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We investigate the ground-state phase diagram of the frustrated transverse-field Ising (TFI) model on the
checkerboard lattice (CL), which consists of Néel, collinear, quantum paramagnet, and plaquette-valence bond
solid (-VBS) phases. We implement a numerical simulation that is based on the recently developed unconstrained
tree tensor network ansatz, which systematically improves the accuracy over the conventional methods as it
exploits the internal gauge selections. At the highly frustrated region (J2 = J1), we observe a second-order phase
transition from the plaquette-VBS state to the paramagnet phase at the critical magnetic-field �c = 0.28 with the
associated critical exponents ν = 1 and γ � 0.4, which are obtained within the finite-size scaling analysis on
different lattice sizes N = 4 × 4, 6 × 6, 8 × 8. The stability of the plaquette-VBS phase at low magnetic fields is
examined by a spin-spin correlation function, which verifies the presence of plaquette-VBS at J2 = J1 and rules
out the existence of a Néel phase. In addition, our numerical results suggest that the transition from the Néel (for
J2 < J1) to the plaquette-VBS phase is a deconfined phase transition. Moreover, we introduce a mapping, which
renders the low-energy effective theory of the TFI on the CL to be the same model on the J1 − J2 square lattice
(SL). We show that the plaquette-VBS phase of the highly frustrated point J2 = J1 on the CL is mapped to the
emergent string-VBS phase on the SL at J2 = 0.5J1.
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I. INTRODUCTION

Quantum phases of matter without magnetic long-range
order have become an interesting field of research in recent
years. Frustrated magnetic systems are one of the best candi-
dates to bring about such phases, such as spin-ice materials or
spin liquids [1–3]. In fact, frustrated magnetic models imply
large degenerate classical ground states (GSs) that are very
sensitive to perturbations, such as thermal or quantum fluc-
tuations, spin-orbit interactions, spin-lattice couplings, and
impurities, all of which might be present in actual materials
[4,5]. Novel unconventional phases, such as valence bond
solids (VBSs) and spin liquids can emerge from the effect of
such perturbations on classical frustrated systems. Moreover,
the existence of artificial square ice [6–8] and the realization
of quantum spin ice with Rydberg atoms [9] demand a com-
prehensive understanding of the associated models that are
generic for such materials.

Generally, a spin system is frustrated whenever one cannot
find a configuration of spins to fully satisfy the interacting
bonds between every pair of spins [5,10]. For instance, a
diagonal bond in addition to vertical and horizontal bonds
construct a triangle, which makes frustration on the spins
sitting on triangle corners of a square plaquette. In this re-
spect, spin-1/2 antiferromagnetic Ising models on the J1 − J2

square and half depleted square, i.e., checkerboard, lattices are
generic two-dimensional (2D) frustrated magnets in which J1

and J2, the strength of nearest- and next-nearest-neighbor in-
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teractions, respectively, compete with each other (see Fig. 1).
These are prototype models that low dimensionality makes
them an easier target for numerical/analytical approaches in
contrast to three-dimensional counterparts [11–15]. Accord-
ingly, the checkerboard lattice (CL) can be assumed as the
2D version of the pyrochlore lattice of true spin-ice materials
[16]. Here, we focus particularly on the role of quantum
fluctuations on the ground-state phase diagram of planar spin
ice, namely, the CL and its low-energy effective theory on the
square lattice (SL).

In the case of the Ising model on the CL, quantum fluc-
tuations introduced by both the transverse magnetic field
[16,17] and the in-plane XY interactions [18–21] lift the
classical degeneracy of the highly frustrated point J2 = J1

toward a nonmagnetic plaquette-valence bond solid (-VBS)
phase [16–18,22] with broken translational symmetry, which
shows twofold degeneracy. The plaquette-VBS phase, which
is mediated by anharmonic quantum fluctuations as an order-
by-disorder phenomenon [23–25], emerges from an expo-
nentially degenerate classical background, which cannot be
observed within linear spin-wave theory [26,27] due to strong
frustration. In order to shed more light on the highly frustrated
region, in the first part of our paper, we obtain the GS phase
diagram of the CL accurately by using a variational tree tensor
network (TTN) ansatz and compare it with previous studies.
We use a novel unconstrained (gauge-free) TTN, generalized
to the CL to approximate the ground state of the system with
higher accuracy compared with previous isometric schemes
[28]. By computing local correlations and plaquette operator
expectations, we find that a plaquette-VBS state is established
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FIG. 1. J1 − J2 model on the (left) square lattice and the (right)
checkerboard lattice. The solid and dashed lines are J1 and J2 bonds,
respectively.

at the low magnetic field around the J2 = J1 region of the CL.
Our results show that by increasing the transverse magnetic
field, a second-order phase transition occurs at �c = 0.28
from the plaquette-VBS phase to the paramagnetic phase.
The associated critical exponents are ν = 1 and γ � 0.4,
where ν reveals the divergence of correlation length and γ

is an exponent, which governs the singularity in magnetic
susceptibility. We do not observe any other critical point
except the mentioned one, which rules out a canted Néel
phase predicted by the Monte Carlo study [25] at J2 = J1. Our
results of unconstrained TTN are in good agreement with the
results of the cluster operator approach (COA) [22].

On the other hand, the J1 − J2 transverse-field Ising (TFI)
model on the square lattice shows an emergent string-VBS
phase at the fully frustrated point J2 = 0.5J1 [29,30]. It can be
expressed that quantum fluctuations by means of a transverse
field, lift the classical degeneracy toward doubly degener-
ate VBS states along the horizontal or vertical directions
of the square lattice called the string-VBS phase. However,
there is a possibility that such a phase can be extended to
an intermediate region around the highly frustrated point
J2 = 0.5J1, which is sandwiched between Néel and striped
antiferromagnetic states for small and large J2/J1, respectively
[31]. Accordingly, in the second part of our paper, we consider
a different strategy to clarify the quantum phase diagram of
the TFI model on the J1 − J2 SL. We introduce a mapping
from the CL to the SL, which leads to the GS phase diagram
of the J1 − J2 SL in terms of the phase diagram of the CL of
the corresponding model. In other words, we claim that the
low-energy effective theory of the frustrated TFI on the CL is
given by the frustrated TFI on the SL. This mapping suggests
a string-VBS order at the highly frustrated regime of the SL,
which is in agreement with the results of the COA [29]. It is
worth mentioning that the TFI model could represent the large
easy-axis anisotropic limit of the antiferromagnetic J1 − J2

Heisenberg model where the true nature of a nonmagnetic
(VBS) phase is still under debate on the SL [32–39] . Our
results would be useful for further investigations in the latter
model.

The paper is organized as follows. In the next section, we
briefly introduce the model and different phases on the CL.
In Sec. III, we inaugurate a numerical TTN technique to find
accurately the quantum phase diagram of the CL. Then, in
Sec. IV, we establish the mapping from the CL to the SL and
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FIG. 2. A schematic phase diagram of the S = 1/2 J1 − J2 TFI
model on the CL [22], including the information on the type of
transitions between different phases obtained within TTN numerical
simulation, namely, continuous and deconfined phase transitions.

derive the corresponding quantum phase diagram of the SL.
Finally, the paper is summarized and concluded in Sec. V.
The details of introduced mapping have been presented in the
Appendix.

II. THE MODEL HAMILTONIAN

The Hamiltonian of the J1 − J2 transverse-field Ising
model on the CL is as follows:

H = J1

∑
〈i, j〉

Sz
i Sz

j + J2

∑
〈〈i, j〉〉

Sz
i Sz

j − �
∑

i

Sx
i , (1)

where 〈i, j〉 spans the nearest-neighbor sites with J1 coupling,
J2 > 0 is the diagonal coupling on crossed plaquettes, � is
the strength of transverse magnetic field, and Sx,z refer to x
and z components of spin-1/2 operators on the vertices of the
lattice (see Fig. 1). It consists of four different phases, Néel
and collinear ordered phases close to the nonfrustrated points
J2/J1 = 0 and J2/J1 = 2, respectively, a quantum paramagnet
phase at high fields, and a plaquette-VBS phase for low
magnetic-fields � � 0.3, a narrow region around the highly
frustrated point J2 = J1. The corresponding phase diagram is
presented in Fig. 2, which has been obtained by the COA
approach [22]. In fact, it has been concluded that the expo-
nential degeneracy of the classical ground state at the highly
frustrated point J2 = J1 (known as square ice [26]) is lifted
toward a unique quantum plaquette-VBS state that breaks
translational symmetry of the lattice with twofold degeneracy.
It is a manifestation of order-by-disorder phenomena [23–25],
which is induced by quantum fluctuations.

In the next section, we use the unconstrained TTN ap-
proach to further confirm the quantum GS phase diagram of
the J1 − J2 TFI model on the CL. It has to be mentioned that
the plaquette-VBS exists in a narrow region on the highly
frustrated regime, which requires to be investigated within
high accurate numerical simulations. In addition, we apply the
TTN to find critical points and critical exponents of the phase
transitions from the plaquette-VBS state to the Néel, collinear,
and paramagnet phases, which can classify the type of phase
transition.
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FIG. 3. Tensor network representation of an unconstrained TTN
state |�〉 and its canonical form. (a) A TTN state for a 4 × 4 square
lattice is represented by tensors {wi} connected by the so-called
virtual bonds with dimension � to form a treelike geometrical graph.
(b) A tensor network representation of QR decomposition applied
to tensor w4 = Q4R4. One needs to fuse lower indices and then
represents it in a matrix form to perform decomposition. (c)–(e) The
procedure to transform a general TTN state to a canonical normal
form by using a sequence of QR decomposition. The norm tensor is
defined by removing tensor w1 from the tensor network representa-
tion of 〈�w1 |�w1 〉, denoted by N . A sequence of QR decomposition
is used to make norm tensor identity N = I: tensors w2, w3, w4

are decomposed into QR forms, and (d) then tensors R2, R3, R4

are absorbed into tensor w5, followed by a QR decomposition by
fusing the virtual bonds (last ones) w′

5 = Q5R5. (e) The canonical
procedure is completed by absorbing R5 into w1, i.e., w′

1 = w1R5.
In this canonical form, one observes that 〈�|�〉 = 〈w′

1|I|w′
1〉, i.e.,

the norm tensor is identity N = I . The final optimum tensor w′
1 is

obtained by solving He f f |w′
1〉 = λmin|w′

1〉, where He f f are obtained
by removing tensor w′

1 from 〈�w′
1
|H |�w′

1
〉.

III. UNCONSTRAINED TREE TENSOR
NETWORK ANSATZ

The TTN states provide a variational ansatz [28,40–43]
to simulate large 2D lattice sizes, beyond the possible sizes,
which can be reached by exact diagonalization. We use an
unconstrained TTN ansatz to variationally approximate the
ground-state wave function of the TFI model Eq. (1) on the
CL. The wave function is made of the local tensors {wi}
connected to each other to form a treelike graph as shown
in Fig. 3(a). The tensors {wi} effectively map a number
of spins to an effective superspin by dimension � at each
layer, making a coarse-graining transformation—each tensor
wi defines a projection from the original (physical) Hilbert

space onto the relevant subspace. That is the basic idea in
the renormalization group methodology invented by Kadanoff
[44]. Here, the goal is to use an efficient variational ansatz to
minimize the ground-state energy with respect to tensors {wi},
finding the best variational parameters [which grows, such
as O(�3)]. In this paper, we use a recently introduced novel
ansatz [43] which, in contrast to traditional schemes, releases
the internal gauge symmetry of the tensors (the isometry
constraint) and provides a computationally stable and efficient
algorithm with higher accuracy.

We shortly explain the unconstrained TTN variational
ansatz generalized to two-dimensional lattices. The optimiza-
tion method is performed by minimizing the energy with
respect to a specific tensor wi (whereas holding fixed other
tensors), i.e.,

min
wi

{〈�wi |H |�wi〉 − λ〈�wi |�wi〉 = 〈wi|Heff |wi〉
− λ〈wi|N |wi〉},

where the so-called norm tensor N and effective Hamiltonian
Heff are obtained by removing tensor wi from the tensor
network representation of 〈�wi |�wi〉 and 〈�wi |H |�wi〉. The
solution is given by solving a generalized eigenvalue problem
Heff |wi〉 = λminN |wi〉, which is a standard equation in linear
algebra. The optimization procedure is then completed by
using an iterative strategy: At each step, only one tensor is
optimized whereas others hold fixed, and then this task is
repeated over all tensors until the variational energy does not
change significantly. In practice, the norm tensor N causes
instability in the algorithm, whereas the condition number
(i.e., smallest singular value) would be too small. In order to
avoid that, we need to use a “canonical normal form” [45]
for the TTN state |�wi〉 by making the norm tensor identity
N = I (which is the best conditioning). The basic idea to
do that is to use appropriate gauge transformations similar to
the case of matrix product states: It is obtained by using a
sequence of QR decomposition by fusing virtual bonds in a
specific direction as shown in Figs. 3(b)–3(d). In this figure,
we have explained how to use QR decomposition to end
up with a canonical form. Once we obtain that, we replace
the tensor wi by solving the standard eigenvalue problem
Heff |wi〉 = λmin|wi〉, which could be efficiently solved without
suffering from bad conditioning.

The essential parameter � controls the accuracy of the
TTN ansatz as for � → ∞ the TTN state faithfully represents
the actual ground state of the system. The computational cost
of the algorithm scales, such as O(�4) and O(�3) for running
time and memory, respectively. In the present numerical TTN
simulation, we consider clusters 4 × 4, 6 × 6, and 8 × 8 with
both periodic and open boundary conditions. We always per-
form a finite-size analysis to study the behavior of the order
parameters. A polynomial fit up to the fourth order is used to
extrapolate the expectation values in the � → ∞ limit. The
largest bond dimension that we could afford is � ∼ 500 so
that the error in the variational ground-state energy is, at least,
on the order of 10−4 (near the critical point, which is the less
accurate case).

144414-3



SADRZADEH, HAGHSHENAS, AND LANGARI PHYSICAL REVIEW B 99, 144414 (2019)

J1 − J2 TFI model on the checkerboard lattice: TTN results

Before presenting the results, let us mention that the in-
teresting and controversial part of the TFI model on the CL
is in the low magnetic-field limit around the highly frustrated
coupling J2 = J1. This clarifies the reason that we concentrate
on this region, whereas the other parts of the phase diagram
are known by other methods without doubt [22,26]. To obtain
an accurate phase diagram for the J1 − J2 TFI model on the
CL via the TTN approach, we compute the first and second
derivatives of the ground-state energy by TTN simulation in
two distinct directions on the phase diagram. First, we trace
the phase diagram along �/J1 at fixed J2 = J1, and then we
consider another direction along J2/J1 at fixed magnetic-field
�/J1 = cte.

1. J2 = J1

According to the following equations, the first and second
derivatives of the ground-state energy with respect to � for the
limit J2 = J1 are equivalent to the transverse magnetization
and magnetic susceptibility, respectively,

mx = −∂〈H〉/∂�, (2)

χ = ∂mx/∂� = −∂2H/∂�2. (3)

Figures 4(a) and 4(b) show these quantities versus �/J1

(at J2 = J1) obtained from TTN data for different lattice
sizes. The transverse magnetization continuously reaches its
saturated value, which rules out any first-order transition at
this isotropic regime. However, we can see a peak on the
magnetic susceptibility, which becomes sharper and stronger
by increasing the lattice size, corresponding to a continuous
second-order phase transition. We use finite-size scaling the-
ory to evaluate the critical point and critical exponents for this
transition [46]. The scaling behavior of χ , which governs the
singularity at the critical point is

|�c − �max| ∼ N−1/2ν, (4)

χ (�max) ∼ Nγ /2ν, (5)

where �c is the critical field in the infinite size, �max is the
position of the extremum of finite-lattice susceptibility, ν is
the correlation length exponent, i.e., ξ ∼ |� − �c|−ν , and γ

exhibits the trend of singularity in the magnetic susceptibility.
We found a good scaling of TTN data, which give the

critical field to be �c = 0.28 ± 0.01 in the thermodynamic
limit. Interestingly, Fig. 5 confirms that both open and pe-
riodic boundary conditions lead to the same critical field
�c � 0.28. This critical point is also in good accord with
�c � 0.3 obtained from the COA results [22]. The inset of
Fig. 4(b) shows the correlation length exponent obtained
from finite-size scaling to be ν = 1.0 ± 0.01. Moreover, the
scale-invariant behavior of magnetic susceptibility is shown in
Fig. 4(c) representing a good data collapse of different sizes
with exponent γ = 0.44 ± 0.01. Furthermore, the presence
of only one peak in magnetic susceptibility assures that two
distinct phases exist at J2 = J1, which are separated at �c. This
single peak can be a signature for a quantum continuous phase
transition from the plaquette-VBS phase at low fields to the
quantum paramagnetic phase of high fields. The continuous
nature of such a transition is also confirmed by the broken
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FIG. 4. (a) The first derivative of the GS energy with respect to
� corresponding to the transverse magnetization obtained from TTN
data for different system sizes. (b) The second derivative of the GS
energy with respect to �, which is the magnetic susceptibility ob-
tained from TTN simulation for different lattice sizes. It shows only
a sharp peak indicating a phase transition from the plaquette-VBS
phase in low fields to the quantum paramagnet phase in high fields
at (�/J1)c = 0.28 ± 0.01 with exponent ν = 1.0 ± 0.01. (c) Data
collapse of magnetic susceptibility obtained from TTN data, which
show the scale invariance of susceptibility governed by exponent
γ = 0.44 ± 0.01.
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FIG. 5. The value of critical point versus inverse of lattice
sizes. Both periodic and open boundary conditions are presented,
which are fitted by the scaling relation �(N ) = �c(∞) + a

N . We
obtain �c(∞) = 0.28 ± 0.01 and 0.285 ± 0.01 for open and periodic
boundary conditions, respectively.

lattice translational symmetry of the plaquette-VBS phase
compared with a symmetric quantum paramagnetic phase
as we expect from a Landau-Ginzburg paradigm. The TTN
results presented on the large two-dimensional lattices N =
4 × 4, 6 × 6, and 8 × 8 do not show any signature for another
phase transition at J2 = J1, which rules out the existence of a
Néel order within 0.13 � � � 0.28 that has been reported by
Monte Carlo simulation in Ref. [25].

In order to confirm the nature of the ground state at low
fields, we calculate the nearest-neighbor correlation function
CNN = 〈Sz

i Sz
j〉 using TTN simulations on the 8 × 8 lattice

at J2 = J1. We obtained this correlation function for two
different low and high values of transverse-field �, shown in
Fig. 6. Correlations for the low-field regime depict a value
close to the maximum value of Néel-type ordering Cmax

NN =
−0.25 on the bonds of empty plaquettes with no corner
sharing, whereas correlations have very small values on the
other plaquettes. This is a clear signature of the plaquette
formation as a VBS state, which breaks lattice translational
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FIG. 6. Nearest-neighbor correlations, obtained by TTN numer-
ical simulation on the center of a 8 × 8 lattice at the J2 = J1. Left:
Correlations at �/J1 = 0.2, which show the breaking of lattice trans-
lational symmetry corresponding to the plaquette-VBS phase. Right:
Correlations at �/J1 = 0.6 corresponding to the high-field regime
of the quantum paramagentic phase, which preserves translational
symmetry.
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FIG. 7. (a) Expectation value of the translational order parameter
�T and (b) the plaquette order parameter operator 〈Ô〉 versus the
transverse magnetic field, obtained by the unconstrained TTN ansatz
on different lattice sizes.

symmetry leaving twofold degeneracy. However, by increas-
ing the magnetic field to the high-field regime, we reach a
quantum paramagnetic phase as it shows small correlations
along vertical and horizontal directions of the lattice.

Moreover, we plot in Fig. 7(a), the translational order
parameter, defined by

�T = 〈
Sz

ASz
B

〉 − 〈
Sz

BSz
C

〉
, (6)

as a function of �/J1 for different system sizes where the
sites A, B, and C are shown in Fig. 6. It is observed that
by increasing system size the translational order parameter
rapidly decreases (extrapolates to zero in the infinite-size
limit) for � > 0.3 and tends to a finite value for � < 0.3 (lat-
tice translational symmetry breaking), which is in agreement
with the nature of the phases discussed above.

In addition, we support the plaquette-VBS nature of the
ground state at low fields by calculating the ground-state ex-
pectation value of resonating plaquette operator (Ô) [22,25].
This operator is defined as

Ô = |ϕ〉〈ϕ̄| + |ϕ̄〉〈ϕ|, (7)

where |ϕ〉 = | ↑↓↑↓〉 and |ϕ̄〉 = | ↓↑↓↑〉 are two possible
Néel configurations of a single plaquette. In fact, Ô defines
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TABLE I. Numerical results of ground-state energy per site and
plaquette order parameter obtained from TTN simulations on the 8 ×
8 CL at J2 = J1 and open boundary conditions.

J2 = J1 � = 0.1 � = 0.2 � = 0.3 � = 0.4

E/N −0.2525 −0.2607 −0.2770 −0.3050
〈ô〉 0.9563 0.8866 0.6784 0.4579

a measure of resonating magnitude between |ϕ〉 and |ϕ̄〉 on
a plaquette. It is a suitable definition as it avoids formation
of magnetic long-range orders, such as Néel and collinear
states on the whole lattice. Hence, the expectation value of
Ô is very close to one for a resonating plaquette-valence bond
solid state, which has no magnetic order in the z direction.
Figure 7(b) shows the expectation value of 〈Ô〉 obtained by
TTN simulation on different lattice sizes. It is evident that, for
J2 = J1 and low fields, the value of 〈Ô〉 is very close to unity
which corresponds to the presence of a plaquette-VBS state.

2. �/J1 = 0.2

To elucidate the structure of the phase diagram close to
strong frustration, we fix the magnetic field in �/J1 = 0.2 and
trace the behavior along J2/J1. The first derivative of GS en-
ergy, according to relation C(2) = 〈Sz

i Sz
j〉〈〈i, j〉〉 = ∂〈H〉/∂J2, is

equivalent to the next-nearest-neighbor spin-spin correlation.
Figure 8(a) presents C(2) versus J2/J1, which shows a change
in sign at J2 = J1. However, the derivative of C(2)—that is
the second derivative of energy—represents two peaks as
shown in Fig. 8(b), which become sharper by increasing the
lattice size. These peaks are interpreted as two critical points
corresponding to two-phase transitions from the intermediate
plaquette-VBS phase to the Néel and collinear phases on both
sides of the phase diagram. The nature of quantum phase
transition from the plaquette-VBS to Néel and collinear an-
tiferromagnetic phases is an interesting feature of our results.
The Néel and plaquette-VBS orders break different kinds of
symmetries, i.e., Néel order breaks a discrete Z2 symmetry,
whereas plaquette-VBS breaks lattice translational symmetry.
We might expect that the nature of this transition is of the
first-order type in terms of conventional Landau-Ginzburg
theory. However, the first-order transition is ruled out by no
singular behavior in the first derivative of the GS energy as
shown in Fig. 8(a). Hence, we claim that the plaquette-VBS to
Néel transition should be of a deconfined quantum continuous
type according to the theory of deconfined quantum criticality
[47]. The deconfined quantum critical point between Néel and
plaquette-VBS phases occurs at (J2/J1)c = 0.9996, which is
completely consistent with the COA data reporting 0.999 [22].
On the other hand, as seen from Fig. 8, the plaquette-VBS
to collinear phase transition is also continuous. However,
it would be a conventional second-order phase transition,
because both the plaquette-VBS and collinear phases break
translational symmetry. The value of the latter critical point is
(J2/J1)c = 1.0013, which is also in agreement with the value
of 1.001 obtained by the COA. The insets of Fig. 8(b) depict
finite-size scaling data which reports the correlation length
exponent to be ν � 1.0 for both transition points.
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FIG. 8. (a) The first derivative of the GS energy with respect to
J2 at �/J1 = 0.2, obtained from TTN simulation for different system
sizes. (b) The second derivative of GS energy with respect to J2

at �/J1 = 0.2 shows two sharp peaks indicating phase transitions
from the Néel and collinear phases to the intermediate plaquette-
VBS phase. The critical points occur at (J2/J1)c = 0.9996 ± 0.0001
and (J2/J1)c = 1.0013 ± 0.0001, respectively, for Néel to plaquette-
VBS and collinear to plaquette-VBS transitions, both with critical
exponent ν � 1.0.

As a summary, Tables I and II show some numerical results
obtained by TTN simulation. Table I represents numerical val-
ues of the ground-state energy and plaquette order parameter
at J2 = J1 for different values of transverse-field �. In Table II,
we tabulate the corresponding critical points and exponents
obtained from finite-size scaling analysis on different parts of
the phase diagram.

TABLE II. Numerical values of critical points and exponents re-
sulting from the finite-size scaling analysis of TTN data for different
regimes on the CL phase diagram.

J2 = J1 � = 0.2, J2 < J1 � = 0.2, J2 > J1

�c ν γ J2c ν J2c ν

0.28 1.0 0.44 0.9996 1.002 1.0013 0.997
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)b()a(

FIG. 9. Mapping from the CL to the square lattice. (a) Hatched
crossed plaquettes of the CL form the unit cells of transformation.
Solid and dashed lines are J1 and J2 bonds, respectively. Green bullets
represent quasispins, which are associated with each unit cell. (b) A
square lattice constructed from quasispins by a lattice spacing twice
the original checkerboard one. Solid and dashed lines represent J1

and J2 bonds for the square lattice, respectively.

IV. MAP FROM THE CHECKERBOARD LATTICE TO THE
SQUARE LATTICE

Here, we establish our map from the CL to the SL. Let us
consider noncorner sharing set of crossed plaquettes on the
CL, as unit cells of our transformation [see Fig. 9(a)]. Ac-
cording to Fig. 9(a), we assign a quasi-spin-half to each unit
cell. These quasispins form a new square lattice, whose lattice
spacing is twice that of the original lattice [see Fig. 9(b)].
Accordingly, the transverse-field Ising Hamiltonian Eq. (1)
can be rewritten in the form

H = H0 + Hint,

H0 =
∑

I

HI , Hint =
∑
〈IJ〉

HIJ , (8)

where H0 is the sum on the Hamiltonians of unit cells
and Hint represents the interactions between unit cells. The
Hamiltonian of a unit cell is diagonalized exactly, i.e., J1 − J2

TFI model on a crossed plaquette with four spins. Figure 10
shows the first four energy levels of a unit cell versus J2/J1

in an arbitrary transverse-field �. For J2 < J1, the first two
eigenstates related to the lowest eigenenergies ε1 and ε2 are

J
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E
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rg
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Γ/J
1
=0.5
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|u
3

|u
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|u
1

FIG. 10. The first four energy levels of a single crossed plaquette
spectrum versus J2/J1 in (an arbitrary) transverse-field �/J1 = 0.5.

|u1〉 and |u2〉, respectively. These eigenstates are considered
as the bases for a quasispin (τ̂ = 1/2) devoted to the unit
cell. Hence, we define |u1〉I = |τ z

I =↑〉 and |u2〉I = |τ z
I =↓〉.

On the other hand, for J2 > J1, the two eigenstates related to
lowest eigenenergies are |u1〉 and |u3〉, where |u3〉 is twofold
degenerate, i.e., ε3 = ε4. Therefore, for J2 > J1, we consider
two states |u1〉 and |u′

2〉 = 1√
2
(|u3〉 + |u4〉) as | ↑〉 and | ↓〉

quasispins, respectively.
In the next step, we define projection operators onto the

subspace spanned by the low-energy sector of unit cells. In
fact, the terminology of effective theory, which describes the
low-energy behavior of a model is always accompanied by
the reduction in the Hilbert space. We define two projection
operators PI and P′

I of the unit cell labeled by I for J2 < J1

and J2 > J1, respectively. They read as

PI = |u1〉II〈u1| + |u2〉II〈u2|, (9)

P′
I = |u1〉II〈u1| + |u′

2〉II〈u′
2|. (10)

These local operators act as identity operators on other unit
cells. Therefore, the projection operator for the whole lattice
is defined as P = ⊗

I PI and P′ = ⊗
I P′

I . Hence, the effective
Hamiltonian in truncated subspace will be obtained from the
following relations:

Heff = P(H0 + Hint )P (J2 < J1) (11)

Heff = P′(H0 + Hint )P
′ (J2 > J1). (12)

The explicit forms of H0 and Hint in terms of original spin
operators are given in Appendix.

The original Hamiltonian is renormalized in truncated
subspace according to Eqs. (11) and (12), which leads to the
effective Hamiltonian as follows:

J2 < J1:

Heff = −2α2J1

∑
〈I,J〉

τ x
I τ x

J +α2J2

∑
〈〈I,J〉〉

τ x
I τ x

J −(ε2 − ε1)
∑

I

τ z
I ,

J2 > J1:

Heff = −2α′2 J1

∑
〈I,J〉v

τ x
I τ x

J + 2α′2 J1

∑
〈I,J〉h

τ x
I τ x

J

−α′2 J2

∑
〈〈I,J〉〉

τ x
I τ x

J − (ε3 − ε1)
∑

I

τ z
I , (13)

where 〈I, J〉h and 〈I, J〉v run over horizontal and verti-
cal nearest-neighbor bonds on the effective square lattice.
The coefficients α and α′ are functions of J1, J2, and �

(see the Appendix). Let us make a π rotation around the z axis
on the spins of one of the sublattices of the bipartite square
lattice defined in Eq. (13), which contracts the minus sign in
the first term. Similarly, a π rotation around the z axis on the
spins sitting on even (or odd) labeled horizontal lines change
the minus signs of the first and third terms of Eq. (14). Hence,
all Ising terms (τ x

I τ x
J ) in Eqs. (13) and (14) have positive

couplings. Now, it is clear from the sign of nearest- and next-
nearest-neighbor interactions of the effective Hamiltonian that
there are Néel and striped orders for J2 � J1 and J2 
 J1

limits, respectively. They correspond to well-known classical
magnetic ordered phases of the Ising model on the J1 − J2

square lattice [48]. Hence, we can merge the two effective
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FIG. 11. Quantum GS phase diagram of the J1 − J2 TFI model
on the square lattice obtained from the phase diagram of the CL [22]
using the introduced effective theory. The inset indicates an opening
of a narrow region of the string-VBS phase, which fills the space
between the Néel and the striped phases around J2/J1 = 0.5 for low
fields.

Hamiltonians (13) and (14) and write a unified effective
Hamiltonian in terms of the renormalized parameters J̃1 − J̃2

that is a transverse-field Ising model on the effective square
lattice,

Heff = J̃1

∑
〈I,J〉

τ x
I τ x

J + J̃2

∑
〈〈I,J〉〉

τ x
I τ x

J − �̃
∑

I

τ z
I , (14)

where

J̃2

J̃1
= 1

2

J2

J1
,

�̃

J̃1
= ε2 − ε1

2α2J1
(J2 < J1),

�̃

J̃1
= ε3 − ε1

2α′2 J1
(J2 > J1). (15)

According to Eq. (14), the low-energy effective theory of the
TFI model on the CL is provided with the same model on a
square lattice with renormalized parameters given in Eq. (15).
The effective Hamiltonian clearly shows that at the zero-field
limit, the critical point J2 = J1 of the CL is mapped to the
critical point J̃2 = 0.5J̃1 of the SL [see Eq. (15)]. Hence, the
critical phase boundaries of the J̃1 − J̃2 TFI model on the SL
can be achieved from the critical phase boundaries of the J1 −
J2 TFI model on the CL.

GS phase diagram of the J1 − J2 TFI model on the
square lattice

We implement the mapping established in the previous
section and apply it to the GS phase diagram of the TFI model
on the CL—which has been obtained by the COA [22]—to
get the GS phase diagram of the J1 − J2 TFI model on the SL.
To this end, we insert the location of critical boundaries of the

FIG. 12. Plaquette-VBS phase of the CL with broken trans-
lational symmetry with twofold degeneracy, which is mapped to
the string-VBS phase of the square lattice with broken rotational
symmetry and twofold degeneracy.

CL phase diagram in Eqs. (15) to obtain the corresponding
critical boundaries of the SL phase diagram. The outcome of
this map is shown in Fig. 11. For instance, the critical point
�c/J1 = 0.3 at J2 = J1 on the CL is mapped to �c/J1 = 0.32
at J2 = 0.5J1 on the SL. This result is consistent with the result
�c/J1 = 0.51 obtained from TTN and COA data on the square
lattice [29]. Moreover, Fig. 11 demonstrates the presence
of a narrow region around J2 = 0.5J1 at low fields, exactly
the same as what appeared in the phase diagram of the CL
around the highly frustrated point J2 = J1 at low fields, such
as Fig. 2. Hence, it can be deduced that quantum fluctuations
of the weak transverse magnetic field induce a novel quantum
state from the highly degenerate classical GS of the SL at
J2 = 0.5J1, before reaching the quantum paramagnet phase at
high fields.

One of the smart features of the introduced mapping is
to determine the structure of the novel state according to the
plaquette-VBS state on the CL. Let us suppose that the CL is
in the plaquette-VBS phase as shown by the color plaquettes
in Fig. 12. In fact, each color plaquette is surrounded by
two close sites on the effective square lattice. Therefore,
whenever color plaquettes of the CL resonate between two
possible Néel states, which comes from the nature of the
plaquette-VBS phase, then they bring about a resonant situa-
tion on a set of sites on the effective square lattice resembling
the string formation. Moreover, as the plaquette-VBS state
of the CL breaks the translational symmetry of the lattice
bearing twofold degeneracy, the emergence of strings on the
effective SL could be either in vertical or horizontal direc-
tions, breaking the rotational symmetry of the lattice, which
manifests the twofold degeneracy of string formations. This
is in agreement with our earlier results in Ref. [29], which
states that the highly degenerate classical ground state of
the J1 − J2 TFI model on the SL at J2 = 0.5J1 goes to a
unique string-VBS phase, when taking into account quantum
fluctuations. This justifies the mapping procedure introduced
here.

V. SUMMARY AND CONCLUSIONS

The transverse-field Ising model on two-dimensional
checkerboard/square lattices would be a generic Hamiltonian
to represent uniaxial magnets driven by quantum fluctuations.
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It includes planar spin ice [16], artificial square ice [6–8],
and even the realization of quantum spin ice with Rydberg
atoms [9] that offer the emergence of novel phases. We have
investigated the phase diagram of the J1 − J2 TFI model on
a checkerboard lattice by an improved tree tensor network
algorithm. We developed an unconstrained (gauge-free) tree
tensor network ansatz, adapted to two-dimensional systems
up to the lattice size 8 × 8 by relaxing the isometry constraint.
At the highly frustrated point J2 = J1, we confirm a plaquette-
VBS phase at low fields, separated from a paramagnet phase
at �c ∼ 0.28. Utilizing finite-size scaling analysis on N = 4 ×
4, 6 × 6, and 8 × 8 lattices, we obtain the associated critical
exponents to be ν � 1 and γ � 0.44. We did not observe a
signature of a canted Néel phase predicted by the Monte Carlo
study [25], which is in agreement with previous results based
on the cluster operator approach [22]. In addition, we found
the nature and associated critical exponents of the quantum
phase transitions from the plaquette-VBS phase to the adja-
cent Néel and collinear antiferromagnetic phases and to the
quantum paramagnetic phase of high fields, summarized in
Table II. It is shown that all transitions are of the second-
order type except the transition from Néel to plaquette-VBS,
which is of deconfined type, where the first derivative of
ground-state energy indicates no singularity. However, we are
not able to report a reasonable exponent for the fall off in
correlation functions [49–53] due to finite lattice sizes (�8) in
our simulation. The schematic structure of the phase diagram
is given in Fig. 2.

Our study justifies the importance of an unconstrained
TTN ansatz as a promising numerical tool to address such
highly frustrated systems where quantum Monte Carlo sim-
ulation fails due to the known sign problem for reaching
ground-state properties. Furthermore, we have developed a
mapping analysis to obtain quantum ground-state phase di-
agram of the J1 − J2 TFI model on the square lattice from the
phase diagram of the J1 − J2 TFI model on the checkerboard
lattice. An important outcome of our mapping is to clarify the
VBS nature of the intermediate phase of the square-lattice
phase diagram at low fields around the highly frustrated
point J2 = 0.5J1. In fact, we showed that the plaquette-VBS
phase of the checkerboard lattice is mapped to the string-
VBS phase of the square lattice at the highly frustrated
point J2 = 0.5J1, completely in agreement with the previous
results of the J1 − J2 TFI model on the square lattice by
the cluster operator approach, which describes such VBS
ordering [29]. Briefly, we claim that the low-energy effective
theory of the J1 − J2 TFI model on the checkerboard is given
by the same model on the square lattice with renormalized
parameters.
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APPENDIX: MAPPING FROM THE CHECKERBOARD
LATTICE TO THE SQUARE LATTICE

The details of the mapping procedure is presented here. As
we explained in the text, if we divide the CL into non-corner-
sharing crossed plaquettes, the transverse-field Ising Hamil-
tonian can be rewritten in the form H = ∑

I HI + ∑
〈IJ〉 HIJ ,

where HI is the Hamiltonian on a single plaquette and HIJ

defines the interaction Hamiltonian between single plaquettes.
Figure 13 depicts a typical single plaquette I surrounded by
eight independent plaquettes J interacting with it. According
to site labeling of Fig. 13 we arrive at the following expression
for HI and HIJ :

HI = J1
(
sz

1,I s
z
2,I + sz

2,I s
z
3,I + sz

3,I s
z
4,I + sz

4,I s
z
1,I

)
+ J2

(
sz

1,I s
z
3,I + sz

2,I s
z
4,I

) − �
(
sx

1,I + sx
2,I + sx

3,I + sx
4,I

)
,

(A1)

HIJ = J1
(
sz

2,I s
z
1,J (1) + sz

3,I s
z
4,J (1)

) + J2
(
sz

2,I s
z
4,J (5)

)
+ J1

(
sz

1,I s
z
4,J (2) + sz

2,I s
z
3,J (2)

) + J2
(
sz

1,I s
z
3,J (6)

)
+ J1

(
sz

1,I s
z
2,J (3) + sz

4,I s
z
3,J (3)

) + J2
(
sz

4,I s
z
2,J (7)

)
+ J1

(
sz

4,I s
z
1,J (4) + sz

3,I s
z
2,J (4)

) + J2
(
sz

3,I s
z
1,J (8)

)
. (A2)

Let us consider the case J1 > J2, we consider the first two
eigenstates |u1〉 and |u2〉 of HI —corresponding to the first two
energy levels of it—as two components of new quasispins
assigned to each single plaquette. Then, we define the pro-
jection operator P0 as P0 = |u1〉〈u1| + |u2〉〈u2| to renormalize
original spin operators in the truncated subspace according to
the following equations:

P0sz
1P0 = P0sz

3P0 = ατ x
I ,

P0sz
2P0 = P0sz

4P0 = −ατ x
I ,

P0sx
1P0 = P0sx

2P0 = P0sx
3P0 = P0sx

4P0 = (β − γ )τ z
I , (A3)

where α = 4A2B1 + 2A4B2, β = 2A2(A1 + 2A3 + A4), and
γ = 2B1B2 in which the coefficients A, B are given by the
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matrix elements of eigenvectors |u1〉 and |u2〉,

|u1〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A2

A3

A2

A4

A3

A2

A2

A3

A4

A2

A3

A2

A2

A1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |u2〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
B1

−B1

0
B1

B2

0
B1

−B1

0
−B2

−B1

0
B1

−B1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

These matrix elements are functions of J1, J2, and �,
which are lengthy and complicated expressions. The simplest
one is B1, which has the following form:

B1 = − 2√
2[
√

16�2+(J2−2J1 )2+2J1−J2]2

�2 + 32

. (A5)

Now, we rewrite the Hamiltonians HI and HIJ of Eqs. (A1)
and (A2) in terms of new quasispins and finally obtain the
effective Hamiltonian,

J2 < J1:

Heff = −2α2J1

∑
〈I,J〉

τ x
I τ x

J + α2J2

∑
〈〈I,J〉〉

τ x
I τ x

J

− (ε2 − ε1)
∑

I

τ z
I , (A6)

where ε1 and ε2 are eigenenergies of a single plaquette,
corresponding to eigenvectors |u1〉 and |u2〉, respectively. We
perform a π rotation on spins on only even (or odd) sites
of the bipartite square lattice. It finally leads to an effective
Hamiltonian for J2 < J1 as

Heff = J ′
1

∑
〈I,J〉

τ x
I τ x

J + J ′
2

∑
〈〈I,J〉〉

τ x
I τ x

J − �′ ∑
I

τ z
I , (A7)

where

J ′
2

J ′
1

= 1

2

J2

J1
,

�′

J ′
1

= ε2 − ε1

2α2
(J2 < J1). (A8)

A similar procedure is also performed for the case J2 > J1.
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