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Layered optomagnonic structures: Time Floquet scattering-matrix approach
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A fully dynamic theoretical approach to layered optomagnonic structures, based on a time Floquet scattering-
matrix method, is developed. Its applicability is demonstrated on a simple design of a dual photonic-magnonic
cavity, formed by sandwiching a magnetic garnet thin film between two dielectric Bragg mirrors, subject to
continuous excitation of a perpendicular standing spin wave. Some remarkable phenomena, including nonlinear
photon-magnon interaction effects and enhanced inelastic light scattering in the strong-coupling regime, fulfilling
a triple-resonance condition, are analyzed and the limitations of the quasistatic adiabatic approximation are
established.
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I. INTRODUCTION

Propagation of electromagnetic (EM) waves in dynamic
media with a periodic (spatio)temporal variation of their
refractive index, realized, for example, by the action of a
progressive sinusoidal disturbance, have long been investi-
gated and a number of intriguing effects, such as formation of
frequency and wave vector band gaps, wavelength conversion,
pulse shaping, and parametric amplification, were properly
analyzed [1–9]. The lack of time invariance of the linear
medium can also lead to nonreciprocal optical response, thus
offering a promising alternative in the design of compact non-
reciprocal photonic devices (see, e.g., Ref. [10] and references
therein).

Spatiotemporal modulation of the electric permittivity ten-
sor of magnetic materials is induced, for instance, by the
various types of spin waves that can be excited in differ-
ent confined geometries [11], due to the periodic variation
of the magneto-optic coupling coefficients [12], causing di-
verse interesting and useful effects. For example, diffraction
and mode conversion of guided optical waves, induced by
magnetostatic waves in magnetic garnet thin films, offer the
potential of large time-bandwidth optical signal processing at
microwave frequencies of 1–20 GHz and higher [13–16]. On
the other hand, inelastic light scattering by thermally excited
spin waves is widely used for probing magnetic properties
of bulk and microstructured materials through Raman or
Brillouin spectroscopy [17–26]. It should be noted that the
magneto-optic interaction is inherently weak and, therefore,
the above effects can be in most cases described by first-order
perturbation theory.

Greatly increased light–spin-wave interaction phenomena
may arise from the simultaneous localization of both fields
in the same ultrasmall region of space for a long time pe-
riod. This can be achieved, for example, in (sub)millimeter
magnetic garnet spheres, which support optical whispering
gallery modes [27–32] or Mie resonances [33], as well
as in appropriately designed, so-called photomagnonic (or
optomagnonic), stratified structures that comprise magnetic
dielectric layers and exhibit dual, photonic and magnonic,

functionalities [34–37] combining the properties of pho-
tonic [38] and magnonic [39,40] crystals. Strong parametric
photon-magnon coupling effects, allowing for coherent ma-
nipulation of elementary magnetic excitations in solids by
optical means and vice versa, have been anticipated [41,42]
while large dynamic frequency shift and enhanced modulation
of the optical field through multimagnon absorption and emis-
sion processes by a photon have also been reported [33,36] in
both of the above (spherical and planar) optomagnonic cavity
designs.

Since the frequency of a pump spin wave is typically a
few orders of magnitude smaller than that of a probe light
beam in the infrared and visible range of the EM spectrum,
interaction between the two fields can be in principle de-
scribed by a quasistatic adiabatic approximation. In practice,
this translates in calculating the relevant optical scattering
amplitudes at a sequence of frozen snapshots of the spin wave,
during a period, and, at the end of the calculation, obtaining
the frequency-domain response by Fourier transform [33,36].
A similar approach was also successfully applied to ana-
lyze acousto-optic interaction effects in corresponding phox-
onic cavities [43–46], encompassing both weak- and strong-
coupling regimes and recovering the results of the widely em-
ployed linear photoelastic model in the weak-coupling limit
[46]. However, the quasistatic adiabatic approximation has a
number of drawbacks, which may be more likely manifested
in the case of a spin instead of an acoustic pump wave be-
cause the former can attain higher frequencies without being
strongly attenuated. The adiabatic approximation precludes
energy transfer from one wave to the other while, even more
importantly, the frequency of the pump wave is decoupled
from that of the light beam and thus its actual value becomes
immaterial. Consequently, this approximation cannot properly
describe, e.g., inelastic light-scattering processes in a triple-
resonance condition, which occur in optomagnonic cavities
[27–29], where the frequency of the magnon matches a photon
transition between two resonant modes.

It is therefore tempting to formulate a rigorous, fully dy-
namic Floquet scattering-matrix method for (spatio)temporal
periodic media, adapted to the case of stratified optomagnonic
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architectures, following, e.g., an approach analogous to that
developed in relation to quantum transport in periodically
driven systems [47–51]. The purpose of the present paper is
to develop such a method and apply it to a specific example of
layered optomagnonic structure, establishing the limitations
of the quasistatic adiabatic approach. The remainder of the
paper is structured as follows. In Sec. II we introduce our
optomagnonic model structure, we present some approximate
methods for its theoretical description, namely, the first-order
Born approximation and the adiabatic approach, and briefly
recall the results of the latter in the case under consideration.
In Sec. III we develop a fully dynamic time Floquet scattering-
matrix method and report a detailed study of the given
optomagnonic structure, encompassing the quasistatic limit
and providing a consistent interpretation of some remarkable
effects which cannot be accounted for by the adiabatic approx-
imation. The last section concludes the paper.

II. STRUCTURE DESCRIPTION
AND APPROXIMATE TREATMENTS

In magnetic materials, the interaction of visible and in-
frared light with spin waves is inherently weak. Opto-
magnonic cavities aim at enhancing this interaction by simul-
taneously confining both light and spin waves in the same
ultrasmall region of space for a long time period. In the present
paper, following our previous work [36], we investigate fur-
ther a planar optomagnonic cavity formed by a versatile
trilayer configuration that comprises a middle magnetic di-
electric film made of bismuth-substituted yttrium iron garnet
(Bi:YIG) sandwiched between two dielectric Bragg mirrors,
as schematically depicted in Fig. 1(a). More specifically, we
consider a TiO2/Bi:YIG/TiO2 trilayer and two symmetric
Bragg mirrors, each consisting of 14 periods, with lattice
constant a, of alternating SiO2 and TiO2 layers, of thickness
0.6a and 0.4a, respectively, stacked along the z direction. The
whole structure is embedded in air. The trilayer consists of a
Bi:YIG film, 0.7a thick, magnetically saturated perpendicular
to the interfaces, placed between two identical TiO2 layers,
each of thickness 0.4a. Assuming a to be of the order of a
few hundred nanometers, the operation wavelengths are in
the near-infrared region, where the material relative magnetic
permeability is equal to unity and Bi:YIG is characterized by
a relative electric permittivity tensor of the form

ε =
⎛⎝ ε i f 0

−i f ε 0
0 0 ε

⎞⎠ (1)

with ε = 5.5 and f = −0.01 [52]. TiO2 and SiO2 are opti-
cally isotropic materials described by a relative permittivity
constant equal to 5.35 and 2.13, respectively [53,54].

The periodic structuring of the Bragg mirrors gives rise
to frequency gaps, where light propagation is forbidden [38].
Figure 1(b) displays the transmission spectrum of the struc-
ture described here above, under illumination by p-polarized
light, i.e., light linearly polarized in the plane of incidence,
with a wave-vector component parallel to the interfaces q‖ =
(q2

x + q2
y )1/2, in a frequency window about the lowest Bragg

gap. We note that, due to translation invariance in the x-y
plane, q‖ remains constant. The presence of the magnetic film

FIG. 1. (a) Schematic view of a symmetric optomagnonic cavity,
formed by a trilayer TiO2/Bi:YIG/TiO2 sandwiched between two
SiO2/TiO2 multilayer Bragg mirrors. Each Bragg mirror consists
of 14 periods, with lattice constant a, of alternating SiO2 and TiO2

layers, of thickness 0.6a and 0.4a, respectively. The total thickness
of the trilayer is 1.5a and the middle Bi:YIG film, 0.7a thick, is mag-
netically saturated perpendicular to the interfaces. (b) Transmittance
of the structure of (a) for p-polarized light incident with given q‖.
The dark area marks the light cone ω = cq‖, where ω is the angular
frequency and c the speed of light in vacuum. (c) An enlarged view of
(b) in a narrow spectral range within the lowest Bragg gap showing
the splitting of the two defect modes.

affects the optical response of the structure in two ways. First,
it breaks periodicity, leading to the appearance of two resonant
modes in the gap, spatially localized in the defect region [38].
Second, it removes reflection symmetry with respect to the
plane of incidence, so that the p- and s-polarization modes,
i.e., modes linearly polarized in and normal to the plane
of incidence, respectively, are no longer true eigenmodes of
the system. The defect modes do not have a well-defined
linear polarization character and thus both couple, of course
to a different degree, to any linearly polarized incident light
beam. Here, p-polarized light is used to excite these modes,
as shown in Fig. 1(c). We note in passing that two distinct
modes subsist also in the unmagnetized slab. They originate
from the splitting of a doubly degenerate mode at normal
incidence, where the two polarization degrees of freedom are,
obviously, equivalent. The difference is that, in the case of
the unmagnetized slab, reflection symmetry with respect to
the plane of incidence implies a specific linear polarization
character, p or s, to each of these two modes at off-normal
incidence.
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Apart from the localization of the EM field in the magnetic
film, the considered optomagnonic structure serves, also, as
a cavity for spin waves. A general theory of dipole-exchange
spin waves in a homogeneous magnetic film of thickness d ,
with out-of-plane arbitrary orientation of the magnetization,
has been reported by Kalinikos and Slavin [55]. Here, we are
concerned with perpendicular standing spin waves, assuming
the easy axis of magnetization perpendicular to the film, along
the z direction. If the film is saturated to Ms by an externally
applied static magnetic field H ẑ, under the boundary condition
of perfect pinning of the spin waves at the film boundaries we
obtain a series of modes at frequencies

�κ =γμ0Ms

[
H

Ms
− 1 + β + α

(κπ

d

)2
]
, κ = 1, 2, . . . ,

(2)

where γ is the gyromagnetic ratio, μ0 the magnetic permeabil-
ity of vacuum, α the exchange constant, and β the dimension-
less anisotropy coefficient. The corresponding magnetization
field profiles are given by

M(r, t )/Ms = η sin(κπz/d ) cos(�κt )̂x

+ η sin(κπz/d ) sin(�κt )̂y + ẑ, (3)

where η is the relative spin-wave amplitude [36]. Assuming
η = 0.1, the magnetization precession angle is about 5o,
which is a tolerable value for linear spin waves.

The interaction between light and spin waves enters
through the electric permittivity tensor. Specifically, the mag-
netization field given by Eq. (3) induces a spatiotemporal

perturbation [36]

δε(z, t ) = 1
2 [δε(z) exp (−i�κt ) + δε†(z) exp (i�κt )] (4)

in the permittivity tensor of the statically magnetized material,
where

δε(z) = f η sin(κπz/d )

⎛⎝ 0 0 1
0 0 i

−1 −i 0

⎞⎠ (5)

and the dagger denotes Hermitian conjugation.
In a simple anisotropic material, the displacement field is

related to the electric field through the electric permittivity
tensor. The underlying constitutive relation assuming local
response, i.e., that at each point of space the displacement
field depends only on the value of the electric field at the same
point, reads D(r, t ) = ε0

∫
dt ′ε(t − t ′)E(r, t ′), where ε0 is the

electric permittivity of vacuum. The relative electric permit-
tivity tensor in the time domain, ε, depends on the difference
t − t ′, as implied by time homogeneity, and is related to the
usual electric permittivity tensor ε (in the frequency domain)
though a Fourier transform ε(ω) = ∫

dtε(t ) exp(iωt ). For
monochromatic time-harmonic waves of angular frequency
ω, of the form E(r, t ) = Re[E(r) exp(−iωt )], we obtain
D(r, t ) = ε0Re[ε(ω)E(r) exp(−iωt )]. In the presence of a rel-
atively slow (with respect to the period of the EM wave) mod-
ulation, mαβ (r, t ), of the elements of the electric permittivity
tensor, such as that induced by a spin wave, one can write
E(r, t ) = Re[E (r, t ) exp(−iωt )], where E (r, t ) is a slowly
varying envelope function instead of a time-independent pha-
sor. Therefore, ignoring the variation of mαβ and E in the time
integral of the constitutive relation, we obtain

Dα (r, t ) ∼= ε0

∑
β

∫
dt ′εαβ (t − t ′)mαβ (r, t )Eβ (r, t ′) ∼= ε0Re

⎧⎨⎩∑
β

εαβ (ω)mαβ (r, t )Eβ (r, t ) exp(−iωt )

⎫⎬⎭ , (6)

i.e., we can write, approximately, the constitutive relation in
a mixed time-frequency domain representation in the form
of an instantaneous-response, instead of a time-convolution,
equation.

Due to the periodic time variation of the electric per-
mittivity tensor of the structure under consideration in the
presence of a perpendicular standing spin wave, E (r, t )
can be expanded in a Fourier series as follows: E (r, t ) =∑

n=0,±1,... En(r) exp(in�κt ), which yields

E(r, t ) = Re

{ ∑
n=0,±1,...

En(r) exp[−i(ω − n�κ )t]

}
. (7)

This equation implies that, for an incident wave of angular fre-
quency ω, the total outgoing (transmitted plus reflected) field
consists, in general, of an infinite number of monochromatic
beams with angular frequencies ω,ω ± �κ, ω ± 2�κ, . . .,
which are produced by elastic and inelastic photon scattering
that involves absorption and/or emission of zero, one, two,
etc., magnons. We note that magnon absorption (emission)
processes stem from the first (second) term of Eq. (4).

In the weak-coupling regime, one can restrict to the
first-order Born approximation. In this approximation,
the coupling strength associated to the photon-magnon
scattering is proportional to the overlap integral G =
〈out| δε |in〉, where 〈αrt |in〉 = E in

α (z) exp[i(q‖ · r − ωt )] and
〈out|α′r′t ′〉 = Eout�

α′ (z) exp[−i(q′
‖ · r − ω′t )] denote appropri-

ate incoming and outgoing monochromatic time-harmonic
waves in the static magnetic layered structure. Using Eq. (4)
we obtain

G = i f ηδ(q‖ − q′
‖)[δ(ω − ω′ − �κ )g−

+ δ(ω − ω′ + �κ )g+], (8)

where

g± =
∫

dz sin(κπz/d )
{
Eout�

y (z)E in
z (z) − Eout�

z (z)E in
y (z)

± i
[
Eout�

x (z)E in
z (z) − Eout�

z (z)E in
x (z)

]}
. (9)

The delta functions in Eq. (8) express conservation of
in-plane momentum and energy in inelastic light-scattering
processes that involve emission and absorption of one magnon
by a photon, as expected in the linear regime. In our case here,
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a simple selection rule can be deduced by considering the
symmetry of the EM field and the spin wave. In a structure
such as that described in Fig. 1(a), which has the mirror
symmetry with respect to the x-y plane, σ̂z, the electric field
modes, E(z), are either even or odd functions of z [36]. On the
other hand, since σ̂zE(z) = Ex(−z )̂x + Ey(−z )̂y − Ez(−z )̂z,
either Ex, Ey are even functions of z and Ez is an odd function
of z or Ex, Ey are odd functions of z and Ez is an even function
of z. Therefore, the integral in Eq. (9) vanishes identically,
unless the spatial profile of the perpendicular standing spin
wave is an odd (even) function of z for transitions between two
optical modes of the same (different) symmetry. In the present
work, since both optical resonances have the same symmetry,
we choose a second-order (κ = 2) perpendicular standing spin
wave which is an odd function of z.

On the other hand, since the spin-wave frequencies are,
typically, a few orders of magnitude smaller than those of vis-
ible and infrared light, the slow gradual change of the electric
permittivity tensor, given by Eq. (4), can be looked upon as an
adiabatic process. Therefore, the optical response of the driven
system can be described by first evaluating it with the external
parameters held fixed and then, at the end of the calculation,
allowing them to change, in discrete steps within a time
period of the spin wave. This so-called quasistatic adiabatic
approach, which is not restricted to the weak-coupling regime,
was undertaken in our previous work [36] and details about
its implementation can be found elsewhere [36,37]. Here, we
briefly summarize our main results when the higher optical
resonance of Fig. 1(c) for q‖a = 1.2, at ω0a/c = 1.88375, is
excited by p-polarized light incident with the given q‖, i.e.,
at an angle of about 40◦, on the structure of Fig. 1(a) in the
presence of a second-order (κ = 2) perpendicular standing
spin wave with a relative amplitude η = 0.1. The continuous
variation of the permittivity tensor of the magnetic film, as
implied by Eq. (4), is taken into consideration in the numerical
calculation following a discretization approach. Subdividing
the Bi:YIG film into 50 homogeneous elementary sublayers,
at each of the 60 total time steps considered, is sufficient to
obtain excellent convergence.

When the dynamic magnetization field is switched on, the
permittivity tensor and, consequently, the optical transmission
spectrum vary periodically in time with the period of the
spin wave. Even though the overall spectral features do not
change significantly as time evolves, the oscillation of the
optical defect mode with an amplitude �ω that is of the
order of the resonance width is remarkable [36]. The ratio
�ω/�, where � is the calculated width of the higher reso-
nance in the optical transmission spectrum for q‖a = 1.2 [see
Fig. 1(c)] that defines its inverse lifetime, can be adopted as a
quantitative measure of the strength of the photon-magnon in-
teraction. Here we obtain �ωa/c = 0.2 × 10−5 and �a/c =
0.1 × 10−5. This strong modulation of the optical cavity mode
by the perpendicular standing spin wave should be ascribed to
the simultaneous concentration of both fields for a long time
period in the cavity region. In the wave picture, this is man-
ifested as a relatively large-amplitude periodic oscillation of
the position of the sharp optical resonance. Correspondingly,
in the particle picture, strong inelastic light scattering occurs,
with considerable probabilities for absorption and emission of
many magnons by a photon. Indeed, the calculated intensities,

TABLE I. Intensities of the elastic and the first few inelastic
outgoing beams upon excitation of the higher optical resonance
at q‖a = 1.2 in Fig. 1(c), subject to the action of a second-order
perpendicular standing spin wave with a relative amplitude η = 0.1.

n −4 −3 −2 −1 0 1 2 3 4

In 0.015 0.025 0.042 0.070 0.648 0.071 0.043 0.025 0.015

In, of the outgoing (transmitted plus reflected) light beams,
reported in Table I, are significant also beyond the relatively
large first-order (n = ±1) components. It is worth noting
that the quasistatic adiabatic approximation precludes energy
transfer between the photon and the magnon fields [37].
Therefore, in the absence of dissipative losses,

∑∞
n=−∞ In

must be equal to unity, because at each frozen snapshot of
the spin wave the electric permittivity tensor is Hermitian [see
Eqs. (1), (4), and (5)], which is confirmed by our calculations.
However, even if there is no energy transfer, coupling between
the two fields arises through the time variation of the electric
permittivity tensor, induced by the spin wave, which affects
the optical response of the structure. The small asymmetry be-
tween the Stokes (n > 0) and anti-Stokes (n < 0) components
in Table I is due to the lack of time-reversal symmetry of the
magnetic structure [36].

Though the quasistatic adiabatic approximation is a useful
tool for the study of optomagnonic cavities, it has a number
of drawbacks (see the Appendix). Namely, as stated above,
it precludes energy transfer between the photon and the
magnon fields. Even more importantly, the frequency of the
pump spin wave is decoupled from that of the light beam
and thus its actual value is immaterial. Consequently, this
approximation cannot properly describe, e.g., inelastic light-
scattering processes in a triple-resonance condition, which
occur in optomagnonic whispering gallery microresonators
[27–29], when the frequency of the magnon matches a photon
transition between two resonant modes.

III. FULLY DYNAMIC DESCRIPTION

A. Formalism

Let us first consider a homogeneous medium, characterized
by a scalar relative magnetic permeability μ and a relative
time-periodic electric permittivity tensor, ε(t ) = ε(t + T ). If
the time variation of the permittivity is very slow compared
with the period of an optical wave, assuming slowly varying
envelope functions for the electric and magnetic fields, of the
form F(r, t ) = Re[F (r, t ) exp(−iωt )] where F = E, H, with
the help of Eq. (6) the Maxwell equations read

∇ × E (r, t ) exp(−iωt ) = −μ0μ∂t [H(r, t ) exp(−iωt )],

∇ × H(r, t ) exp(−iωt ) = ε0∂t [ε(t )E (r, t ) exp(−iωt )] .

(10)

The time-periodic variation of the permittivity tensor re-
sults in time-periodic envelope functions and, for this reason,
Maxwell equations can be solved by expanding these quanti-
ties in (truncated) Fourier series. Considering solutions in the
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form of plane waves with wave vector q, we have

ε(t ) =
N∑

n=−N

ε(n) exp (in�t ),

E (r, t ) = E0

N∑
n=−N

e(n) exp [i(q · r + n�t )], (11)

H(r, t ) = E0

Z0

N∑
n=−N

h(n) exp [i(q · r + n�t )],

where � = 2π/T , Z0 is the impedance of free space, e and
h are polarization vectors chosen such that

∑N
n=−N e(n) ·

e�(n) = 1, and E0 is the field amplitude. Substituting Eqs. (11)
into Eqs. (10), we obtain

q × h(n) + (ω − n�)

c

N∑
n′=−N

ε(n − n′)e(n′) = 0,

(12)

q × e(n) − (ω − n�)

c
μh(n) = 0 ,

for n = −N,−N + 1, . . . , N . For given x and y components
of the wave vector q, Eqs. (12) can be cast in the form of a
6(2N + 1) × 6(2N + 1) linear eigenvalue problem(

k ε C
1−C

1
kμ

)−1( 0 C
2−C

2
0

)(
e
h

)
= 1

qz

(
e
h

)
, (13)

which can be solved by standard numerical algorithms
[56]. In Eq. (13), by a double underscore we denote
3(2N + 1) × 3(2N + 1) matrices; 0 is the zero matrix,
k = diag(k−N , k−N+1, . . . , kN ) with kn = I(ω − n�)/c ≡
Ikn, and C

i
= diag(Ci, Ci, . . . , Ci ), i = 1, 2, are block-

diagonal matrices with

C1 =
⎛⎝ 0 0 qy

0 0 −qx

−qy qx 0

⎞⎠, C2 =
⎛⎝ 0 1 0

−1 0 0
0 0 0

⎞⎠ , (14)

while ε is the Toeplitz matrix of the Fourier coefficients of the
electric permittivity tensor

ε =

⎛⎜⎜⎝
ε(0) ε(−1) · · · ε(−2N )
ε(1) ε(0) · · · ε(−2N + 1)

...
...

...
ε(2N ) ε(2N − 1) · · · ε(0)

⎞⎟⎟⎠ . (15)

Correspondingly e and h are 3(2N + 1)-dimensional vectors:

e =

⎛⎜⎜⎝
e(−N )

e(−N + 1)
...

e(N )

⎞⎟⎟⎠ , h =

⎛⎜⎜⎝
h(−N )

h(−N + 1)
...

h(N )

⎞⎟⎟⎠ . (16)

We characterize the 4(2N + 1) physically acceptable so-
lutions (nonzero eigenvalues) of Eq. (13) by a superscript
s = +(−), which denotes waves propagating or decaying

in the positive (negative) z direction, a subscript p = 1, 2
indicating the two eigenpolarizations, and another subscript
ν = −N,−N + 1, . . . , N which labels the different eigen-
modes. The electric and magnetic field components of these
modes, with unit amplitude, wave vector qs

pν = q‖ + qs
pν ẑz,

and polarization eigenvectors es
pν (n) and hs

pν (n), are given by

E s
pν (r, t ) =

N∑
n=−N

exp
[
i
(
qs

pν · r + n�t
)]

es
pν (n),

Hs
pν (r, t ) = 1

Z0

N∑
n=−N

exp
[
i
(
qs

pν · r + n�t
)]

hs
pν (n) . (17)

In the case of static homogeneous media, Eq. (13) is
reduced to a set of 2N + 1 independent eigenvalue equations
[57](

knε C1

−C1 knμI

)−1(
0 C2

−C2 0

)(
e
h

)
= 1

qz

(
e
h

)
, (18)

one for each value of n = −N,−N + 1, . . . , N , where ε are
the elements of the corresponding static dielectric tensor.
From the physically acceptable eigenvectors es

pn and hs
pn of

Eqs. (18), we construct the eigenvectors which appear in
Eqs. (17) as follows: es

pν (n) = δνnes
pn, hs

pν (n) = δνnhs
pn, while

the corresponding wave vectors are qs
pν = qs

pn.
We now consider a planar interface between two different

homogeneous, in general time-periodic with the same peri-
odicity, media: (1) on the left and (2) on the right side of
the interface. The interface is perpendicular to the z axis,
which is directed from left to right, at z = 0. Let us assume
an eigenmode of the EM field given by Eqs. (17), with
amplitude equal to unity, wave vector q+(1)

p′ν ′ , and polarization

described by e+(1)
p′ν ′ , h+(1)

p′ν ′ , incident on the interface from the
left. Scattering at the interface gives rise to transmitted and
reflected waves with wave vectors q+(2)

pν and q−(1)
pν , p = 1, 2,

ν = −N,−N + 1, . . . , N , respectively, characterized by the
associated polarization eigenvectors. As a result of the com-
mon temporal periodicity of both media on either side of the
interface (this comprises the case where the one medium is
time invariant), the Floquet quasifrequency ω remains con-
stant, similarly to the Floquet quasimomentum, or else the
Bloch wave vector, when there is spatial periodicity [58,59].
In addition, translation invariance parallel to the interface
implies that q‖ remains the same for all of these waves. We
denote the relative amplitudes of the transmitted and reflected
waves (with respect to the amplitude of the incident wave) by
S++

pν;p′ν ′ and S−+
pν;p′ν ′ , respectively. In a similar manner we can

proceed for an EM wave incident on the interface from the
right and obtain transmitted and reflected waves of relative
amplitudes S−−

pν;p′ν ′ and S+−
pν;p′ν ′ , respectively. Continuity of the

tangential components of the EM field at the interface, in
each case, yields 4(2N + 1) linear systems, each of dimension
4(2N + 1) × 4(2N + 1), which can be written in compact
form as
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⎛⎜⎜⎜⎝
−e−(1)

1−Nx −e−(1)
2−Nx · · · −e−(1)

2Nx e+(2)
1−Nx e+(2)

2−Nx · · · e+(2)
2Nx

−e−(1)
1−Ny −e−(1)

2−Ny · · · −e−(1)
2Ny e+(2)

1−Ny e+(2)
2−Ny · · · e+(2)

2Ny

−h−(1)
1−Nx −h−(1)

2−Nx · · · −h−(1)
2Nx h+(2)

1−Nx h+(2)
2−Nx · · · h+(2)

2Nx

−h−(1)
1−Ny −h−(1)

2−Ny · · · −h−(1)
2Ny h+(2)

1−Ny h+(2)
2−Ny · · · h+(2)

2Ny

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S−s′
1−N ;p′ν ′

S−s′
2−N ;p′ν ′

...

S−s′
2N ;p′ν ′

S+s′
1−N ;p′ν ′

S+s′
2−N ;p′ν ′

...

S+s′
2N ;p′ν ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= s′

⎛⎜⎜⎜⎜⎝
es′(m)

p′ν ′x

es′(m)
p′ν ′y

hs′(m)
p′ν ′x

hs′(m)
p′ν ′y

⎞⎟⎟⎟⎟⎠ , (19)

for p′ = 1, 2, ν ′ = −N,−N + 1, . . . , N , and s′ = +(−). We
note that m = 1 or 2 denotes the appropriate medium, which
corresponds to s′ = + or −, respectively.

In order to evaluate the scattering properties of multilayer
structures, it is convenient to express the waves on the left
(right) side of a given interface about different points, at a
distance −d1 (d2) from a center at the interface, so that all
backward- and forward-propagating (or evanescent) waves in
medium m between two consecutive interfaces refer to the
same (arbitrary) origin at Rm. This requires redefining the
transmission and reflection coefficients of the interface by
multiplying with the appropriate phase factors, as follows
[58,59]:

QI
pν;p′ν ′ = S++

pν;p′ν ′ exp
{
i
[
q+(2)

pν · d2 + q+(1)
p′ν ′ · d1

]}
,

QII
pν;p′ν ′ = S+−

pν;p′ν ′ exp
{
i
[
q+(2)

pν · d2 − q−(2)
p′ν ′ · d2

]}
,

QIII
pν;p′ν ′ = S−+

pν;p′ν ′ exp
{ − i

[
q−(1)

pν · d1 − q+(1)
p′ν ′ · d1

]}
,

QIV
pν;p′ν ′ = S−−

pν;p′ν ′ exp
{ − i

[
q−(1)

pν · d1 + q−(2)
p′ν ′ · d2

]}
.

(20)

In the particular case of an interface between two static
homogeneous media, Eq. (19) is reduced to a set of 2N + 1
independent linear equations [57]⎛⎜⎜⎜⎝

−e−(1)
1nx −e−(1)

2nx e+(2)
1nx e+(2)

2nx

−e−(1)
1ny −e−(1)

2ny e+(2)
1ny e+(2)

2ny

−h−(1)
1nx −h−(1)

2nx h+(2)
1nx h+(2)

2nx

−h−(1)
1ny −h−(1)

2ny h+(2)
1ny h+(2)

2ny

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

S−s′
1n;p′n

S−s′
2n;p′n

S+s′
1n;p′n

S+s′
2n;p′n

⎞⎟⎟⎟⎠= s′

⎛⎜⎜⎜⎜⎝
es′(m)

p′nx

es′(m)
p′ny

hs′(m)
p′nx

hs′(m)
p′ny

⎞⎟⎟⎟⎟⎠ ,

(21)

one for each value of n = −N,−N + 1, . . . , N . Therefore, the
transmission and reflection matrices become diagonal in n,
which reflects frequency conservation.

The transmission and reflection matrices of a pair of con-
secutive interfaces, i and i + 1, are obtained by properly com-
bining those of the two interfaces so as to describe multiple
scattering to any order. This leads to the following expressions
after summing the infinite geometric series involved [58,59]:

QI = QI
(i+1)

[
I−QII

(i)Q
III
(i+1)

]−1
QI

(i),

QII = QII
(i+1) + QI

(i+1)Q
II
(i)

[
I − QIII

(i+1)Q
II
(i)

]−1
QIV

(i+1),

QIII = QIII
(i)+QIV

(i)Q
III
(i+1)

[
I−QII

(i)Q
III
(i+1)

]−1
QI

(i),

QIV = QIV
(i)

[
I−QIII

(i+1)Q
II
(i)

]−1
QIV

(i+1) . (22)

It is obvious that one can repeat the above process to
obtain the transmission and reflection matrices Q of three
consecutive interfaces, by combining those of the pair of the
first interfaces with those of the third interface, and so on; by
properly combining the Q matrices of component units, one
can obtain the Q matrices of a slab which comprises any finite
number of interfaces.

In general, we want to describe a multilayer slab, which
comprises time-periodic media, sandwiched between two
semi-infinite homogeneous and isotropic static media: (A) on
its left and (B) on its right, characterized by scalar relative
electric permittivities εA, εB and magnetic permeabilities μA,
μB, respectively. The transmission and reflection coefficients
of the structure are obtained using the pairing procedure de-
scribed by Eqs. (22). For a wave incident on the slab from the
left, of the form E in(r, t ) = exp {i[q+(A)

n′ · rA + n′�t )]}e+(A)
p′n′ ,

the transmitted and reflected fields are given by

E tr (r, t ) =
∑
p,n

QI
pn;p′n′ exp

{
i
[
q+(B)

n ·rB + n�t
]}

e+(B)
pn , (23)

E rf (r, t )=
∑
p,n

QIII
pn;p′n′ exp

{
i
[
q−(A)

n ·rA + n�t
]}

e−(A)
pn , (24)

where rm = r − Rm, q±(m)
n = q‖ + q±(m)

nz ẑ, q±(m)
nz =

±
√

k2
nεmμm − q2

‖ , with m = A, B denoting the appropriate
medium. We note that, in an isotropic medium such as
A or B, the polarization eigenmodes are degenerate; this
is why the polarization index p (or p′) has been dropped
from the corresponding wave vectors. Having calculated the
transmitted and reflected fields, we obtain the transmittance T
and reflectance R of the slab. These are defined as the ratio of
the flux of the transmitted or of the reflected field to the flux
of the incident wave, respectively. Integrating the Poynting
vector over the x-y plane, on each time appropriate side of the
slab, and taking the average over a long time interval τ → ∞,
we obtain

T =
∑
p,n

Tpn =
∑
p,n

∣∣QI
pn;p′n′

∣∣2 Re
[
q+(B)

nz

]
μA

Re
[
q+(A)

n′z

]
μB

, (25)

R =
∑
p,n

Rpn =
∑
p,n

∣∣QIII
pn;p′n′

∣∣2 Re
[
q−(A)

nz

]
Re

[
q+(A)

n′z

] , (26)

provided that ω �= n�/2 [8], a condition that will be always
satisfied in our case. Because of the time variation of the
permittivity tensor, the EM energy is not conserved even
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Solve
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FIG. 2. Schematic description of the fully dynamic time Floquet
scattering-matrix method.

in the absence of dissipative (thermal) losses. In this case,
A = 1 − T − R > 0 (< 0) means energy transfer from (to)
the EM to (from) the spin-wave field.

B. Results

We now demonstrate the validity of the fully dynamic
time Floquet scattering-matrix method described above, and
compare with the adiabatic approximation, on the struc-
ture of Fig. 1(a). We recall that this structure supports two
neighboring defect modes in the lowest Bragg gap. As in
Sec. II, we consider p-polarized incident light, with fre-
quency ω0a/c = 1.88375 and q‖a = 1.2 that corresponds to
the higher-frequency defect mode in Fig. 1(c), and assume ex-
citation of a second-order perpendicular standing spin wave of
frequency �2 with a relative amplitude η = 0.1. The presence
of the spin wave induces a spatial and time-periodic variation
in the permittivity tensor [see Eq. (4)]. To deal with spatial
inhomogeneity we consider 50 elementary homogeneous sub-
layers in the magnetic film while the dynamic response is
described assuming a truncation order N = 20 in the Fourier
series expansions involved. These parameters ensure excellent
convergence of the numerical results.

Our method proceeds as schematically described in Fig. 2.
We first calculate the eigenmodes of the EM field in each
of the 53 (infinite) homogeneous media involved, i.e., the
50 dynamic media that represent the Bi:YIG film under the
action of the spin wave and the 3 static media (air, SiO2,
TiO2), solving the appropriate eigenvalue-eigenvector equa-
tions, Eq. (13) and Eq. (18), respectively. Then, we evaluate

FIG. 3. The structure of Fig. 1(a), under continuous excitation of
a second-order perpendicular standing spin wave of frequency �2

with a relative amplitude η = 0.1, is illuminated from the left by
p-polarized light with q‖a = 1.2 at the resonance frequency ω0a/c =
1.88375. (a), (b) Variation of the elastic and inelastic total outgoing
light intensities versus the spin-wave frequency �2 associated with
(a) emission and (b) absorption of zero (black line), one (orange
line), and two (blue line) magnons by a photon. (c), (d) An enlarged
view in the region where the magnon(s) frequency matches the
frequency difference between the two optical resonances shown in
Fig. 1(c) (triple-resonance condition). The shaded area in (c) shows
the corresponding optical absorption.

the transmission and reflection matrices Q of the consecutive
interfaces by Eq. (19), or Eq. (21) in the simple case of an
interface between two static media, and Eqs. (20). At each
step of the iterative procedure, the Q matrices of the entire
slab built up to the current interface are obtained according
to Eqs. (22). Therefore, at the end of the procedure, the Q
matrices of the whole structure are readily available and the
corresponding transmittance and reflectance are calculated
from Eqs. (25) and (26), respectively.

Figure 3 displays the total (transmitted plus reflected)
intensity of the elastic and inelastic outgoing light beams,
associated with absorption and emission of zero, one, and
two magnons by a photon, as a function of the spin-wave fre-
quency. It can be seen that, at spin-wave frequencies smaller
than the width of the optical resonance (�a/c ∼ 10−6), we
recover the results of the quasistatic adiabatic approximation.
The calculated intensities of the elastic and inelastic outgoing
light beams are in perfect agreement with those reported in
Table I, while the actual value of the spin-wave frequency
is, indeed, immaterial. In Figs. 3(a) and 3(b) we see that, as
�2 increases, the quasistatic adiabatic approximation breaks
down and a fully dynamic approach, which properly takes into
account the initial and final photon states, is required. If �2 is
of the order of the dynamical frequency shift of the optical res-
onance (�ωa/c ∼ 10−6), the intensities of the scattered light
beams exhibit an oscillatory behavior. By further increasing
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�2, inelastic light-scattering processes are suppressed, since
the final states are within the gap, where the optical density of
states is very low, and we are essentially left with only elastic
scattering. At higher values of �2, the magnon frequency can
match the frequency difference between the two optical reso-
nances shown in Fig. 1(c) (triple-resonance condition). In this
case, one-magnon emission processes are favored, leading to
enhanced intensities of the corresponding n = 1 inelastically
transmitted and reflected light beams, for both polarization-
conserving and polarization-converting processes. At the
same time, elastic scattering is considerably reduced, by about
45%, while the other inelastic processes are also resonantly
affected, though to a much lower degree. Overall, there is an
excess number of magnons produced, which is manifested as
a peak in the total optical absorption spectrum as depicted in
Fig. 3(c), thus clearly indicating a resonant energy transfer
from light to spin waves. This effect, also, cannot be ac-
counted for by the adiabatic approximation. It is worth not-
ing that the triple-resonance condition can be accomplished
by many-magnon emission processes as well; however, the
effects are considerably weaker as shown in Fig. 3(d).

So far, quantities are expressed in terms of the lattice
parameter a. Taking a = 300 nm, the optical wave considered
is tuned to a frequency ω0/(2π ) = 300 THz, i.e., a wave-
length λ0 = 1 μm. Correspondingly, the spin-wave frequency
�2/(2π ) in Figs. 3(a) and 3(b) ranges from about 10−2 to
102 GHz. It should be pointed out that the different features
observed can be tuned in frequency by appropriately choosing
the geometric parameters of the structure. For example, the
triple-resonance condition can be shifted to lower frequencies,
say to the few-gigahertz region which is typical for perpen-
dicular standing spin waves [60], by increasing the lattice pa-
rameter a and, accordingly, the optical wavelength. This will
also require to use a lower Faraday coefficient [52], leading
to a smaller separation between the two optical resonances
involved. We recall that the amplitude of the multiple-magnon
processes increases with the coupling strength �ω/�. In this
respect, it should be noted that the lifetime of a resonant defect
mode (∝1/�) can be made arbitrarily long by increasing
the number of unit cells in the Bragg mirrors, provided that
absorptive losses are negligible, while �ω can be widened by
raising the spin-wave amplitude.

IV. CONCLUSION

In summary, we formulated a fully dynamic time Floquet
scattering-matrix method, with arbitrary-order accuracy, in
order to describe the interaction of visible and infrared light
with spin waves in layered optomagnonic structures. The
method is robust, computationally efficient, and, contrary to
brute-force time-domain methods, is ideally suited for fast and
accurate calculations of the optical response of periodically
driven systems where two very different time scales are in-
volved. The applicability of the method is demonstrated on
a specific model of a dual photonic-magnonic cavity, which
operates in the strong-coupling regime. The cavity is formed
by sandwiching a magnetic Bi:YIG film between two dielec-
tric Bragg mirrors and is subject to continuous excitation of a
perpendicular standing spin wave. For spin-wave frequencies
smaller than the width of the optical resonance, we recover the

results of the adiabatic approach, namely, enhanced modula-
tion of light through multimagnon absorption and emission
mechanisms, beyond the linear-response approximation. For
higher spin-wave frequencies where the adiabatic approach
breaks down, our fully dynamic calculations provide evidence
for the occurrence of remarkable effects, such as enhanced in-
elastic light scattering in the nonlinear strong-coupling regime
when a triple-resonance condition is fulfilled and resonant
energy transfer between the photon and the magnon fields. We
note that similar effects should occur, also, for perpendicular
standing spin waves in in-plane magnetized films as well as
for surface Dammon-Eshbach and backward volume waves
with an in-plane propagation wave vector. In the latter cases,
however, the spin wave induces a periodic variation of the
electric permittivity tensor both in time and in the propaga-
tion direction. The implementation of a space-time Floquet
scattering-matrix method for a fully dynamic description of
such cases is currently in progress.
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APPENDIX

In order to gain further insight into the accuracy and limits
of validity of the quasistatic adiabatic approximation, let
us consider a generic one-dimensional quantum mechanical
model—a particle of mass m in a periodically oscillating
δ-function potential at the origin—in which case Schrödinger
equation reads

ih̄
∂�(x, t )

∂t
= − h̄2

2m

∂2�(x, t )

∂x2
+ gcos(�t )δ(x)�(x, t ).

(A1)
We note that this model was studied, though in a different
perspective, also by Martinez and Reichl [61]. We want to
describe scattering of the particle, when it impinges with
(kinetic) energy E on the potential from x < 0. It is straight-
forward to show from Eq. (A1) that the wave function of the
incident particle, with amplitude equal to unity, is

�in(x, t ) = exp[i(k0x − Et/h̄)] , (A2)

for x < 0, where

E = h̄2k2
0

2m
. (A3)

We now assume that the variation of the potential is rela-
tively slow, i.e., � � E/h̄ ≡ ω, and undertake an adiabatic
approach by solving the problem with the potential strength
kept fixed and then, at the end of the calculation, allow it to
change in successive snapshots within a period T = 2π/�.
This implies transmitted and reflected waves of the form

�tr (x, t ) = k0

k0 + imgcos(�t )/h̄2 exp[i(k0x − ωt )] , (A4)

for x > 0, and

�rf (x, t ) = −imgcos(�t )/h̄2

k0 + imgcos(�t )/h̄2 exp[i(−k0x − ωt )] , (A5)
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for x < 0, which can be readily obtained by applying the well-
known results for the static δ-function potential [62].

Expanding the periodically varying transmission and re-
flection coefficients into Fourier series we have

�tr (x, t ) =
∑

n=0,±1,±2,...

A0
tr (n) exp{i[k0x − (ω − n�)t]} , (A6)

for x > 0, and

�rf (x, t ) =
∑

n=0,±1,±2,...

A0
rf (n) exp{i[−k0x − (ω − n�)t]} , (A7)

for x < 0, where

A0
tr (n) = 1

T

∫ T

0
dt

k0

k0 + imgcos(�t )/h̄2 exp(−in�t ) (A8)

and A0
rf (n) = A0

tr (n) − δn0. The Fourier coefficients A0
tr (n) can

be evaluated analytically by contour integration, which yields

A0
tr (n) = α0√

α2
0 + 1

i|n|(α0 −
√

α2
0 + 1)|n| , (A9)

where α0 ≡ k0 h̄2/(mg), and the actual value of � is of course
immaterial.

Equations (A6) and (A7) tell us that the transmit-
ted and reflected wave functions consist of an infinite
number, n = 0,±1,±2, . . ., of plane-wave beams of the
same wave number k0, frequencies ω − n�, and amplitudes
A0

tr (n) and A0
rf (n), respectively. The corresponding trans-

mittance, T , and reflectance, R, are defined as the time-
averaged [limτ−→∞ 1

τ

∫ τ

0 dt (· · · )] probability current [J =
h̄
m Im(�∗∇�)] associated with the transmitted and reflected
waves in the direction of flow, x̂ and −x̂, respectively, relative
to that of the incident wave. Using Eq. (A7) we obtain

T =
∑

n=0,±1,±2,...

∣∣A0
tr (n)

∣∣2 ≡
∑

n=0,±1,±2,...

Tn, (A10)

R =
∑

n=0,±1,±2,...

∣∣A0
rf (n)

∣∣2 ≡
∑

n=0,±1,±2,...

Rn . (A11)

We note that, considering the Fourier series expan-
sions α0/(α0 + i cos φ) = ∑

n=0,±1,±2,... A0
tr (n) exp(inφ) and

−i cos φ/(α0 + i cos φ) = ∑
n=0,±1,±2,... A0

rf (n) exp(inφ), Par-
seval’s theorem implies T + R = 1, as expected for a nondis-
sipative adiabatically changing system.

On the other hand, a fully dynamic solution to the scat-
tering problem described above can be obtained by a Fourier
expansion of the incident, transmitted, and reflected wave
functions, prior to applying the appropriate boundary condi-
tions. We have

�in(x, t ) =
∑

n=0,±1,±2,...

Ain(n) exp{i[knx − (ω − n�)t]} ,

�tr (x, t ) =
∑

n=0,±1,±2,...

Atr (n) exp{i[knx − (ω − n�)t]} ,

�rf (x, t ) =
∑

n=0,±1,±2,...

Arf (n) exp{i[−knx − (ω − n�)t]} , (A12)

where

h̄(ω − n�) = h̄2k2
n

2m
. (A13)

Continuity of the total wave function �(x, t ) (� = �in + �rf

for x < 0 and � = �tr for x > 0) requires

Ain(n) + Arf (n) − Atr (n) = 0 , (A14)

for n = 0,±1,±2, . . .. Moreover, integrating Eq. (A1), we
obtain a discontinuity in the first derivative of the total wave
function,

∂�(x, t )

∂x

∣∣∣∣
x→0+

− ∂�(x, t )

∂x

∣∣∣∣
x→0−

= 2m

h̄2 gcos(�t )�(0, t ) ,

(A15)
which, with the help of Eq. (A14), leads to

Atr (n) + i

2αn
Atr (n − 1) + i

2αn
Atr (n + 1) = Ain(n) (A16)

for n = 0,±1,±2, . . ., where αn ≡ knh̄2/(mg). Equation
(A16) provides the fully dynamic solution for the transmitted
wave function while the reflected wave function can be readily
obtained from Eq. (A14). The corresponding transmittance
and reflectance are given by

T =
∑

n=0,±1,±2,...

|Atr (n)|2 Re(kn)

k0
≡

∑
n=0,±1,±2,...

Tn,

R =
∑

n=0,±1,±2,...

|Arf (n)|2 Re(kn)

k0
≡

∑
n=0,±1,±2,...

Rn . (A17)

We note that here, contrary to the quasistatic adiabatic descrip-
tion, for n > ω/� we obtain evanescent plane-wave beams
that do not contribute to the transmittance and the reflectance
because Re(kn) = 0.

It would be now interesting to compare the results of the
adiabatic approximation with those of the fully dynamic de-
scription in the limit � � ω. Taking αn = α0, Eq. (A16), for
Ain(n) = δn0 as appropriate to the case under consideration,
yields directly Atr (n) equal to the middle (n = 0) column of
the inverse of a tridiagonal Toeplitz matrix with the elements
of its main diagonal equal to unity and the elements of its
first diagonals below and above the main diagonal equal to
i/(2α0). Using the explicit expressions for the inverse of a
general tridiagonal Toeplitz matrix of dimensions (2N + 1) ×
(2N + 1) [63], we obtain in our case here

Atr (n) = (−1)|n|(−2iα0)
UN−|n|(−iα0)UN (−iα0)

U2N+1(−iα0)
, (A18)

for n = 0,±1,±2, . . . ,±N , where Up(z) are the Chebyshev
polynomials of the second kind [64] given by

Up(z) = rp+1
+ − rp+1

−
r+ − r−

(A19)

with r± = z ± √
z2 − 1. Interestingly, restricting to |n| � N ,

in the limit of matrix dimensions tending to infinity, Eq. (A18)
leads strictly to Eq. (A9): Atr (n) = A0

tr (n).
For αn �= α0, the matrix to be inverted is a tridiagonal

Jacobi (non-Toeplitz) matrix and an elegant, concise formula
for its inverse is also available [63]. Though in this general
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FIG. 4. Partial transmittance associated with the different plane-
wave beams, Tn, calculated by the adiabatic approximation (points)
and by the fully dynamic approach (orange bars), for different values
of α0 and �/ω: (a) α0 = 0.5, �/ω = 10−3; (b) α0 = 0.5, �/ω =
10−1; (c) α0 = 0.05, �/ω = 10−3; and (d) α0 = 0.05, �/ω = 10−1.

case no simple analytic solution can be obtained, considering
�/ω � 10−3, numerical calculations show that the absolute
relative difference between the results of the adiabatic ap-
proximation and the fully dynamic approach does not exceed
10−3. The calculated partial transmittance associated with the
different plane-wave beams, Tn, considering sufficiently large

tridiagonal matrices to ensure convergence, is depicted in
Fig. 4 for some characteristic cases. It can be seen that strong
deviations from the results of the adiabatic approximation
appear only for simultaneously large-amplitude (α0 = 0.05)
and fast (�/ω = 0.1) variations. It is worth noting that, in
quantum mechanics, the transmittance and reflectance usually
refer to probability currents, as in the example considered
here, and not to energy currents as commonly described in
electromagnetism by the Poynting vector [65]. Probability
current conservation (T + R = 1) is here always satisfied
(to machine accuracy ∼10−16) in both adiabatic and fully
dynamic calculations, as expected for the Hermitian Hamilto-
nian system under study. In addition to that, the adiabatic ap-
proximation should also preserve energy current conservation;
i.e., since particles in the nth beam have an energy h̄(ω − n�),
the quantity

∑
n=0,±1,±2,... n�(Tn + Rn) must vanish identi-

cally, which is indeed ensured by the symmetry properties
T−n = Tn and R−n = Rn implied by Eq. (A9). Of course,
these symmetry properties are not satisfied in the fully dy-
namic description of the problem, as can be clearly seen in
the bottom right diagram of Fig. 4, while small deviations
from the perfectly symmetric partial transmittance also exist
in the other diagrams but they are not discernible in the scale
of the figure. This is translated to the absence of energy con-
servation, as expected in the actual time-varying system under
consideration. It becomes, therefore, clear from the example
elaborated above that the quasistatic adiabatic approximation
provides a reasonably good description of wave scattering
in systems with a relatively slow (but not necessarily weak)
periodic variation with time, at least to the extent where the
scattering spectral features do not exhibit strong changes over
a frequency range of the order of � such as in inelastic
scattering between resonant modes.
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