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Within the ground-state auxiliary-field quantum Monte Carlo technique, we introduce discrete Hubbard-
Stratonovich transformations (HSTs) that are also suitable for spatially inhomogeneous trial functions. The
discrete auxiliary fields introduced here are coupled to local spin or charge operators fluctuating around
their Hartree-Fock values. The formalism can be considered a generalization of the discrete HSTs by J. E.
Hirsch [Phys. Rev. B 28, 4059 (1983)] or a compactification of the shifted-contour auxiliary-field Monte Carlo
formalism by N. Rom et al. [Chem. Phys. Lett. 270, 382 (1997)]. An improvement of the acceptance ratio
is found for a real auxiliary field, while an improvement of the average sign is found for a purely imaginary
auxiliary field. Efficiencies of the different HSTs are tested in the single-band Hubbard model at and away from
half filling by studying the staggered magnetization and energy expectation values, respectively.
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I. INTRODUCTION

The numerical solution of the Hubbard model with strong
correlations is one of the most challenging issues in the theory
of strongly correlated electron systems [1,2]. Attempts to
determine the ground state are often based on iterative tech-
niques based on a repeated application of a short imaginary-
time propagator or using the simple power method and more
advanced Krylov-subspace techniques, such as the Lanczos
algorithm, where a Hamiltonian operator is repeatedly applied
to a properly chosen trial state. In both cases the ground-
state component of the trial state is filtered out after several
iterations.

Among these projection techniques, the auxiliary-field
quantum Monte Carlo (AFQMC) [3–6] is one of the most
powerful schemes, as it allows us to study, for example, the
ground-state properties of the Hubbard model with several
thousand electrons and lattice sites when the negative-sign
problem is absent [7–9]. In the ground-state AFQMC, even
if the Hamiltonian is the same, there exists some arbitrariness
in choosing the trial wave function and the type of auxiliary
fields (e.g., real, complex, continuous, or discrete). Experi-
ence has shown that an appropriate choice of these ingredients
may significantly improve the efficiency of the Monte Carlo
simulations [10].

It has been demonstrated [2,11] that a Slater determinant
obtained from an unrestricted Hartree-Fock (UHF) approx-
imation [12] provides a good trial wave function for the
doped Hubbard model in the constrained-path AFQMC [13].
Recently, for a particular parameter set at doping δ = 1/8 and
electron-electron repulsion U/t = 8, the ground state of the
Hubbard model on the square lattice was predicted to exhibit
a vertical stripe order [2], where the stripe states with periods
λ = 5, 6, 7, and 8 in units of the lattice constant are nearly

degenerate, while a spatially homogeneous d-wave supercon-
ducting state should have, according to their study, a higher
energy. Recent variational Monte Carlo (VMC) calculations
[14–16] have also shown that various vertical-stripe orders
with different periods appear, depending on the doping and
the hopping parameter. In most of the calculations in Ref. [2],
the symmetry of finite-size clusters is broken due to the use
of UHF trial wave functions or by applying pinning magnetic
fields, and the results are extrapolated to the thermodynamic
limit. The success of utilizing symmetry-broken wave func-
tions is rather surprising because symmetry breakings do not
occur in the exact ground state of finite-size systems. A similar
issue is known as the symmetry dilemma in first-principles
calculations for molecules [17,18]. Recently, it was shown
that the quality of the trial wave function can be improved
by restoring the symmetries that are broken by UHF or mean-
field treatments [19–21]. However, in the present work, we do
not enter into the issue of symmetry breakings of trial wave
functions, but rather focus on the arbitrariness of the auxiliary
field to improve the efficiency of AFQMC simulations with
such symmetry-broken trial wave functions.

The way of transforming a quartic interaction term into
a quadratic one via the Hubbard-Stratonovich transformation
(HST) [22] is not unique and affects the efficiency of simula-
tions [23–28]. Recently, the popularity of this technique has
substantially increased because it has been realized that, with
continuous auxiliary fields, one can treat interaction terms
beyond the on-site Hubbard interaction, up to the complete
treatment of the long-range Coulomb interaction [29–34] or
of the long-range electron-phonon interaction [35] or even
both of them on the same footing [36], without being vexed
by the sign problem in a certain parameter region on bipartite
lattices. Interestingly, such a parameter region coincides with
the one where rigorous statements on the ground state of an
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extended Hubbard-Holstein model are available [37,38]. It
is also noteworthy that, even when the sign problem cannot
be eliminated completely, continuous auxiliary fields with a
proper shift [39–41] can improve the efficiency of simulations
compared to one without the shift. A similar idea was also
employed in the AFQMC [42,43] within the constrained-path
approximation [13].

In this paper, we introduce shifted-discrete HSTs, where
auxiliary fields are coupled to the fluctuation of local spin
or charge. The method is applied to AFQMC simulations of
the Hubbard model on the square lattice. It is shown that
the shifted-discrete HSTs can improve the efficiency of the
AFQMC simulations. Moreover, we present results on the
magnetic order parameter as a function of U/t with high
statistical accuracy, which represents an important benchmark
and is also useful for comparison with experiments.

The rest of this paper is organized as follows. In Sec. II,
the Hubbard model is defined, and the AFQMC method is de-
scribed. In Sec. III, the shifted-discrete HSTs are introduced.
In Sec. IV, numerical results of the AFQMC simulations for
the Hubbard model are presented. Section V is devoted to
conclusions and discussion.

II. MODEL AND METHOD

We consider the Hubbard model whose Hamiltonian is
defined by Ĥ = K̂ + V̂ , where

K̂ = −t
∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + H.c.), (1)

V̂ = U
∑

i

n̂i↑n̂i↓, (2)

ĉ†
iσ (ĉiσ ) creates (annihilates) a fermion with site index i and

spin index σ (=↑,↓), n̂iσ = ĉ†
iσ ĉiσ , t is the hopping parameter

between the nearest-neighbor sites on the square lattice, and
U > 0 is the on-site electron-electron repulsion. We consider
the Hubbard model on N = L × L site clusters. Boundary
conditions will be specified for each calculation in Sec. IV.
The lattice constant is set to be unity.

In the AFQMC, the expectation value of an operator Ô is
calculated as

〈Ô〉β = 〈�T|e− β

2 Ĥ Ôe− β

2 Ĥ |�T〉
〈�T|e−βĤ |�T〉 , (3)

where β is the projection time and |�T〉 is a trial wave
function. If β is infinitely large, one can obtain the ground-
state expectation value as long as |�T〉 has a finite overlap
with the ground state [44]. If β is finite, the results depend on
the trial wave function (see, for example, Ref. [45]). If β = 0,
Eq. (3) reduces to the expectation value of Ô with respect to
the trial wave function.

At finite dopings, |�T〉 is obtained by solving the eigen-
value problem of the following UHF Hamiltonian self-
consistently:

ĤUHF = K̂ + Ueff

∑
i

(〈n̂i↑〉0n̂i↓ + n̂i↑〈n̂i↓〉0 − 〈n̂i↑〉0〈n̂i↓〉0),

(4)

where Ueff is an arbitrary parameter and the expectation value
〈· · · 〉0 in Eq. (4) is defined in Eq. (3) with β = 0. A fine tuning
of Ueff can improve the quality of the trial wave function [11].
We set Ueff/t = 2.5, which has turned out to provide a good
trial wave function for the doped cases studied here in the
sense that the energy expectation value decreases quickly with
increasing β. By adding a small bias in the initial condition for
the self-consistent UHF loop to pin the direction of the stripe,
|�T〉 shows a vertical stripe order with period λ = 8 around
δ = 1/8 doping on the 16 × 16 cluster.

At half filling, |�T〉 is obtained as a ground state of non-
interacting electrons on the square lattice under a staggered
magnetic field along the spin-quantized axis (z direction):

ĤMF = K̂ − �AF

∑
i

(−1)i(n̂i↑ − n̂i↓), (5)

where (−1)i = 1 (−1) if site i belongs to the A (B) sublattice
and �AF can be chosen arbitrarily. The value of �AF will be
specified with the numerical results in Sec. IV.

By using the second-order Suzuki-Trotter decomposition
[46,47], the imaginary-time propagator can be expressed as

e−βĤ =
Nτ∏

l=1

(
e− �τ

2 K̂ e−�τ V̂ e− �τ
2 K̂

)
+ O

(
�2

τ

)
, (6)

where the projection time β is discretized into Nτ time slices
and �τ = β/Nτ . For the doped cases, we set �τ t = 0.05 so
that the discretization error is within statistical errors. For the
half-filled case, we perform extrapolations of �τ → 0 to elim-
inate the discretization error, which becomes non-negligible
for large U/t compared to statistical or extrapolation errors
for the results shown in Sec. IV B. An HST is applied to
e−�τ V̂ , and the summation over auxiliary fields is performed
using the Monte Carlo method with the importance sampling,
where a proposed auxiliary-field configuration is accepted or
rejected according to the Metropolis algorithm. Details of the
importance sampling method within the AFQMC are given in
Appendix A. In the next section, we introduce shifted-discrete
HSTs for e−�τ V̂ .

III. SHIFTED-DISCRETE HUBBARD-STRATONOVICH
TRANSFORMATIONS

In this section we derive shifted-discrete HSTs which cou-
ple the auxiliary field to the local spin fluctuation in Sec. III A
and to the local charge fluctuation in Sec. III B. Although the
two HSTs can be formulated almost in parallel, we provide
both of them separately for completeness.

A. Auxiliary field coupled to spin fluctuation

The Hubbard interaction in Eq. (2) can be written as

V̂ = −U

2

∑
i

[
(n̂i↑ − n̂i↓ − m̃i )

2 − m̃2
i

]

+U

2

∑
i

[
(1 − 2m̃i )n̂i↑ + (1 + 2m̃i )n̂i↓

]
, (7)
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where m̃i is an arbitrary number. Then e−�τV can be written
as

e−�τ V̂ = e
�τ U

2

∑
i[(n̂i↑−n̂i↓−m̃i )2−m̃2

i ]

× e− �τ U
2

∑
i (1−2m̃i )n̂i↑e− �τ U

2

∑
i (1+2m̃i )n̂i↓ . (8)

Let us consider the first exponential factor on the right-hand
side of Eq. (8). For each site i, we consider the following HST:

Cie
− �τ U

2 m̃2
i e

�τ U
2 (n̂i↑−n̂i↓−m̃i )2 = 1

2

∑
si=±1

eαisi (n̂i↑−n̂i↓−mi ), (9)

where si = ±1 is the discrete auxiliary field and the four unde-
termined parameters αi, mi, m̃i, and Ci are related through the
following three equations (see Appendix B for a derivation):

cosh αi(1 − mi ) cosh αi(1 + mi )

cosh2 αimi
= e�τU , (10)

m̃i = 1

2�τU
ln

cosh αi(1 + mi )

cosh αi(1 − mi )
, (11)

Ci = e�τUm̃2/2 cosh αimi. (12)

Therefore, if, say, mi is given, αi, m̃i, and Ci are determined
from Eqs. (10)–(12). Finally, we obtain

e−�τ V̂ ∝
∏

i

∑
si=±1

e[αisi− �τ U
2 (1−2m̃i )]n̂i↑+[−αisi− �τ U

2 (1+2m̃i )]n̂i↓−αsimi .

(13)

Note that, in general, mi �= m̃i and Ci are irrelevant for results
of simulations because they cancel out from the numerator
and the denominator in Eq. (3). If mi = 0, the HST reduces to
the one introduced by Hirsch [23]. However, the arbitrariness
of mi can be utilized to improve the efficiency of AFQMC
simulations, as shown in Sec. IV.

On the right-hand side of Eq. (13), the auxiliary field αisi

is shifted by �τUm̃i compared to the case of mi = m̃i = 0.
To obtain more physical intuitions for mi, we rewrite the
exponent on the right-hand side of Eq. (13) as

αisi(n̂i↑ − n̂i↓ − mi ) +�τUm̃i(n̂i↑ − n̂i↓) − �τU

2
(n̂i↑ + n̂i↓).

(14)

In the first term, the auxiliary field αisi is coupled to the
fluctuation of the local magnetization (n̂i↑ − n̂i↓ − mi ), while
the shift of the local magnetization by −mi in the first term is
compensated by the spatially inhomogeneous magnetic field
�τUm̃i in the second term.

We set the parameter mi as the local magnetization in the
trial wave function,

mi = 〈n̂i↑ − n̂i↓〉0. (15)

This mi can easily be calculated and is expected to stabilize
the simulation by keeping the first term in Eq. (14) “small”
during the imaginary-time evolution. For a given mi, αi can
be determined from Eq. (10), m̃i can be determined from
Eq. (11), and Ci can be determined from Eq. (12). The solution
αi of Eq. (10) can be found with the Newton method with an
initial guess αi,initial = cosh−1 e�τU/2, for example.

B. Auxiliary field coupled to charge fluctuation

In this section, αi and Ci will be redefined. The Hubbard
interaction in Eq. (2) can be written as

V̂ = U

2

∑
i

[
(n̂i↑ + n̂i↓ − ñi )

2 − ñ2
i

]

− U

2

∑
i

[(1 − 2ñi )n̂i↑ + (1 − 2ñi )n̂i↓], (16)

where ñi is an arbitrary number. Then e−�τV can be written as

e−�τ V̂ = e− �τ U
2

∑
i[(n̂i↑+n̂i↓−ñi )2−ñ2

i ]

× e
�τ U

2

∑
i (1−2ñi )n̂i↑e

�τ U
2

∑
i (1−2ñi )n̂i↓ . (17)

Let us consider the first exponential factor on the right-hand
side of Eq. (17). For each site i, we consider the following
HST:

Cie
�τ U

2 ñ2
i e− �τ U

2 (n̂i↑+n̂i↓−ñi )2 = 1

2

∑
si=±1

eiαisi (n̂i↑+n̂i↓−ni ), (18)

where si = ±1 is the discrete auxiliary field and the four
undetermined parameters αi, ni, ñi, and Ci are related through
the following three equations (see Appendix B for derivation):

cos αi(2 − ni ) cos αini

cos2 αi(1 − ni )
= e−�τU , (19)

ñi = 1 − 1

2�τU
ln

cos αini

cos αi(2 − ni )
, (20)

Ci = e−�τUñ2
i /2 cos αini. (21)

Therefore, if, say, ni is given, αi, ñi, and Ci are determined
from Eqs. (19)–(21). Finally, we obtain

e−�τ V̂ ∝
∏

i

∑
si=±1

e
[
iαisi+ �τ U

2 (1−2ñi )
]
n̂i↑+[

iαisi+ �τ U
2 (1−2ñi )

]
n̂i↓−iαsini .

(22)

Note that, in general, ni �= ñi and Ci are irrelevant for the
results of simulations because they cancel out between the
numerator and the denominator in Eq. (3). If ni = 1, the HST
reduces to the one introduced by Hirsch [23]. However, the
arbitrariness of ni can be utilized to improve the efficiency of
AFQMC simulations, as shown in Sec. IV.

On the right-hand side of Eq. (22), the auxiliary field iαisi

is shifted by �τU (1 − ñi ) compared to the case of ni = ñi =
1. To obtain more physical intuitions for ni, we rewrite the
exponent on the right-hand side of Eq. (22) as

iαisi(n̂i↑ + n̂i↓ − ni ) + �τU (1 − ñi )(n̂i↑ + n̂i↓)

− �τU

2
(n̂i↑ + n̂i↓). (23)

In the first term, the auxiliary field iαisi is coupled to the
fluctuation of the local density (n̂i↑ + n̂i↓ − ni ), while the shift
of the local density by −(1 − ni ) in the first term is com-
pensated by the spatially inhomogeneous chemical potential
�τU (1 − ñi ) in the second term.
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We set the parameter ni as the local charge density in the
trial wave function

ni = 〈n̂i↑ + n̂i↓〉0. (24)

This ni can easily be calculated and is expected to stabilize
the simulation by keeping the first term in Eq. (23) “small”
during the imaginary-time evolution. For a given ni, αi can be
determined from Eq. (19), ñi can be determined from Eq. (20),
and Ci can be determined from Eq. (21). The solution αi of
Eq. (19) can be found with the Newton method with an initial
guess αi,initial = cos−1 e−�τU/2, for example.

IV. NUMERICAL RESULTS

A. Finite dopings

At finite dopings, the sign problem occurs [48,49]. In the
presence of the sign problem, the projection time β cannot be
taken to be as large as that for the half-filled case because the
average sign (of the statistical weight) decreases exponentially
in β [49]; otherwise, the number of statistical samplings has to
be increased exponentially to keep the statistical error small.
We set the maximum β as the one at which the average sign is
∼0.05. It will be shown that even in the presence of the sign
problem, the AFQMC can still provide a good upper bound of
the ground-state energy.

Figure 1 shows the energy per site E (β ) = 〈Ĥ〉β/N , the
acceptance ratio, and the average sign as a function of
β at U/t = 8 for the 16 × 16 cluster with 224 electrons,
corresponding to δ = 1/8 = 0.125. Note that since

dE (β )

dβ
= − 1

N

(〈Ĥ2〉β − 〈Ĥ〉2
β

)
� 0, (25)

E (β ) is a decreasing function of β and its slope dE (β )/dβ

is proportional to the energy variance [44]. The energies
calculated by different HSTs in Fig. 1(a) coincide within the
statistical errors because the same imaginary-time-evolution
operator in Eq. (6) is applied to the same trial wave function
|�T〉. However, their reachable β is different because the
average sign, shown in Fig. 1(b), can depend on the choice
of the HST. In Fig. 1(c), the acceptance ratio of the real
auxiliary field with the shift (HST spin with shift) is increased
from the one without the shift (HST spin without shift). The
reason can be attributed to the fact that since the first term
of Eq. (14) with a relevant mi is expected to be smaller than
that with mi = 0, the factor e±2αi (n̂i↑−n̂i↓−mi ) is closer to unity.
Therefore, the fluctuation of the modulus of the determinant
ratio is stabilized [see Eqs. (A3) and (A9)]. On the other hand,
the shift of the real auxiliary field does not affect the average
sign significantly because the shift does not affect the sign of
the determinant [see Eqs. (A3) and (A7)], as can be seen in
Fig. 1(b). We have found that the increased acceptance ratio
corresponds to a more efficient statistical sampling because
several quantities—such as energy, kinetic energy, and double
occupancy—can be obtained with smaller statistical errors at
a given computational time.

The situation is different for the purely imaginary auxil-
iary fields. Without the shift (HST charge without shift), the
average sign diminishes significantly, even at βt = 0.1. By
introducing the shift (HST charge with shift), the average sign
is improved significantly. The reason can be attributed to the

FIG. 1. (a) The energy per site, (b) the average sign, and (c) the
acceptance ratio as a function of the projection time β with different
HSTs. Calculations are done on the 16 × 16 cluster with 224 elec-
trons (δ = 0.125) at U/t = 8.

fact that since the first term in Eq. (23) with a relevant ni

is expected to be smaller than that with ni = 1, the factor
e±2iαi (n̂i↑+n̂i↓−ni ) is closer to unity. Therefore, the fluctuation
of the phase of the determinant is stabilized. Although the
average sign is still quite smaller than that obtained with the
real auxiliary fields, our results suggest that in more general
cases, for instance, with genuinely complex fields [23,50],
the proposed technique may provide an improvement in the
sampling.

To show the usefulness of the AFQMC with a short
imaginary-time propagation, we make a comparison with the
state-of-the-art variational wave functions for the Hubbard
model [14,15]. To this end, we move to the smaller doping
with the larger U/t , where the more severe sign problem is ex-
pected. Figure 2 shows the energy per site and the average sign
as a function of β at U/t = 10 for the 16 × 16 cluster with
228 electrons, corresponding to δ = 0.109375. Here, only the
shifted real auxiliary field is employed because it turned out to
be the most efficient, as shown in Fig. 1 for U/t = 8 and δ =
0.125. We use periodic (antiperiodic) boundary conditions in
the x (y) direction to compare our results directly with the ref-
erence VMC results [14,15]. Notice that our AFQMC energy,
computed at finite projection time β when the average sign
is sufficiently large, respects Ritz’s variational principle [see
Eq. (3)] because it corresponds to the variational expectation
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FIG. 2. (a) The energy per site and (b) the average sign as a
function of the projection time β. Calculations refer to the 16 × 16
cluster with 228 electrons (δ = 0.109375) at U/t = 10. In (a), the
horizontal lines and the shaded regions are the VMC energies, and
their error bars are taken from Refs. [14,15]. FTTN stands for fat-tree
tensor network, and Var. ext. stands for variance extrapolation.

value of Ĥ over the state e− β

2 Ĥ |�T〉/〈�T|e−βĤ |�T〉 1
2 . This

is a useful property of an approximate technique that is not
always satisfied, for instance, for the constrained-path
AFQMC [13,42]. At βt = 0.7, where the average sign re-
mains ∼0.99, the AFQMC energy is already lower than
the VMC energy without variance extrapolation. At βt =
1.1, the AFQMC energy almost coincides with the VMC
variance-extrapolated one, while the slope dE (β )/dβ is still
finite, indicating that the AFQMC energy variance is nonzero
[see Eq. (25)]. At βt = 1.5, the AFQMC energy is E/t =
−0.6552(4), which is lower than the variance-extrapolated
VMC energy E/t = 0.6538(9) [14], which may be compat-
ible with our number within two standard deviations. This
result suggests that the ground-state AFQMC method remains
very useful for providing upper-bound values of the ground-
state energy even in the presence of the negative-sign problem.

B. Half filling

At half filling, the sign problem is absent. Therefore, the
AFQMC can provide exact results which often serve as a ref-
erence benchmark for other numerical techniques. Excellent
agreement in the ground-state energies of the two-dimensional
Hubbard model between the AFQMC and other many-body
techniques was reported in Ref. [1]. Moreover, within the
AFQMC, the staggered magnetization m, i.e., the order pa-
rameter at half filling, can be estimated accurately by using the
twist-averaged boundary condition for small U/t , e.g., U � 4
[51,52]. However, for large U/t , AFQMC simulations still
face the difficulty of large fluctuations of the magnetization,
which often lead to a relatively large error bar in m [1,51]. The
same difficulty also arises in finite-temperature determinant

FIG. 3. The staggered magnetization m as a function of the
Monte Carlo sweep for the half-filled Hubbard model on the square
lattice at U/t = 8 with different HSTs. Calculations are done on the
16 × 16 cluster with βt = 24.

QMC simulations [53,54]. In previous works, in order to
overcome the difficulty, a pinning-field method was proposed,
with a clear improvement for the determination of m in the
thermodynamic limit [55,56]. In the following, we report an
accurate estimate m, especially for large U/t , by making use
of a symmetry-broken trial wave function.

Figure 3 shows the staggered magnetization along the z
direction,

m(β ) = 1

2N

∑
i

(−1)i〈n̂i↑ − n̂i↓〉β, (26)

as a function of the Monte Carlo sweep with different HSTs.
The calculations are done for U/t = 8, βt = 24, and �τ t =
0.1 on the L = 16 cluster with periodic boundary conditions.
We use �AF/t = 0.001 to give a finite staggered magnetiza-
tion in the trial wave function. This small value of �AF is
effective for pinning a sizable value of the finite-size order
parameter m(0) because the single-particle states at U/t = 0
have a large degeneracy (∝ L) at the Fermi level and are there-
fore strongly renormalized upon an arbitrarily small �AF.

Since m(0) is finite [see Eq. (5)], m(β ) remains finite
even for finite L. Note that at half filling, the HST in the
charge channel with shift is equivalent to the one without
shift because ni = 1. A very large equilibration time of ∼5000
Monte Carlo sweeps is found for m with the standard real HST
coupled to the on-site electron spins. In this case, our shifted
HST improves the equilibration time, allowing also a higher
acceptance ratio (not shown) as in the doped cases, but the
improvement is not really important. Amazingly, m is equi-
librated almost immediately for the complex HST coupled
to the on-site electron charges. This result implies that this
purely imaginary auxiliary field, which was first introduced
by Hirsch [23], is very useful to estimate m at half filling
for large U/t . Here, we also emphasize that not only is the
correlation time highly reduced with this technique, but also
the fluctuations, thanks to this pinning strategy in the trial
wave function, do not show any problem of large fluctuations,
even at very large U/t and values.
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FIG. 4. Finite-size scaling of the staggered magnetization m of
the half-filled Hubbard model at U/t = 10 with βt = 0.5L, L, and
1.5L for (a) �τ t → 0, (b) �τ t = 0.05, (c) �τ t = 0.1, and (d) �τ t =
0.2. The dashed horizontal lines indicate m of the Heisenberg model
in the thermodynamic limit taken from Ref. [61].

Figure 4 shows the finite-size scaling of m for U/t = 10.
The cluster sizes used are L = 6, 8, 10, 12, 14, 16, 18, 20, 22,

and 24. Here, the projection time β is chosen to be propor-
tional to L, i.e., βt = αL, with α = 0.5, 1, and 1.5. These
βt values are an order of magnitude smaller than those used
with the pinning-field method [55,56] because in our approach
we can reach the thermodynamic limit consistently without
unnecessarily large values of β. Indeed, the extrapolated
values at 1/β = 1/L = 0 are consistent for all values of α,
which validates our approach. Our best estimate is obtained
from the βt = 1.5L set of data, yielding m = 0.3046(1) in the
� → 0 limit, where the number in the parentheses indicates
the extrapolation error in the last digit. Calculations are done
for �τ t = 0.2, 0.1, and 0.05, and the extrapolations to �τ →
0 are obtained by a linear fit in (�τ t )2, determined by the
least-squares method. The ground-state expectation value m

FIG. 5. The staggered magnetization m in the thermodynamic
limit as a function of U . For comparison, previous AFQMC results
are taken from Ref. [11]. The dashed horizontal line indicates m
of the Heisenberg model in the thermodynamic limit taken from
Ref. [61].

in the thermodynamic limit is obtained by extrapolating the
results to L → ∞. In this case we fit the data in the range
6 � L � 24 with quadratic polynomials in 1/L. As can be
seen in Fig. 4, the time-discretization error is not negligible for
U/t = 10. The extrapolated value is certainly smaller than the
one in the Heisenberg model [57–60], where the latest Monte
Carlo estimate is m = 0.30743(1) [61,62].

In Table I and Fig. 5 we show the values of m in the thermo-
dynamic limit for U/t = 2, 4, 6, 8, 10, and 12 and compare
them with the ones available in the literature [36,51,52,63].
The main outcome of this work is the estimated value of m
for U/t � 8, which is usually the accepted value for cuprates.
Here, our error bar at U/t = 8 is two orders of magnitude
smaller than the previous AFQMC estimate [1,51]. Thanks
to this high statistical accuracy, our results clearly show that
m increases monotonically in U/t . This is consistent with a
strong-coupling expansion around the Heisenberg limit [64].
Here, finite-size scaling analyses are performed as follows.
For U/t � 6, the scheme of finite-size scaling analyses is the
same as that for U/t = 10, which has been described before.
For U/t = 4 (U/t = 2), cluster sizes up to L = 32 (L = 50)
with twist-averaged boundary conditions [51,52,65–68] are
used because the finite-size effects are more important than
those we have found at larger U/t values. A much larger value
of �AF/t = 10 is used for U/t � 4 because the twists remove
the degeneracy of the single-particle states at U/t = 0, as
discussed before. All the results are obtained in the �τ → 0
limit using data at �τ t = 0.2, 0.1, and 0.05 for U/t � 4 and
�τ t = 0.25, 0.2, and 0.1 for U/t = 2.

V. CONCLUSIONS AND DISCUSSION

In this work we have shown that, within the ground-state
AFQMC technique, the choice of the trial function and the one
for the auxiliary field are extremely important. In particular
we have improved the efficiency of the method by intro-
ducing shifted-discrete HSTs that are useful for performing
the imaginary-time evolution of symmetry-broken trial wave
functions. The formalism can be considered a generalization
of the discrete HSTs in Ref. [23] or a compactification of
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TABLE I. The staggered magnetization m of the two-dimensional Hubbard model at half filling in the thermodynamic limit. The staggered
magnetization of the two-dimensional Heisenberg model from Refs. [61,62] is also shown. PBC stands for periodic boundary conditions,
TABC stands for twist-averaged boundary conditions, and MBC stands for modified boundary conditions.

U/t 2 4 6 8 10 12 ∞ (Heisenberg antiferromagnet)

AFQMC (this work) 0.120(1) 0.2340(2) 0.2815(2) 0.2991(2) 0.3046(1) 0.3067(2)
AFQMC TABC [51] 0.119(4) 0.236(1) 0.280(5) 0.26(3)
AFQMC TABC [52] 0.122(1) 0.2347(4)
AFQMC PBC [36] 0.238(3)
AFQMC MBC [63] 0.120(5)
QMC Heisenberg model [61,62] 0.30743(1)

the shifted-contour auxiliary-field Monte Carlo formalism in
Refs. [39,40] specialized to the on-site Hubbard interaction.

Properly chosen auxiliary fields can improve the efficiency
of AFQMC simulations. The shifted real auxiliary fields can
improve the acceptance ratio, while the shifted purely imagi-
nary auxiliary fields can improve the average sign. The reason
is that the shift in the real auxiliary field can stabilize the fluc-
tuations of the modulus of the determinant, while the shift in
the purely imaginary auxiliary field can stabilize the fluctu-
ations of the phase of the determinant. However, even after
the improvement, the average sign with the purely imaginary
auxiliary field remains worse than the one obtained with the
real auxiliary field for the doped cases. Therefore, in the
presence of the sign problem, the real auxiliary field is still
recommended for achieving longer imaginary-time propaga-
tions. On the other hand, at half filling with large U/t , the
purely imaginary auxiliary field is dramatically more efficient
than the real auxiliary fields for evaluating the staggered
magnetization m.

In our approach, mi and ni in Eqs. (7) and (16) are arbitrary
parameters that are not necessarily chosen as in Eq. (15) or
in Eq. (24). For example, mi (ni) can be updated iteratively
by the AFQMC expectation value of n̂i↑ − n̂i↓ (n̂i↑ + n̂i↓)
with iterative simulations. This kind of scheme has already
been employed to construct self-consistently an optimized
trial wave function in the AFQMC [11]. Obviously, shifted-
discrete HSTs can be used straightforwardly also in this
case. Moreover, we expect that imaginary-time-dependent mi

or ni could further improve the efficiency of the AFQMC,
especially within the constrained path formalism. A study
along this line is in progress [69].

It is also worth mentioning that the shifted-discrete HST
is applicable straightforwardly to finite-magnetization cases,
i.e., N↑ �= N↓, where Nσ is the number of electrons with spin
σ . Indeed, in the half-filled case with N↑ �= N↓, where the sign
problem is absent, our preliminary calculations have found
that the shifted-real auxiliary field achieves better statistical
samplings than the one without shift or the purely imaginary
auxiliary field.

Finally, we remark on the d-wave superconducting order,
which has not been considered in the present study. It is
noteworthy that an early study on a t-t ′-J model [70] showed
that a stripe state with spatially oscillating d-wave supercon-
ductivity is favored around 1/8 hole doping. Considering such
an inhomogeneous superconductivity in a trial wave function
might be of interest for a possible improvement of AFQMC
simulations for doped Hubbard models with large U/t .
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APPENDIX A: IMPORTANCE SAMPLING

In this Appendix, we describe the importance sampling
method within the AFQMC. An HST applied to e−�τ V̂ trans-
forms the quartic fermion-operator term into a quadratic one
in its exponent at the cost of introducing the summation over
auxiliary fields s = {sl} = {si,l} [see Eq. (9) or Eq. (18)]. Here,
s (sl ) is an NNτ - (N-) dimensional vector, and the subscript
i (l) denotes the site (imaginary-time) index. To describe
the importance sampling method, it is crucial to explicitly
write the auxiliary-field dependence in the imaginary-time
evolution operator given in Eq. (6). For this purpose, we define
an operator B̂sl by

e− �τ
2 K̂ e−�τ V̂ e− �τ

2 K̂ =
∏
i=1

∑
si,l =±1

B̂sl (A1)

and its product with respect to the imaginary-time index by
B̂s(β, 0) = ∏Nτ

l=1 B̂sl . Then, the expectation value in Eq. (3)
can be written as [up to the systematic error O(�2

τ )]

〈Ô〉β =
∑

s

Pβ,s〈Ô〉β,s, (A2)

where
∑

s · · · = ∏Nτ

l=1

∏N
i=1

∑
si,l =±1 · · · , Pβ,s = Dβ,s/∑

s′ Dβ,s′ ,

Dβ,s = 〈�T|B̂s(β, 0)|�T〉, (A3)

〈Ô〉β,s = 〈�T|B̂s(β, β/2)ÔB̂s(β/2, 0)|� T〉
〈�T|B̂s(β, 0)|�T〉 , (A4)

B̂s(β, β/2) = ∏Nτ

l=Nτ /2+1 B̂sl , and B̂s(β/2, 0) = ∏Nτ /2
l=1 B̂sl . In

the last two equations, Nτ is assumed to be even for simplicity.
If the determinant Dβ,s = |Dβ,s|eiθβ,s is positive, Pβ,s can be
considered a probability distribution function. This is the case
in which the sign problem is absent.
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In general, Dβ,s is complex, and the sign problem exists. In
this case we rewrite Eq. (A2) as

〈Ô〉β =
∑

s P̄β,seiθβ,s〈Ô〉β,s

〈sign〉β , (A5)

where

P̄β,s = |Dβ,s|∑
s′ |Dβ,s′ | (A6)

and

〈sign〉β =
∑

s

P̄β,se
iθβ,s . (A7)

Now P̄β,s can be considered a probability distribution function
because P̄β,s � 0.

According to the Metropolis algorithm [71], the acceptance
probability Pacc of a proposed move from s to s′ is given by

Pacc(s → s′) = min(1,Racc), (A8)

where

Racc = P̄β,s′

P̄β,s
= |Dβ,s′ |

|Dβ,s| . (A9)

Equations (A8) and (A9) imply that the acceptance probability
Pacc remains large if the fluctuation of the modulus |Dβ,s| of
the determinant is reduced during the Monte Carlo simulation.
On the other hand, Eq. (A7) implies that the average sign
〈sign〉β remains large if the fluctuation of the phase θβ,s of the
determinant is reduced during the Monte Carlo simulation.

APPENDIX B: DERIVATION OF SHIFTED-DISCRETE HSTs

In this Appendix, we derive Eqs. (10)–(12) and (19)–(21).
First, we derive Eqs. (10)–(12), i.e., the shifted-discrete HST
in the spin channel. Since the fermion density operator n̂iσ is
idempotent, i.e., n̂2

iσ = n̂iσ , its exponential function is written
as

eαsn̂σ = 1 + (eαs − 1)n̂σ . (B1)

In this equation and hereafter, the site index i has been
dropped for brevity. Then the right-hand side of Eq. (9) is

given as

1

2

∑
s=±1

[1 + (eαs − 1)n̂↑][1 + (e−αs − 1)n̂↓]e−sαm

= cosh αm + [cosh α(1 − m) − cosh αm] n̂↑
+ [cosh α(1 + m) − cosh αm] n̂↓
+ [2 cosh αm − cosh α(1 − m) − cosh α(1 + m)]n̂↑n̂↓.

(B2)

The left-hand side of Eq. (9) is given as

Ce−�τUm̃2/2e
�τ U

2 (1−2m̃)n̂↑e
�τ U

2 (1+2m̃)n̂↓e−�τUn̂↑n̂↓

= Ce−�τUm̃2/2 + Ce−�τUm̃2/2
[
e

�τ U
2 (1−2m̃) − 1

]
n̂↑

+Ce−�τUm̃2/2[e �τ U
2 (1+2m̃) − 1

]
n̂↓

+Ce−�τUm̃2/2
[
2 − e

�τ U
2 (1−2m̃) − e

�τ U
2 (1+2m̃)

]
n̂↑n̂↓. (B3)

By comparing Eq. (B2) with Eq. (B3), we obtain Eqs. (10)–
(12).

Next, we derive Eqs. (19)–(21), i.e., the shifted-discrete
HST in the charge channel. As in Eq. (B1), we have

eiαsn̂σ = 1 + (eiαs − 1)n̂σ . (B4)

Then the right-hand side of Eq. (18) is given as

1

2

∑
s=±1

[1 + (eiαs−)n̂↑][1 + (eiαs − 1)n̂↓]e−isαn

= cos αn + [cos α(1 − n) − cos αn)](n̂↑ + n̂↓)

+ [cos α(2 − n) − 2 cos α(1 − n) + cos αn]n̂↑n̂↓.

(B5)

The left-hand side of Eq. (18) is given as

Ce�τUñ2/2e− �τ U
2 (1−2ñ)(n̂↑+n̂↓ )e−�τUn̂↑n̂↓

= Ce�τUñ2/2 + Ce�τUñ2/2
[
e− �τ U

2 (1−2ñ) − 1
]
(n̂↑ + n̂↓)

+Ce�τUñ2/2
[
e−�τU e−�τU (1−2ñ)−2e− �τ U

2 (1−2ñ)+1
]
n̂↑n̂↓.

(B6)

By comparing Eq. (B5) with Eq. (B6), we obtain Eqs. (19)–
(21).
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