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Broken symmetry states of metallacrowns: Distribution of spins and the g tensor
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In this work we focus on the magnetic properties of metallacrown complexes as computed by various density
functional methods. Using the broken symmetry approach, we determine the exchange-coupling constants
and the g tensors and compare them with experimentally determined ones from the temperature-dependent
magnetic susceptibilities and by the electronic spin resonance, respectively. Generalization of the Noodleman-
Dai-Whangbo approach for systems with multiple magnetic centers that we introduce here allows to make
quantitative statements about the nature of these electronic states in density functional theory.
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I. INTRODUCTION

Partially filled electronic states give raise to magnetic
moments, exchange interactions, and magnetism. In addition,
relativistic effects modify the picture, give rise to the g tensor,
and are related to the onset of magnetocrystalline anisotropy
in molecular systems. Depending on the character of the ex-
change interaction, the magnetic coupling can be either ferro-
magnetic (FM) or antiferromagnetic (AFM). In the first case, a
parallel spin orientation is favored, leading to a high-spin elec-
tron configuration [1]. However, in many systems, especially
in molecular magnets [2,3], the AFM coupling dominates [4].
It originates from a variety of superexchange mechanisms
that favor open-shell low-spin electron configurations [5–7].
It is not possible to describe such electronic states within the
conventional density functional theory (DFT) because, for a
given number of spin-up and -down electrons, the theory only
targets states of the highest possible multiplicity.

Different ab initio approaches can be used [8]. In our
previous work [9], we applied the complete active space
(CAS) quantum chemistry method to study magnetism in two
prominent metallacrown (MC) molecules [10]. We demon-
strated that the full set of electronic states responsible for
magnetism can be computed and mapped onto the isotropic
exchange Heisenberg-Dirac-Van Vleck Hamiltonian leading
to the determination of the exchange-coupling constants (Ji j).
While correctly predicting the sign of magnetic interactions
and the multiplicity of the ground state, we found that com-
puted numerical values deviated from the experimental ones.
We furthermore showed that the agreement with experiment
can be improved by taking the dynamical electron correlations
into account. This can be done, for instance, by using the so-
called N-electron valence state perturbation theory on top of
the CAS electronic state. Similar conclusions were obtained
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for the cluster representation of periodic systems [11]. For
smaller systems, it is possible to use multireference methods
such as the multireference coupled-cluster (MR-CC) approach
[12]. However, with increasing system size, it soon becomes
impractical.

Therefore, in this work, we address the same systems
using a combination of the density functional theory and the
so-called broken symmetry approach to study their magnetic
properties. This approach has a long (preceding the discovery
of density functional theory) and fruitful history as it allows
to describe with minimal cost a range of phenomena using
the Slater determinant as an ansatz for the many-body wave
function. One can classify the Slater determinants as restricted
preserving S2 and Sz spin symmetry, unrestricted that break
the S2 symmetry, generalized (S2 and Sz are not good quantum
numbers), and such that do not preserve the particle number
as in the Bardeen-Cooper-Schrieffer theory. Focusing on the
unrestricted level and molecular spin systems, there are three
approaches to deal with the broken symmetry (BS) states that
lead to meaningful properties. First, we briefly summarize
them regarding the Hartree-Fock and Kohn-Sham theories
on equal footing. We are well aware of some conceptual
differences between these two theories. Here, we emphasize
their single-determinant nature.

The first possibility is the projection technique proposed
by Löwdin [13] and refined by many authors [14]. A funda-
mental insight into the nature of an unrestricted Hartree-Fock
(UHF) state is provided by the Thouless theorem [15], stating
that it can be obtained by a unitary transformation of the
associated restricted Hartree-Fock state. This state can be
further purified to yield the desired spin symmetry by applying
a spin-projection operator (singlet projection operators are
commonly used).

The second possibility is to use the broken symmetry state
without a projection, but properly account for the expectation
values of the spin-squared operator 〈Ŝ2〉 for the determination
of Ji j . This approach was originated by Noodleman and
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Davidson [16]. They considered a system with two magnetic
centers and have shown that J can be computed provided
the overlap between the half-filled orbitals is known. For
vanishing overlap (as in the restricted open-shell solution or
if spatial degrees of freedom are not taken into account), the
theory was extended toward a general number of electrons
forming the spin state and was put on solid theoretical ground
by Dai and Whangbo [17]. Dai and Whangbo give a formula
for 〈Ŝ2〉 in terms of the number of unpaired electrons on the
two sites (m and n, respectively). In particular, they obtain that

〈Ŝ2〉 = 1
4 (m − n)2 + 1

2 (m + n). (1)

Knowing the expansion of BS states in terms of the Ŝ2

eigenstates, formulas for energies can be given as well, which
allows for the determination of J . Somewhat in contrast to
this methodology is the approach of Ruiz et al. [18] (here,
in contrast to the earlier works, the applicability of the BS
approach was considered and a convenient expression for the
overlap in terms of the onsite spin densities was derived),
where a suggestion to use the states from BS DFT without a
projection was put forward. The work of Perdew et al. [19] is
used as a justification: the spin density from DFT is not a well-
defined property and the Kohn-Sham determinant need not be
an eigenfunction of the total spin squared Ŝ2 [20]. Instead, it
has been suggested that the on-top electron pair density is the
relevant physical observable. Numerous applications of the
Ruiz method (He-bridged H benchmark systems, polynuclear
transition metal complexes [21], or the Fe19 complex [22])
have in common a postulate that for the determination of n
distinct exchange constants Ji j only n + 1 energies (typically
a high-spin and n BS solutions) are required. This approach
is not unique: Kortus et al. [23] have used a redundant set
of determining equations (13 states) and the least-squares
fitting to find 6 exchange interaction constants in the V15

spin system. Bellini and Affronte used a slight variation that
involved averaging in order to study Cr8 and Cr7M rings [24]
and their dimers [25]. Chiesa et al. [26,27] studied similar ring
systems, by mapping onto an extended Hubbard model in the
basis of Foster-Boys orbitals, the so-called DFT + many-body
approach.

Because the fitting was on the Ising model level, the need
of assigning a meaningful physical state to each broken sym-
metry solution was eliminated, however, without solving the
conceptual problem. A further attempt that stirred hot debates
was a suggestion of Ruiz et al. [28] that spin projection
must only be used in conjunction with the self-interaction
correction of the approximate density functional. In contrast
and according to Adamo et al. [29], the self-interaction error
is inherent to all exchange-correlation potentials irrespective
of the approach used to include the spin symmetry.

The third possibility, which lies within the realm of DFT,
is to extend the variational search to include states with
fractional occupations [30]. Practical implementations are
known as spin-restricted open-shell KS (ROKS) [31] and
spin-restricted ensemble-referenced KS (REKS) [32] meth-
ods. They can be regarded as generalizations of the CASSCF
approach to the Kohn-Sham scheme (by no means unique
[33], see also recent developments on pair density func-
tional theory [34,35]), however, due to a difference in the

treatment of dynamical correlations, the two approaches are
not equivalent even if the exchange-correlation functional is
restricted to the exchange-only case [36]. However, despite a
solid foundation, Illas et al. [37] compared unrestricted and
spin-restricted ensemble referenced methods and found that
the results do not follow a systematic trend [in contrast to
complete-active-space self-consistent-field (CASSCF) which
is known to underestimate J , but behaves predictably]. This
was attributed to the insufficiency of the contemporary density
functionals: “DFT can provide seemingly accurate numerical
results but for the wrong physical reasons” [37].

Under these circumstances, is everything so hopeless with
DFT in description of magnetic properties as described in
the work of Illas et al. [37]? Noodleman’s prescription has
been tested for many systems at the DFT level. While it
does contain some arbitrariness related to the unknown over-
lap, the results are encouraging [17]. In other studies, the
Noodleman-Dai-Whangbo approach has been compared with
experimental data, or with other theories. However, they do
not address the concerns of Illas et al. that the discrepancies
are due to erratic behavior of the density functionals.

In this work we describe an approach that can conclusively
address these doubts, and upon the application to two MC
molecules, we rigorously establish that DFT results for the
exchange coupling constants are generally consistent. Aside
from this basic magnetic property, we also focus on the
experimentally relevant relativistic parameter such as the g
tensor. This property has been scarcely discussed in relation to
the broken symmetry states. Therefore, we develop a general
formalism for the determination of g from the combination
of BS solutions and numerically demonstrate that results are
likewise consistent. Measurements for the two systems have
been performed at Heidelberg University and reported by Park
[38] and in Ref. [39].

Systems with more than two magnetic centers are generally
perceived as very complex [40–42]. However, exactly due to
this fact a multitude of BS states (exceeding the number of
anticipated exchange constants such as shown in Fig. 1) can
be obtained. This redundancy, which is not available for two
magnetic centers, allows us to test the internal consistency of
the broken symmetry Kohn-Sham theories without resorting
to the Ising model as was done by Kortus et al. [23].

We organize our work in the following way: In Sec. II A
general information about the coupling of spin or angular mo-
ments is presented. Note that this operation is nonassociative
and therefore depends on the order in which the momenta
are added. This mathematical intricacy never comes into play
in systems with two magnetic centers, as mentioned above.
However, it is essential for the present discussion. This gen-
eral theory needs to be specialized for the two exemplary sys-
tems that we study (Secs. II B and II C). We apply our method
to two representative MC molecules: CuII(DMF)2 Cl2[12–
MCFeIIIN(Shi) 4](DMF)4 and (HNEt3)2CuII[12–MCCuIIN(Shi) 4]
metallacrowns ({CuFe4} and {CuCu4} for brevity; in the full
metallacrown notation, as introduced by Pecoraro, 12 refers
to the total number of segments in the cyclic host, and 4 is
the number of involved oxygen atoms [4,43]). Therefore, we
discuss the exchange coupling of 5 spins (AB4) and generalize
results of Dai and Whangbo for exactly this scenario (see
Fig. 1 for the visualization of spin density of the {CuFe4}
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FIG. 1. Spin density of the CuFe4 heterometallic molecule for
the states presented in Table II (positive values: yellow, negative val-
ues: blue). Spin localization on the oxygen (A-O-B) and the oxamate
(A-O-N-B) bridges connecting the central and the peripheral TM
ions is a marked feature of the superexchange coupling mechanism
[6]. In the first case, the spin-polarized density can be readily seen on
the O atom, whereas in the second case, O and N atoms have different
polarizations. Spin density localized on TM ions can be understood
considering their electronic configurations: d9 for CuII and d5 for
FeIII. The hole on CuII is primarily located on the dx2−y2 orbital;
therefore, the four lobes are pointing toward FeIII ions as observed
in our previous study [9]. At variance, spin density on the peripheral
FeIII ions is formed by all five d orbitals. It has a distorted spherical
shape reflecting the local approximate octahedral symmetry.

system). For the given molecules, the relativistic energy-level
splitting is smaller than that due to spin-exchange interactions.
This allows us to consider the Zeeman splitting on top. In
Sec. II D we develop a theory of the g tensor for broken sym-
metry states. This rests on the ideas known from the treatment

of pure spin systems by Bencini and Gatteschi [44,45], and on
the investigation of a spin dimer by Slep et al. [46]. Finally,
in Sec. II E we go into the details of our ab initio approach.
We present comparative results for a variety of exchange-
correlation functionals that are representatives of different
families: generalized gradient approximation (GGA), hybrid
(with admixture of Hartree-Fock exchange), and meta-GGA
in Sec. III. A general overview of these functionals and of
the relativistic options for the state optimizations and for
the calculation of spin-orbit coupling, which is a particularly
important ingredient of the g-tensor calculations, can be found
in the Supplemental Material [47].

II. THEORY

This section deals with three aspects of our method: the
formal approach to spin or angular momentum coupling,
the determination of the g tensor for systems in the strong
exchange-coupling limit on the basis of BS calculations, and
the ab initio approach.

A. Coupling of spins

In the work of Dai and Whangbo [48], a two-center system
(AB) with m unpaired electrons at site A and n unpaired
electrons at site B was considered. It contains in total (n + 1)
(m + 1) spin states. Assuming without losing generality that
m > n, we can obtain these states by the application of n
spin-flip operators acting on the electronic states on site
B. Already at this point it is evident that these electronic
states must be localized on the respective sites, a property
that can not be guaranteed in general. The antisymmetrized
products of these single-particle states form the many-body
Slater determinants. They are not the eigenfunctions of the
Heisenberg spin Hamiltonian and they do not possess a
well-defined total spin. The authors derive this conclusion
from the expansion of the direct product of two spin states
with total spins sA and sB and their z components mA and
mB, respectively:

|sAmA〉|sBmB〉 =
sA+sB∑

s=|sA−sB|
(−1)−sA+sB−m

√
2s + 1

×
(

sA sB s
mA mB −m

)
|sm〉. (2)

Here, the round brackets stand for the Wigner 3 j symbols.
Due to their orthogonality, Eq. (2) can also be inverted,
yielding the expansion of the composite state of the AB system
in terms of its constituents.

While this equation perfectly suits its purpose of deriving
the energy and other observables for the broken symmetry
state, it misses one important ingredient that does not even
come into play for two magnetic centers. In writing |sm〉,
information about the spin moments of participating states,
i.e., sA and sB is not manifestly indicated. A completely
equivalent expression to Eq. (2) would be

|sAmA〉|sBmB〉 =
sA+sB∑

s=|sA−sB|
Csm

sAmA sBmB
|sAsBsm〉, (3)
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where the projection of angular momentum fulfills
m = mA + mB. Here, we used the Clebsch-Gordan coefficient
and took the missing indices into account. Upon exchange
of two particles, the Clebsch-Gordan coefficient changes the
sign:

Clm
l1m1 l2m2

= (−1)l1+l2−lClm
l2m2 l1m1

. (4)

We will return to this important fact later.

In order to understand why is it important to keep the
information about intermediate states, let us turn to a more
general situation where three angular momenta are sequen-
tially added: the result of such addition depends on the order
in which states are coupled and what are the intermediate
states of the composite system. The transformation between
different representations is performed by the 6 j symbols:

〈l1l2(l12)l3lm|l1l3(l13)l2l ′m′〉 = δll ′δmm′ (−1)l1+l2+l3+l
√

(2l12 + 1)(2l13 + 1)

{
l1 l2 l12

l3 l l13

}
. (5)

Mathematically, this means that for the case of representations of a finite group, the character table, together with its 6 j symbols,
uniquely determines the group up to isomorphism, while the character table alone does not. In the case of four particles, 9 j
symbols can be used and so on.

Let us formulate general notations for the addition of n spins {s1, s2, . . . , sn}. The order in which Eq. (2) is applied matters
and can be indicated as follows:

|sama, {sA}〉|sbmb, {sB}〉 =
sa+sb∑

s0=|sa−sb|
(−1)−sa+sb−m0

√
2s0 + 1

(
sa sb s0

ma mb −m0

)
|s0m0, {sa, sA, sb, sB}〉. (6)

It is convenient to choose the set of spins {sA} to be empty
(i. e., we are adding momenta one by one), therefore, the
final state can be indicated without the use of parathesis
|s0m0, {s1, s2, . . . , sn}〉, where we renumber {s1, s2, . . . , sn} =
{sa, sA, sb, sB}. The state in Eq. (6) results from the following
sequence of additions:

sn−2 = sn−1 + sn, sn−4 = sn−3 + sn−2, . . . s0 = s1 + s2.

Addition of spins can be conveniently performed using a
computer algebra system such as MATHEMATICA.

An important aspect in the application to AB4 spin sys-
tems is the fact that the order of additions has to match the
energy solutions. In the square-symmetric geometry, which is
assumed throughout the text, with the isotropic exchange (ex)
the Heisenberg-Dirac-Van Vleck Hamiltonian [3] is given by

Ĥex = −2J1

∑
i

ŝA · ŝBi − 2J2

∑
〈i j〉

ŝBi · ŝBj , (7)

where 〈i j〉 denotes a collection of nearest neighbors. ŝA and ŝBi

are effective spin operators representing possibly composite
spins on the centers A and Bi, respectively. The eigenenergies
can be expressed in terms of the total spin Ŝ = ŝA + ŜB, and
three additional quantum numbers: Ŝ13 = ŝB1 + ŝB3 , Ŝ24 =
ŝB2 + ŝB4 , and the total spin of the ring atoms ŜB = Ŝ13 + Ŝ24.
The eigenstates are |S13, S24, SB, S, MS〉 and the corresponding
energy is

E (|S13S24SBSMS〉)

= −J2[SB(SB + 1) − S13(S13 + 1) − S24(S24 + 1)]

− J1[S(S + 1) − sA(sA + 1) − SB(SB + 1)], (8)

where Sk (Sk + 1) is the expectation value of Ŝ2
k , and MS is the

total spin projection. The system is degenerate with respect
to this quantum number, therefore, it will be skipped in the
designation of states. The dimension of the Hilbert space is
(2sA + 1)(2sB + 1)4.

From the solution (8), it is sensible that addition of spins
with the goal of determining the BS states decomposition is
performed in the following order:

Ŝ13 = ŝB1 + ŝB3 , Ŝ24 = ŝB2 + ŝB4 , ŜB = Ŝ13 + Ŝ24,

Ŝ = ŝA + ŜB. (9)

The reason is purely technical: it ensures that intermediate
states are the eigenstates of the Hamiltonian (7) restricted
to subsystems, allowing to easily determine energies of the
BS states. For less symmetric systems, or for more spins the
analytic solution may not be available. How is the addition of
spins performed in this case?

The algorithm is still straightforward: the additions are
performed in an arbitrary order keeping track of the interme-
diate configurations as indicated above (6). On the last step, a
projection onto states with well-defined 〈Ŝ2〉 is performed.

For a general spin Hamiltonian Ĥex = −∑
a,b Jabŝa · ŝb,

the energy expectation values are computed by considering
the matrix elements

2〈BS|ŝa · ŝb|BS〉 = 〈BS|(ŝa + ŝb)2|BS〉 − 〈
ŝ2

a

〉 − 〈
ŝ2

b

〉
, (10)

where the broken symmetry state is obtained by the applica-
tion of the spin-flip operators

ŝ±|s, m〉 =
√

s(s + 1) − m(m ± 1)|s, m ± 1〉 (11)

on the high-spin state as follows:

|BS〉 =
∏

k∈{F }
ŝ−

k |HS〉. (12)

Here, {F } is a set of centers where the spin flip is performed.
For obvious reasons, it is of advantage to perform the addition
of interacting spins first. In general, the calculation can soon
become tedious because each term of the Hamiltonian needs
to be treated separately, and such a treatment can involve the
addition of a large number of spins.
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TABLE I. Excited states of the CuCu4 system from the broken symmetry approach. Numerical data from the PBE0 DFT BS calculations.
In the fourth column, a constant −10466.0 Hr is subtracted, the values in the fourth column are with respect to the BS4 state. The least-squares
fit yields J1 = −42.697 meV and J2 = −13.856 meV with the root-mean-square error δRMSE = 0.430 meV.

State 〈Ŝ2〉 〈Ĥex〉 E (Hr) E (meV) Efit (meV) Spin configuration |S13, S24, SB, S〉

HS =
⎡
⎣↑ ↑

↑
↑ ↑

⎤
⎦ 35

4 −2(J1 + J2) −0.811967669 113.643 113.358 |1, 1, 2, 5
2 〉

BS1 =
⎡
⎣↑ ↑

↓
↑ ↑

⎤
⎦ 19

4 2(J1 − J2 ) −0.818264945 −57.715 −57.430 1√
5
|1, 1, 2, 5

2 〉
+ 2√

5
|1, 1, 2, 3

2 〉

BS2 =
⎡
⎣↓ ↑

↑
↑ ↑

⎤
⎦ 19

4 −J1 −0.814580762 42.537 42.970 1√
5
|1, 1, 2, 5

2 〉
− 1√

2
|0, 1, 1, 3

2 〉 − 1
2 |1, 1, 1, 3

2 〉 − 1
2
√

5
|1, 1, 2, 3

2 〉

BS3 =
⎡
⎣↓ ↑

↓
↑ ↑

⎤
⎦ 11

4 2J1 −0.817677088 −41.718 −42.424 1√
10

|1, 1, 2, 5
2 〉

+ 1
2

√
3
5 |1, 1, 2, 3

2 〉 − 1
2
√

3
|1, 1, 1, 3

2 〉 − 1√
6
|0, 1, 1, 3

2 〉
− 1√

6
|1, 1, 1, 1

2 〉 − 1√
3
|0, 1, 1, 1

2 〉

BS4 =
⎡
⎣↓ ↓

↑
↑ ↑

⎤
⎦ 11

4 0 −0.816143969 0.000 0.273 1√
10

|1, 1, 2, 5
2 〉

− 1√
6
|0, 1, 1, 3

2 〉 − 1√
6
|1, 0, 1, 3

2 〉 − 1√
15

|1, 1, 2, 3
2 〉

+ 1
2
√

3
|1, 0, 1, 1

2 〉 − 1
2
√

3
|1, 1, 0, 1

2 〉
+ 1

2
√

3
|0, 1, 1, 1

2 〉 + 1
2 |0, 0, 0, 1

2 〉

BS5 =
⎡
⎣↓ ↑

↑
↑ ↓

⎤
⎦ 11

4 2J2
1√
10

|1, 1, 2, 5
2 〉

+ 1√
3
|1, 1, 1, 3

2 〉 − 1√
15

|1, 1, 2, 3
2 〉

− 1√
6
|1, 1, 1, 1

2 〉 + 1√
3
|1, 1, 0, 1

2 〉

B. Illustration I: {CuCu4} system

Here we have sA = sBi = 1
2 . Five distinct states (BSi,

i = 1, 5) can be obtained by the application of the spin-flip
operators (11) onto the high-spin (HS) state (S = 5

2 , it is
favored by the ferromagnetic coupling constants, J1 > 0 and
J2 > 0) as listed in Table I. However, one of them was not
possible to converge, therefore, only HS and BS1,..., BS4 are
included in the analysis (their energies are in the fifth column
of the table, and they are depicted as the first column of
Fig. 2). Let us compare three different interpretations of the
DFT results. The first possibility is to assume that density
functional theory yields physically wrong states without a
well defined Ŝ2 (the exact composition is presented in the last
column of the table, a fitting using this assumption is shown
as the second column in the figure). Alternatively, one can
accept the arguments of Perdew et al. [19] that DFT yields
physically correct states, however, the obtained spin density
is meaningless and the on-top density is the only relevant
observable. In this approach, one still needs to identify the
states somehow. This is achieved in columns three and four
of the figure. Thus, in our second approach, two doublets and
two quartets are selected (indicated in the column 3 of Fig. 2)
as to minimize the mean-square error

δRMSE =
√√√√1

n

n∑
i=1

(
Ebs

i − E ex
i

)2
, (13)

where Ebs
i and E ex

i refer to the energies of n states from the
broken symmetry approach and the spin-exchange Hamilto-
nian, respectively. Finally, in the third approach we select
the states according to the probability of their participation
in each given BS state (indicated in the column 4 of Fig. 2).
This is a well-grounded assumption: one can assume that BS
states are just initial guesses for DFT, and that in the course
of self-consistent calculations the system converges to the
physically correct states. The last two fittings produce very
similar results, only the interpretation of the second lowest
state being different.

As can be seen from Fig. 2, the assumption that DFT
yields BS states without a well defined Ŝ2 leads to an or-
der of magnitude more precise fitting: δRMSE = 0.4 meV
vs 6.4 and 7.9 meV, respectively. It has some profound
physical implications, and is one of our most important
conclusions here. It suggests, that electronic states of DFT
theory are very similar to the UHF states (but the two meth-
ods yield very different energies), and that spin density is
not a completely arbitrary quantity. Thus, our conclusion
is that spin projection needs to be done for DFT in the
same ways it is done for UHF. So far, this is a statement
on the basis of one DFT calculation for a single system.
Illas et al. [37] made similar claims “it is demonstrated
that the last supposition (one accepts the DFT energy of
the BS solution and disregards the qualitatively incorrect Ŝ2

and spin density), although perhaps numerically acceptable,
leads to contradictions with the rigorous first-principles point
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FIG. 2. Comparison of different fitting approaches against “ex-
act” ab initio values (black, first column). Second column (red)
shows energy levels from the projection approach as described in
Table I. This is the most accurate method as can also be con-
cluded from the lowest mean-square error (inset table, all values are
in meV). Third and fourth columns show the results of fitting by the
eigenstates of the Heisenberg Hamiltonian, best and most probable
fits, respectively. Experimental values of the exchange coupling
constants are J1 = −19.24 meV and J2 = −11.44 meV [10].

of view.” However, their results for spin dimers, although
in line with our observations, in principle cannot lead to a
conclusive statement. Let us consider another system and
functionals.

C. Illustration II: {CuFe4} system

Here, we have sA = 1
2 and sBi = 5

2 . Five states (BSi, i =
1, 5) can be obtained by the application of the spin-flip
operators on the high-spin state S = 21

2 . It is not feasible to
list the composition of all the states; they are too numerous:
the Hilbert space decomposes as

1
2 ⊗ [

5
2 ⊗ 5

2 ⊗ 5
2 ⊗ 5

2

] = 1
2

21 ⊕ 3
2

36 ⊕ 5
2

45 ⊕ 7
2

48 ⊕ 9
2

45

⊕ 11
2

36 ⊕ 13
2

25 ⊕ 15
2

16

⊕ 17
2

9 ⊕ 19
2

4 ⊕ 21
2 , (14)

where SA ⊗ SB and SA ⊕ SB is a direct product and a direct
sum of two spin representations of dimensions 2SA + 1 and
2SB + 1, respectively. The superscript specifies the number
of independent multiplets of each spin. Therefore, in the last
column of Table II, only the probabilities of states to have a
certain value of total spin, S = 1

2 , . . . , 21
2 , are indicated. They

were obtained by using the prescription (6).

As an alternative fitting scenario, we also considered eigen-
states that have the highest participation in the BS states. In
contrast to the BS states, they are physically correct states
having a well-defined spin. It turns out, however, that in line
with results for CuCu4, the first interpretation is much more
precise. The fitting errors are δRMSE = 1.294 and 7.220 meV,
respectively. Here, we have not searched for a subset of states
yielding the best possible fit as was done in the previous
example. The reason is that for such large number of states,
a good matching could also be found, but it will not be a
physically motivated solution. Thus, our second example also
indicates that BS DFT calculations should be interpreted in
terms of the Noodleman-Dai-Whangbo approach [16,17].

This does not exclude a possibility that with improved
density functionals, the suggestion of Perdew et al. [19]
that DFT yields physically correct states, but meaningless
spin density, is valid. Concerning the numerical values of
the exchange-coupling constants, we are very much in line
with the conclusions of Illas et al. [37]: the results of fitting
using the above assumption yield values surprisingly close to
experimental ones (J1 = −6.684 meV and J2 = −0.329 meV
vs J1 = −6.10 meV and J2 = −0.47 meV [10]), however, for
a wrong reason. A comparison of the fitting errors suggests
that values based on the BS assumptions J1 = −7.228 meV
and J2 = −0.191 meV should be used. The remaining dis-
crepancies with experiment are attributed to the insufficiency
of the PBE0 functional, which leads to the overestimation of
the exchange-coupling constants as has also been observed for
the CuCu4 molecule.

D. g tensors of broken symmetry states

Now, we add relativistic effects to our Hamiltonian
parametrized in terms of the g and D tensors:

ĤS = μBB · g · Ŝ + Ŝ · D · Ŝ︸ ︷︷ ︸
ĤZFS

. (15)

This is the most general form of an interaction of spins with a
magnetic field B, linear in B and Ŝ, and a bilinear interaction
of spins and can simultaneously be regarded as the definition
of corresponding g and D tensors.

Equation (15) characterizes the system as whole. This is
also the experimental scenario, and the way how g and D
tensors are computed ab initio (some details of this procedure
are presented in Sec. II E). It is quite obvious that results may
depend to some extent on the nature of the system state, for
which these properties are computed. The interpretation of
high-spin states does not lead to any ambiguities. Perdew’s
interpretation of the BS states is likewise unambiguous. How-
ever, if these states do not have a well-defined total spin,
information about the observed g tensor has to be inferred
from the partial data. To the best of our knowledge, this
dichotomy has not been sufficiently emphasized before. Slep
et al. [46] used BS solutions for the FeIVFeIII complex in order
to derive properties of states with well-defined spin. However,
they do not provide a solution for more than two magnetic
centers. Moreover, different possibilities for the interpretation
of BS DFT solutions are not discussed. These are the gaps that
will be filled in below.
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TABLE II. Excited states of the CuFe4 system from the broken symmetry approach. Numerical data from the PBE0 DFT BS calculations.
In the fourth column a constant −8937.0 Hr is subtracted, the values in the fifth column are with respect to the BS4 state. The least-squares fit
yields J1 = −7.228 meV and J2 = −0.191 meV with the root-mean-square error δRMSE = 1.294 meV. In the last columns, probabilities pS of
occupying a state with total spin S = 1

2 , . . . , 21
2 are given. We have 〈Ŝ2〉 = ∑

S pSS(S + 1).

State 〈Ŝ2〉 〈Ĥex〉 E (Hr) E (meV) Efit (meV) pS

HS =
⎡
⎣⇑ ⇑

↑
⇑ ⇑

⎤
⎦ 483

4 −10(J1 + 5J2) −0.9760438360 85.307 84.664 1

BS1 =
⎡
⎣⇑ ⇑

↓
⇑ ⇑

⎤
⎦ 403

4 10(J1 − 5J2) −0.9813651089 −59.493 −59.903 20
21

1
21

BS2 =
⎡
⎣⇓ ⇑

↑
⇑ ⇑

⎤
⎦ 163

4 −5J1 −0.9777419909 39.098 38.969 12
17

35
153

160
2907

3
323

20
20349

1
20349

BS3 =
⎡
⎣⇓ ⇑

↓
⇑ ⇑

⎤
⎦ 123

4 5J1 −0.9803812421 −32.720 −33.314 5
8

9
34

35
408

20
969

9
2584

5
13566

1
54264

BS4 =
⎡
⎣⇓ ⇓

↑
⇑ ⇑

⎤
⎦ 43

4 0 −0.9791787989 0.000 2.828 1
6

10
39

45
182

16
91

5
52

9
221

35
2652

40
12597

9
16796

5
88179

1
352716

BS5 =
⎡
⎣⇓ ⇑

↑
⇑ ⇓

⎤
⎦ 43

4 50J2 −0.9793872916 −5.673 −6.725 1
6

10
39

45
182

16
91

5
52

9
221

35
2652

40
12597

9
16796

5
88179

1
352716

As a basis for our derivations, we will be using a general
approach for the treatment pairs of spins (let us denote them as
ŝa and ŝb) by Bencini and Gatteschi [45] (Chap. 3 is relevant).
They consider spin levels in the strong exchange limit that
is also relevant for our two systems.1 Let ga and gb be the
g tensors pertinent to each magnetic subsystem. Our goal is
to derive an effective g tensor for the whole system. This
is done by demanding that matrix elements of the effective
Hamiltonian and the Hamiltonian of the composite system are
equal:

〈s′m′|ĤS|sm〉 .= 〈s′m′|Ĥ(A)
S + Ĥ(B)

S |sm〉. (16)

Matrix elements

〈s′m′|ĤS|sm〉 = 〈s′m′|μB(B · ga · ŝa + B · gb · ŝb)|sm〉
= 1

2μB〈s′m′|B · g+ · ŝ0 + B · g− · v̂|sm〉 (17)

are relevant. Here, g± = ga ± gb, ŝ0 = ŝa + ŝb, and v̂ = ŝa −
ŝb. |sm〉 can be expressed in terms of |sAmA〉 and |sBmB〉 by the
inverse of Eq. (2) (spin addition). We can write

g = 1
2 (c+g+ + c−g−). (18)

The part containing g+ has already the right form as in
Eq. (15), therefore, c+ = 1. For c− we can use the Wigner-

1The magnitude of Zeeman splitting is determined by the strength
of the magnetic field. Measurements for the two systems have been
performed at Heidelberg University and reported in the thesis of Park
[38] for fields as high as 16 T. The ESR splitting was typically in the
range of several hundred GHz, i.e., 1 ÷ 2 meV, which is smaller than
level spacing in Tables I and II.

Eckart theorem

c− = 〈sm′τ ′|v̂|smτ ′〉
〈sm′τ ′|ŝ0|smτ 〉 = 〈sτ ′‖v̂‖sτ 〉

〈sτ ′‖ŝ0‖sτ 〉 , (19)

where 〈sτ ′‖Tk‖sτ 〉 is a general notation for the reduced matrix
elements of the irreducible tensor operators (for the present
application the rank k will never exceed 1). τ indicates the in-
termediate quantum numbers [τ = {sa, sA, sb, sB} in Eq. (6)].

Matrix elements of v̂ are evaluated applying the equation
for tensor products [Eq. (7.1.5) of Edmonds [49]] twice, for
ŝa ⊗ Î and Î ⊗ ŝb (with ranks equal 1 in both cases, Î is the
identity operator), respectively,

c− = sa(sa + 1) − sb(sb + 1)

s(s + 1)
. (20)

Having essentially replicated the derivation of Bencini and
Gatteschi, let us inspect what modifications would be needed
in the case of several (more than 2) magnetic centers (spins).

In 〈sm′τ ′|v̂|smτ ′〉, ŝa and ŝb are just spin operators acting
only on the respective subsystems. In view of

〈sτ‖ŝ0‖s′τ ′〉 = δττ ′δss′
√

s(s + 1)(2s + 1), (21)

there is no dependence on the intermediate quantum states
for reduced matrix elements at marked variance with overlap
integrals, which lead to the appearance of recoupling coeffi-
cients [cf. Eq. (5)]. Therefore, the main equations (18) and
(20) can be used in a more general context, for instance, by
building up the AB4 spin system as indicated by Eq. (9). Thus,
the Wigner-Eckart theorem leads to a great simplification for
multispin systems, and allows to write for the AB4 spin model
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FIG. 3. (a) Partial density of states of the CuCu4 system in the
valence region, where the main contribution is mostly due to the p
states localized on the C and O atoms. (b) Magnetically important
d states are split into a pronounced occupied peak in the region −7
to −4 eV and one partially occupied peak in the region 2 to 4 eV.
With the help of the Löwdin population analysis, the evolution of the
electron density upon the spin flip on the central CuII ion (BS1) can
be visualized (c).

in the |S13, S24, SB, S, MS〉 eigenstate:

g = 1

2
(ga + gb) + sa(sa + 1) − sB(sB + 1)

2S(S + 1)
(ga − gb). (22)

For BS states the orthogonality and the expansion coefficients
are needed.

E. Ab initio calculations

In the preceding section we presented numerical results for
the PBE0 functional of Ernzerhof and Scuseria [50] and by
Adamo and Barone [51], which is hybrid of PBE exchange
and correlation GGA functional with 25% of Fock exchange.
The corresponding density of states is shown for the two sys-
tems in Figs. 3 and 4. Comparing these two figures, it can be
observed that the d band is narrower in CuCu4 than in CuFe4

because the energy difference between the Cu and the Fe d
states in the heterometallic complex is larger than between
the central and the peripheral Cu ions in CuCu4. Results on
Figs. 3(a) and 4(a) correspond to the ground states for the
fully aligned spins with S = 5

2 and 21
2 , respectively. Flipping

of the central spin (we are talking about the BS1 states here)
has small but visible impact on the electronic structure in
both cases [panels (b) and (c) of the respective figures]. The
majority-spin band shifts to higher energies, the unoccupied
peak changes its character from spin up to spin down.

Ab initio calculations in this work were performed using
the Kohn-Sham methods as implemented in the ORCA quan-
tum chemistry program [52]. Relativistic calculations are the
major part of this package. Only briefly we mention that the-
ory of g-tensor calculations (and here we mean the interplay
of many-particle and relativistic aspects) was developed in
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FIG. 4. (a) Partial density of states of the CuFe4 system in the
valence region, where the main contribution is mostly due to the p
states localized on C and O atoms. (b) Magnetically important d
states are split into a pronounced occupied peak in the region −20 to
−14 eV and one partially occupied peak in the region −9 to −6 eV.
With the help of the Löwdin population analysis, the evolution of the
electron density upon the spin flip on the central CuII ion (BS1) can
be visualized (c).

numerous works. For a comprehensive review of the literature
prior to 2009 we refer to the paper of Gauss et al. [53]. From
this work we can learn in particular that a general formulation
of theory is due to McWeeny [54]. Accordingly, aside from the
bare free-electron value of the tensor, there are three contribu-
tions: paramagnetic spin-orbit (pso), diamagnetic spin orbit
(dso), and relativistic mass correction (rmc). The latter two
are simple expectation values that can be determined from the
known wave functions. The paramagnetic contribution, which
is also the largest one, is a second-order effect. It results from
the modification of the total energy due to the combination
of (i) the magnetic field interacting with the electron orbital
moment and (ii) the spin-orbit interaction:

gpso = 1

μB

(
∂2E

∂B∂S

)
B,S=0

, (23)

where the two constituents are

Ĥb = μBB · L, (24)

ĤSOC = α2

2

∑
i

∑
A

ZA
(ri − RA) × pi

|ri − RA|3 · ŝi

− α2

2

∑
i

∑
j �=i

(ri − r j ) × pi

|ri − r j |3 · (ŝi + 2ŝ j ). (25)

Here, r, p, and ŝ are position, momentum, and spin operators
of an electron, α = 1/c is the fine-structure constant. RA

denotes positions of nuclei with corresponding charge ZA.
A standard way of computing the derivatives of the total-

energy expectation value is by using the coupled perturbed
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Kohn-Sham theory. We refer here to the original work of
Neese [55] for all the details of this approach.

There are several complications that arise in practical cal-
culations. One of them is the treatment of spin-orbit coupling
[47]. Already from Eq. (25), it is clear that there are one-
electron (first term) and two-electron (second term) contri-
butions. If, furthermore, density functional theory is used,
different forms of exchange and correlations need to be taken
into account. This is nicely summarized in Fig. 1 of Ref. [56].
Another important aspect is the treatment of relativistic ef-
fects with magnetic field at second-order Douglas-Kroll-Hess
(DKH) level. The importance of including the magnetic field
from the beginning into the Foldy-Wouthuysen transformation
was established in Ref. [57].

III. RESULTS

In this section we continue our investigation of the CuCu4

and CuFe4 metallacrowns by systematically employing dif-
ferent exchange-correlation functionals. In Sec. III A, we vi-
sualize the electronic structure of the heterometallic system
in energy and in space domains providing more insight into
the states in Table II. These data are essential for the in-
terpretation of the scanning tunneling spectroscopy and the
time- and spin-resolved photoemission experiments which are
anticipated in future, and it is used in analyzing the depen-
dence of the g tensors on the spin localization. In Sec. III B
we make a connection with experimental measurements per-
formed at Heidelberg university [38]. Their main findings are
giso = 2.05, and g⊥ = 2.03, g‖ = 2.23 for the CuCu4

compound.

A. More on the electronic structure

Before presenting our results for the g tensor, we would like
to clarify the electronic structure of various broken symmetry
solutions of the Kohn-Sham equation. In Tables I and II the
theoretical compositions of these states are presented, and in
Figs. 3 and 4 the impact of the spin flip on the central TM
ions is demonstrated. These theoretical predictions can be
compared with two general scenarios how the electronic and
spin systems respond during the ferromagnetic-paramagnetic
phase transition as discussed by Eich et al. [58]. It was sug-
gested that for itinerant electrons, the magnetic moments are
quenched via single-particle transitions that induce a collapse
of the exchange splitting and therefore a shift of the spin-
polarized bands. This is clearly not the case here although
tiny shifts are indeed visible. However, the second scenario,
pertinent to localized systems, is more appropriate here.
There is, however, one very important difference between
theoretical calculations and experimental observations using
time-resolved photoelectron spectroscopy. In the latter case,
because experiment only probes the macroscopic average of
spin fluctuations, one observes the so-called band mirroring
effect, i. e., spin up and down densities of states are nearly
identical. The theory, of course, observes a frozen picture,
where spin up and spin down states are occupied differently.

It is of interest to perform this analysis in greater details.
The Löwdin reduced orbital population analysis [59] of the
PBE0 results is represented in the form of the partial density
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FIG. 5. Partial density of d states of the CuFe4 system in the va-
lence region due to FeIII (a) and CuII (b) ions. Five broken symmetry
states (Table II) are compared with the ferromagnetic state (S = 21

2 ),
which is the reference state. The states are grouped according to
the number of Fe (top) and Cu (bottom) ions with flipped spins and
depicted with the same color. Flipping the spin on the CuII ion results
in only small density modification on the FeIII (and vice versa), and
therefore is not distinguished by the line style.

of states (DOS) for CuFe4 (Fig. 5). The shifts in the position
of Cu d states of about 1 eV and the redistribution of the
electronic density on Fe d states can be seen for both occupied
and unoccupied states (the position of the Fermi level is
different for both clusters because of the different charge
states adopted in both calculations). At the same time, the spin
flipping on the CuII ion results only in a small modification of
the electronic density on FeIII (and vice versa). This fact can
be attributed to an almost vanishing overlap of the d states on
different transition metal ions and is visualized for different
broken symmetry states in Fig. 1.

Another interesting fact that can be inferred from the pop-
ulation analysis in Fig. 5(b) is the quite strong redistribution
of the electron density upon a spin flip on the central CuII

ion. Aside from the shift of about 1 eV, some portion of the
spectral weight is transferred to higher energies enhancing the
magnitude of the second peak. While this can be an indication
of the dz2 → dx2−y2 transition on the central CuII ion, we
cannot clearly separate contributions of various symmetry-
adapted d orbitals in the density of states. In principle, such
an effect can be observed spectroscopically (see introduction
to Ref. [61] for a list of spectroscopic techniques applied
to magnetic molecules), however, due to the fact that the
exchange constants J1 and J2 are very small, both electronic
states are thermally populated and cannot be discriminated.
Recently, observation and electric current control of a local
spin in a single-molecule magnet TbPc2 absorbed on an
Au(111) surface have been demonstrated [62]. However, in
this experiment, the Kondo resonance originates from an
unpaired spin in a π orbital of ligands rather than from the
local magnetic moment of metal ion. Therefore, more detailed
spectroscopic investigations are expected in the future. The
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TABLE III. Exchange-coupling constants for the CuCu4 ho-
mometallic metallacrown obtained using different methods. The
experimental results are reported in Happ et al. [60], the results
of wave-function methods, the complete active space (CAS) and
the second-order perturbation theory (NEVPT2), are reported in
Pavlyukh et al. [9].

Method J1 (meV) J2 (meV)
CAS(5,5) −2.70 −0.90
NEVPT2 −6.36 −2.08
PBE0 −42.7 −13.8
Experiment −19.24 −11.4

feasibility of the spin- and time-resolved scanning tunneling
spectroscopy of magnetic adatoms on surfaces was discussed
by Schüler et al. [63,64], and a recent experimental review is
by Ternes [65].

Thanks to comprehensive experiments [60], we now have a
detailed knowledge of the exchange-coupling constants in the
studied metallacrowns. In the preceding section we focused
on the physical nature of the broken symmetry states and
on the consistency of their energy levels. Further results will
be presented below comparing different exchange-correlation
functionals. However, it is also instructive to put our best
DFT results (obtained with PBE0 functional) in relation to the
wave-function (WF) methods (Table III). WF methods have
an advantage that multiconfigurational character of magnetic
states is properly taken into account, alleviating the problem
of interpretation of the spin density. However, being more
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FIG. 6. Determination of the isotropic part and three principal
values (g1 = 2.03 ± 0.01, g2 = 2.04 ± 0.01, g3 = 2.23 ± 0.01) of
the g tensor by the fitting of the high-field high-frequency electron
spin resonance (ESR) measurements for the polycrystalline CuCu4

system. Experimental data (gray lines), model fit (thick blue lines).
giso can be determined from the maxima positions (red line). Ex-
trapolation of the fitting line to zero magnetic field shows no re-
manent splitting. This indicates vanishing zero-field splitting tensor.
The temperature dependence is reflected only in the broadening of
the resonances. Above T = 70 K, the ESR spectrum disappears.
Adapted from Ref. [39].

FIG. 7. Computed values of the g tensor, localized spin moments
on the central TM ion (μCu(A)) and spin-exchange-coupling constants
J1 and J2 for the CuCu4 system. Components of the g tensor (isotropic
giso, out of the molecule plane g‖, and in-plane g⊥) as well as the
Löwdin spin moments of the central CuII are plotted for three states
(HS, BS1, BS4) and color coded as gray, red, and blue bars. Averages
over all the functionals serve as the reference values. Thus, the
size of the bars indicates the deviation from the reference value.
Experimental values are indicated as dotted lines as well. In the
lowest panel, the exchange-coupling constants J1 (gray) and J2 (red)
are indicated for each DFT functional.

rigid on this point also means less flexibility in the descrip-
tion of electronic correlations, which need to be added on
top. Thus we find, in line with other works on molecular
magnets of various compositions and number of magnetic
centers [36,37], that wave-function methods generally under-
estimate exchange-coupling constants, whereas density func-
tional methods overestimate them. The ratio between the two
exchange-coupling constants J1/J2 is systematically overes-
timated by all considered theories (Table III). We tentatively
ascribe this to a higher-order mechanism mediated by the two
ligand atoms in the oxamate bridge ON, which is responsible
for the formation of antiferromagnetic J2. In contrast, J1 is
a classical case of the Anderson-Goodenenough-Kanamori
superexchange with a single hopping.
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B. g tensor of CuCu4

Experimental results are summarized in Fig. 6. We refer
to Park [38] for all the details and to Fedin et al. [66] for
a review on the electron paramagnetic resonance of copper-
based molecular magnets. Raw computational data are pre-
sented and various relativistic options are discussed in the
Supplemental Material [47]. We find that a graphical repre-
sentation of these data such as on Fig. 7 yields the most lu-
cid picture. While different exchange-correlation functionals
generally provide consistent results, there are some marked
differences. First, we notice that unrestricted Hartree-Fock
is never a good choice: it substantially overestimates the g
tensors, underestimates the exchange-coupling constants as
was already pointed out in Table III, and yields spins fully
localized on TM ions (Löwdin spins differ only slightly from
integer values expected from a simple coordination chemistry
picture). The latter is in qualitative (considering limitations
of the Löwdin population analysis) disagreement with the
measured (by the x-ray magnetic circular dichroism) magnetic
moments (μ = 0.27 ± 0.02 for the central CuII ion) [60].

Spin values vary substantially for different functionals, and
some correlations between the spin localization and the g
tensor, J1 and J2, can be observed: more localized spins imply
smaller values of the exchange constants and larger g-tensor
values, and vice versa. The PW91 functional is rather inaccu-
rate in this respect, the spins are weakly localized leading to
smaller than experimental values of g and to very large values
of the exchange coupling. At the same time, all functionals
yield very similar values of g for different excited states,
which probably explains why fitting of the experimental ESR
measurements was so consistent.

IV. CONCLUSIONS

In this work we investigated two metallacrown molecules
CuCu4 and CuFe4 as paradigmatic systems to discuss (i) the
extraction of exchange-coupling constants using the broken

symmetry approach of the density functional theory and (ii)
the calculation of relativistic properties such as the g ten-
sor. Both systems have frustrated antiferromagnetic ground
states, which result from the interplay of the antiferromagnetic
coupling between the central and the peripheral TM ions
and much weaker antiferromagnetic couplings between the
peripheral ions and are driven by the superexchange mecha-
nism [5]. Corresponding electronic states can be mimicked by
performing constrained calculations as to have a correct open-
shell low-spin configuration. However, the question about the
total spin moment of such states still needs to be answered. By
performing calculations for the redundant number of excited
states, we established that they are not eigenstates of the
total spin operator, which is against the expectation for the
density functional theory to yield physically sensible states
[19]. However, such scenario can be anticipated on the basis
of numerous calculations for two-center magnetic systems
performed in other works [18,37], and can be traced back
to the fact that theory in Ref. [19] admits no noninteracting
Kohn-Sham system (is not noninteracting v representable)
and, ultimately, to the nonuniqueness problem of the spin
DFT [67].

Then, we developed a theory for the calculation of g tensors
starting from the broken symmetry approach. It generalizes
early results of Bencini and Gatteschi for the two-center
systems. Finally, systematic investigations using different
exchange-correlation functionals were performed. We found
correlations between the value of the g tensor and the effective
spins localized on TM ions. Good agreement with experiment
was established for the CuCu4 homometallic metallacrown.
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