DOS in the effective
gap region. For chiral p-wave symmetries, the spectral density
exhibits a single chiral linear band for SABS, resulting in a
characteristic convex shape in the gap region of the DOS.
However, since chiral SABS propagate along the interfaces,
only their q = 0 contribution reflects in the conductance by
the effective gap peaks. Therefore low doping and a wide
central region are required to avoid the extra peaks of FRPs
and ZZES.

Our results provide a useful guide in future experiments
to study unconventional superconductivity in graphene, either
induced intrinsically by the symmetry of its hexagonal lattice
or by proximity effect with known superconductors.
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APPENDIX A: BOGULIUBOV-DE GENNES-DIRAC
HAMILTONIAN

We consider a semi-infinite graphene layer with a zigzag
edge along the y axis at xL = 0 and extending into the x > 0
half-plane. With this orientation the Brillouin zone has Dirac
points (valleys) at K± = (0,±K ). The conserved momentum
along the y direction is h̄q. The wave function for the sublat-
tice A(B) is then given by

�A(B)(r) = eiKy�+
A(B)(r) + e−iKy�−

A(B)(r),

where the functions �±
A(B)(r) are solutions of a 2D Dirac

equation

Ĥ± = p̂xσx ± qσy,

0 = (Ĥ± − (EF + E ))�±(r),

�±(r) = (�±
A (r) �±

B (r))T

= ( f ±
A (x) f ±

B (x))T eiqy.

Zigzag edges are formed by a line of atoms of only one of
graphene’s sublattices (A or B) and do not mix valleys. If we
adopt a Dirichlet boundary condition, we get

�A(B)(r) = eiKy�+
A(B)(xL, y) + e−iKy�−

A(B)(xL, y) = 0,

⇒ f ±
A(B)(xL ) = 0.

Then, we can consider the boundary problem separately
and use only one valley. The Dirac-Bogoliubov-de Gennes
(DBdG) Hamiltonian for a 2D graphene sheet adopts the form

HBDG =
(

Ȟ − εF Ǐ �̌(k)
�̌†(k) εF Ǐ − T ȞT −1

)
,

where we are considering the weak-coupling approximation
(k fixed on the Fermi surface) where the order parameter is
only angle dependent [60], i.e.,

�̌(k) = �̌(θ ),

and Ȟ is the single-particle Hamiltonian in sublattice and
valley spaces

Ȟ =
(

Ĥ+ 0
0 Ĥ−

)
.

Valley degeneracy allows us to consider only one of the
two valley sets. Then, by using that [Ȟ, T ] = 0, the 8 × 8
matrix decouples to a 4 × 4 matrix equation for zigzag edges,
namely,

HBDG =
(

Ĥ± − εFσ0 �(k)σ0

�†(k)σ0 εFσ0 − Ĥ±

)
. (A1)

We adopt for the pair potential the following anisotropic
symmetries:

�(θ±) = �1 cos(nθ±) + i�2 sin(nθ±),

n = 0 for s wave,

n = 1 for p wave,

n = 2 for d wave,

where the parameters �1 and �2 obey the relations

�i ≡ri�0,
√

r2
1 + r2

2 = 1,

with i = 1, 2, and their respective phases are defined by

ϕ± = −i ln

(
�(θ±)

|�(θ±)|
)

.

APPENDIX B: GREEN’S FUNCTION OF GRAPHENE
LAYER WITH ZIGZAG EDGES AND INDUCED
UNCONVENTIONAL SUPERCONDUCTIVITY

The solutions of the DBdG equations have the form

ψe
± = e±ikex(u0φ

±
e , v0e−iϕ±φ±

e )T ,

ψh
± = e±ikhx(v0φ

±
h , u0e−iϕ±φ±

h )T ,

with

φ+
e(h) = (1, eiαe(h) )T , φ−

e(h) = (1,−e−iαe(h) )T ,

eiαe(h) = h̄vF
ke(h) + iq

εF ± E
, � =

√
E2 − |�|2,

ke(h) = sgn (εF ± �)

√
(εF ± �)2

h̄2v2
F

− q2,

u0 =
√

1

2

(
1 + �

E

)
, v0 =

√
1

2

(
1 − �

E

)
.

The wave functions ψε
± propagate under a pair potential �,

while their conjugates, ψ̄ε
±, move under �∗. Therefore the

functions ψ̄ε
± can be constructed from the solutions ψε

± by
changing � by �∗ and multiplying by the conjugation matrix
σ̂z (see more details in Ref. [68]). For a semi-infinite system
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with one edge, the asymptotic solutions of the DBdG equa-
tions are a superposition of normal reflection and Andreev
reflections as follows:

ψe
< =ψe

− + reψ
e
+ + rhψ

h
−,

ψh
< =ψh

+ + r′
hψ

h
− + r′

eψ
e
+,

ψe
> =ψe

+,

ψh
> =ψh

−,

where re(h) are the reflection coefficients. As a boundary
condition we adopted a zigzag border of atoms of sublattice
B, so that the B component must be zero at x = 0. It then
follows that

re =e−2iαe

(
1 − �2

0

)
1 − �2

0e−i�ϕ
= r′

hei�ϕe−2iαh e−2iαe ,

rh =�0(e−i�ϕ − 1)

1 − �2
0e−i�ϕ

(eiαh e−iαe ) = r′
e,

�0 =v0

u0
.

From the asymptotic solutions that obey specific boundary
conditions at the left (<) and right (>) edges of a ribbon, we
construct the Green’s function as [2,68,74–78]

ǧq(x, x′) =
⎧⎨
⎩

∑
μ,ν

Čμνψ
μ
<(q, x)ψ̄νT

> (q, x′)γ̌ , x > x′

∑
μ,ν

Č′
μνψ

μ
>(q, x)ψ̄νT

< (q, x′)γ̌ , x < x′, (B1)

where μ, ν = e, h label electron- and holelike solutions of
the DBdG equations and we include γ̌ = τ̂0σ̂z, with τ̂0 the
identity matrix in Nambu space, to ensure covariance [68]. By
integrating Eq. (4) on the infinitesimal interval (x′ − ε, x′ +
ε), with ε � 1, we obtain the continuity relation

lim
ε→0

[ǧq(x′ + ε, x′) − ǧq(x′ − ε, x′)] = − i

h̄vF
τ̂zσ̂x, (B2)

with the Pauli matrix τ̂z acting in Nambu space. From
Eq. (B2), it is possible to determine the coefficients Č(′)

μν .
From the continuity relation, we deduce the matrix coeffi-

cients

Č(′)
eh(he) = 0,

Čee = Č′
ee = Čhh = Č′

hh = i

h̄vF

1

FH − AB
Y̌ ,

Y̌ =

⎛
⎜⎝

−B 0 H 0
0 −B 0 Feiϕ−eiϕ+

−F 0 A 0
0 −He−iϕ+e−iϕ− 0 A

⎞
⎟⎠,

A = �2
0 (eiαh + e−iαh ) − (eiαe + e−iαe ),

B = (e−iαh + eiαh ) − �2
0 (eiαe + e−iαe ),

H = �0[e−iϕ− (e−iαh − e−iαe )

+ e−iϕ+ (eiαh − eiαe )]eiϕ−eiϕ+ ,

F = �0[e−iϕ+ (e−iαh − e−iαe )

+ e−iϕ− (eiαh − eiαe )].

Thus the Green function for x < x′ is given by the expression

ǧR(x, x′) = Čee[ψe
−(x)ψ̄eT

+ (x′) + reψ
e
+(x)ψ̄eT

+ (x′)

+ rhψ
h
−(x)ψ̄eT

+ (x′) + ψh
+(x)ψ̄hT

− (x′)

+ r′
hψ

h
−(x)ψ̄hT

− (x′) + r′
eψ

e
+(x)ψ̄hT

− (x′)],

where the q dependence has been omitted. A similar expres-
sion is obtained for x > x′ by exchanging the signs of the
subindexes and changing e, h → h, e in the superindexes. For
the particular case with (x, x′) = (0+, 0), the Green function
is given by

ǧR = i

h̄vF

⎛
⎜⎜⎝

�31H−B�11
FH−AB 0 �33H−B�13

FH−AB 0
−1 0 0 0

A�31−F�11
FH−AB 0 A�33−F�13

FH−AB 0
0 0 1 0

⎞
⎟⎟⎠, (B3)

with

�11 = 1 + �2
0 + 2�0rh + re

(
�2

0e2iαh e2iαe e−i�ϕ + 1
)
,

�31 = �0(e−iϕ− + e−iϕ+ ) + rh(e−iϕ− + �2
0e−iϕ+ )

+ �0e−iϕ+re
(
e2iαh e2iαe + 1

)
,

�13 = �0(eiϕ− + eiϕ+ ) + rh(eiϕ+ + �2
0eiϕ− )

+ �0eiϕ−re(e2iαh e2iαe + 1),

�33 = 1 + �2
0 + 2�0rh + re

(
e2iαh e2iαe + �2

0e−i�ϕ
)
.

Following the same procedure, the Green function of a
normal graphene stripe of length d is given by

ǧ0(x, x′ > x) = −i

h̄vF

(
ĝe 0
0 ĝh

)
,

with

ĝe(h) = e±i(x′−x)ke(h)

De(h)

(
IK ∓se±iαIL

∓se∓iαJK JL

)
e(h)

,

De(h) = (e−iαe(h) + eiαe(h) )(1 + e∓2iαe(h) e±2idke(h) ),

Ie(h) = 1 + e∓2iαe(h) e±2idke(h) e±2ixke(h) ,

Je(h) = 1 − e±2idke(h) e±2ixke(h) ,

Ke(h) = 1 − e∓2ix′ke(h) ,

Le(h) = 1 + e∓2iαe(h) e∓2ix′ke(h) ,

and s = 1. For x > x′, the Green function is obtained from
the transpose of the last expression by interchanging the
coordinates (x ↔ x′) and setting s = −1. For a semi-infinite
graphene sheet, we have De(h) = e−iαe(h) + eiαe(h) and Fe(h) =
Je(h) = 1. Since Green functions for graphene with zigzag
edges depend on the order of the spatial arguments, the fol-
lowing convention was adopted for Dyson’s equation [Eq. (5)]
that couples two regions with edges at x = 0, namely,

Ǧi j (x, x′) = ǧi j (x, x′) + ǧiR(x, 0−)ť†ǦL j (−0+, x′)

= ǧi j (x, x′) + ǧiR(x,−0−)ť ǦR j (0
+, x′),

with ť = (t/2)τ̂z(σ̂x − iσ̂y) and where 0± are positive in-
finitesimal real numbers satisfying 0− < 0+. For example, for
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ǦLL, we obtain

ǦLL = ǧLL(Ǐ + ť M̌RRǧRRť†ǧLL ),

M̌RR = [Ǐ − ǧRRť†ǧLLť]−1.

For the model of a highly doped graphene superconductor
electrode (eiαe(h) = 1) coupled with t = 1 to a graphene film
of length d , the last Green function has the following denom-
inator:

D = (
1 − e−i�ϕ�2

0

)2
X, (B4)

with

X = 1 + �2
0 + ei�ϕ/2

�2
0 − ei�ϕ/2

(e−iαe h+ + eiαh h−)

+ e−iαe eiαh h+h−.

The first factor contains the SABS dispersion relation in
Eq. (18), namely,

1 − e−i�ϕ�2
0 = (

E2 − E2
SABS

)
/�,

� = 1
2 ei�ϕ/2(E + �)[� cos (�ϕ/2) − iE sin (�ϕ/2)],

where � is responsible for some effects of superconducting
phase chirality in the SABS. The factor X encodes the IBS
and FPR dispersion relations [Eq. (19)],

X = (
E2 − E2

IBS−FPR

)
/�X ,

�X = E (� − 1) − (1 + �)�

(e−iαe h+ + eiαh h−)(1 − Z2)

×E [C(�− 1) + (1 + �)] − �[(1 − �) − C(1 + �)]

(C(� − 1) + (1 + �))2 ,

with � = e−i�ϕ . Here �X also includes some effects of valley
and superconducting phase chirality.
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