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We present the phonon dispersion of bulk MoS2 in the high-symmetry directions of the Brillouin zone,
determined by inelastic x-ray scattering. Our results underline the two-dimensional nature of MoS2. In
combination with state-of-the-art first-principles calculations, we determine the phonon displacement patterns,
symmetry properties, and scattering intensities. The results will be the basis for future experimental and
theoretical work regarding electron-phonon interactions, intervalley scattering, as well as phonons in related
2D materials.
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I. INTRODUCTION

Lattice dynamics constitute one of the most fundamental
properties of a crystal, being the basis for mechanical and elas-
tic properties, thermal transport as well as charge-carrier dy-
namics, phonon-assisted optical excitations, and many more.
In this view, it is highly desired to have reliable data about
the phonon dispersion relation of MoS2, a layered crystal that
has boosted the new research field of two-dimensional (2D)
materials beyond graphene during recent years [1–5]. This is
due to its fascinating physical properties in single-layer form,
which it shares with related transition-metal dichalcogenides
(TMDCs) like MoSe2, WS2, WSe2, or MoTe2 [6–9].

Many of their physical processes relevant for new applica-
tions [10,11], such as carrier and exciton dynamics [12–14],
decay of so-called valley polarization [15–18] (the selective
population of one of the two inequivalent K points in the
Brillouin zone), and relaxation of spins [19,20], crucially
depend on phonons. For example, phonons with considerably
large wave vector are required for optical absorption and
emission from the indirect band gap in few-layer and bulk
TMDCs. They are the relevant source for electron scattering
in electron transport [21] and are expected to play a significant
role in the formation of momentum-space indirect interlayer
excitons in van-der-Waals heterostructures [22,23].

In MoS2 and other TMDCs, however, experimental data
on the full phonon dispersion are missing. Only one high-
symmetry direction of the Brillouin zone in MoS2 has been
accessed so far by inelastic neutron scattering (INS) [24].
However, the part most relevant for scattering with large
phonon wave vectors q or between the inequivalent points
K and K ′ (i.e., between the valleys) is completely missing
and has been addressed by DFT calculations only so far, e.g.,
in Refs. [25–27]. This is compounded by the dependence of
the phonon frequencies on the employed exchange-correlation
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approximation, raising the question of the accuracy of the-
oretical predictions for q �= 0. The same holds for the other
TMDCs, which have in common, as an obstacle for INS
experiments, the in-plane nature of the phonon dispersion and
the lack of large single crystals.

Here we present the entire phonon dispersion relation
of MoS2 in the high-symmetry directions �-K , �-M, K-M,
and �-A of the Brillouin zone as determined by inelastic
x-ray scattering (IXS) experiments. We show the existence
of almost degenerate Davydov pairs throughout the Brillouin
zone, as well as nearly quadratic dispersion of the out-of-
plane acoustic modes (flexural modes), underlining the two-
dimensional nature of MoS2. We further present density-
functional theory (DFT) calculations with implemented van-
der-Waals correction and simulations of the structure factor,
which determines the scattering intensities. They are in ex-
cellent agreement with the experimental data and reveal the
mixing of in-plane and out-of-plane phonon displacement
directions inside the Brillouin zone.

II. METHODS

A. Experimental setup

Our inelastic x-ray spectra were recorded at beamline
35XU at the SPring-8 (Japan). A beam with a photon energy
of 17.7935 keV with a spectral width of �3 meV (full width
of half maximum, FWHM) was obtained by using a liquid-
nitrogen cooled Si (111) high heat load premonochromator,
reducing the FWHM to ≈1 eV. The final width was created
with a near-backscattering main monochromator of which the
Si (999) reflex was used. The beam was then focused onto
the sample with a spot size of 75 × 63μm2, enabling us to
select a single crystalline domain of the bulk MoS2 crystal.
The scattered photons were analyzed by an array of 3 × 4
bent Si (111) analyzers, attached to the 10 m monochromator
arm. A detailed description of the beamline can be found in
Ref. [28].

The measurements were performed by keeping the scat-
tering wave vector Q (and thereby the phonon wave vector
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q) constant and scan the energy by varying the temperature
of the backscattering main monochromator. The twelve an-
alyzers were kept at a fixed energy (i.e., temperature). To
verify that no significant energy shifts of analyzers and main
monochromator have occurred, Stokes-anti-Stokes pairs of
inelastically scattered photons were measured between most
of the energy scans. The measurements were performed in
reflection geometry for �A longitudinal and all out-of-plane
transverse modes and in transmission for �M, �K , and KM
longitudinal and in-plane transverse modes. To record signal
from low-intensity modes, momentum resolution was set to
0.75 nm−1.

The sample is a synthesized crystal (HQ graphene, Nether-
lands) with a thickness of about 150 μm to match the at-
tenuation length of the used x rays in MoS2, yielding the
best tradeoff between high absorption and low scattering in a
transmission setup. All measurements were taken in ambient
conditions.

B. Computational approach

We calculated the theoretical phonon band structure within
the frame of density functional perturbation theory (DFPT)
on the level of the generalized gradient approximation in the
Perdew-Burke-Ernzerhof flavor [29] (GGA-PBE) as imple-
mented into the QUANTUM ESPRESSO suite [30]. Long-range
noncovalent interactions were included through the semiem-
pirical DFT-D3 correction with Becke-Johnson damping [31],
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[31]. Here, we used our own set of parameters (s6 = 1.0,
s8 = 0.9184, a1 = 0.5484, a2 = 2.156 Å), which was fitted
to reproduce the experimental lattice constants of a wide
variety of layered and bulk materials and had been used previ-
ously [22,32,33] with great success. The Mo(3s, 3p, 3d, 4s)
and the S(3s, 3p) states were treated as valence electrons
using multiprojector optimized normconserving Vanderbildt
(ONCV) pseudopotentials [34,35] with a cutoff of 120 Ry. All
reciprocal space integrations were performed by a discrete q
point sampling of 12 × 12 × 4 q points in the Brillouin zone.
We fully optimized the atomic positions and cell parameters
until the residual forces between atoms and the cell stress
were smaller than 0.001 eV/Å and 0.01 GPa, respectively.
The threshold for the total energy was set to 10−14 Ry,
which ensured tightly converged interatomic forces for the
geometry optimization and of the ground state density and
wave functions for the DFPT calculations. The phonon band
structure was obtained through Fourier interpolation using
the explicitly calculated phonon frequencies on a regular grid
of 12 × 12 × 4 q points. The contributions to the dynamical
matrix from the D3 corrections were fully included in the
phonon calculations.

FIG. 1. (a) Experimental IXS spectra of MoS2 along the �-M
direction (in the vicinity of the (0 0 12) Bragg reflection) with vertical
offsets corresponding to the phonon q vector. The four spectra
closest to � are scaled by the factor given next to the spectrum.
(b) Extracted peak positions of the spectra shown in (a). Peaks are
labeled according to their symmetry and notation at the � point.

III. RESULTS AND DISCUSSION

2H-MoS2 forms a hexagonal crystal with space group
P63/mmc (D4

6h in Schönfließ notation) with six atoms in the
unit cell, giving rise to 18 phonon branches. At the � point, the
phonon modes decompose into the irreducible representations

�2H = A1g ⊕ 2A2u ⊕ 2B2g ⊕ B1u ⊕ E1g ⊕ 2E1u ⊕ 2E2g ⊕ E2u

for the conventional definition of a 120◦ angle between the in-
plane lattice vectors [38,39]. Due to the relatively weak non-
covalent coupling of the MoS2 layers, the phonon branches
are nearly doubly degenerate at almost all q vectors in the
Brillouin zone and correspond to the nine phonon branches
of single-layer MoS2 (three atoms per unit cell, space group
P6̄m2, D3h).

In Fig. 1(a), a selection of the measured IXS spectra is plot-
ted. The displayed spectra were measured along (0 0+q 12),
with the absolute value of the phonon wave vector |q| = q =
0 . . . 0.5 in units of the reciprocal lattice vector. Here, (h k l)
are the Miller indices identifying the scattering vector of the
elastically scattered light, i.e., a Bragg peak. The extracted
peak positions thus represent the dispersion of the out-of-
plane transverse modes from � to M, see Fig. 1(b).

The IXS measurements allowed us to identify all acoustic
and almost all optical phonon branches along the A-�-K-M-�
directions as shown in Fig. 2. IXS data are shown by circles
together with theoretical values from DFT calculations (lines).
Phonon energies obtained by Raman spectroscopy of the same
sample (stars in Fig. 2) complement the IXS results with data
at the � point. We find seamless agreement between the �-
point frequencies and the IXS data.

In the experiment, we observe nine phonon branches. The
calculations show that they are almost doubly degenerate,
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FIG. 2. Inelastic x-ray scattering measurements and density-functional perturbation theory calculations of the phonon dispersion of MoS2

along the high-symmetry directions A-�-K-M-�. Circles in green/blue/red represent measurements probing phonons with an in-plane
longitudinal (L)/in-plane transverse (T)/out-of-plane transverse (Z) component. For symbols without an error bar, the error is estimated
to be smaller than the symbol size. Open symbols depict peaks with small intensities or larger error. Values at the � point are Raman and IR
spectroscopy data from the literature [36–38] (diamonds) and from Raman measurements on the same sample as used in the IXS experiment
(stars). Phonon branches are labeled by their symmetry within the D6h at the � point, as well as by their displacement (L, T, Z) and acoustic
(A) or optical (O) character. For a symmetry labeling at the K and M points, see Table I; for a compilation of the eigenvectors see Appendix B.

as expected from the weak interlayer forces. The energy
resolution in the IXS experiment, however, does not allow
us to distinguish these so-called Davydov pairs: Each pair is
formed by two phonon modes, where the two layers forming
the bulk unit cell (i) have both the same displacement pattern
as the single layer and (ii) the displacement of one of the
layers is shifted in phase by π . At the � point, one of the bulk
modes of such a pair is always even with respect to spatial
inversion and the other one is odd [36,38]. The frequency
difference of the two phonons in a Davydov pair is very small
if the interaction between the layers is weak. Only the acoustic
phonons have fundamentally different behavior: One mode is
still acoustic (zero frequency), whereas the other one has finite
frequency and corresponds to a rigid-layer vibration at the �

point.
Near the � point, the phonon modes have well defined dis-

placement direction, i.e., in-plane longitudinal (L), in-plane
transverse (T), and out-of-plane transverse (Z). This is seen
by the color of the symbols representing the IXS data, which
indicates the displacement direction preferentially detected in
the given scattering geometry. Towards the K and M points,
we observe data points with different colors (i.e., different
preferred displacement directions) on the same branch, see for
instance the longitudinal acoustic (LA) branch. We interpret
this by an increased mixing of the displacement directions
for increasing q. This is supported by our calculations of
the phonon eigenvectors, see Fig. 3 for the example of the

transverse E1g branch and Tables II–IV in Appendix B for a
compilation of all 18 eigenvectors at the �, K , and M points.
Note that the mixing is not limited to the in-plane direction
but includes the out-of-plane modes as well, in contrast to
the example of graphite [40]. This mixing also explains why
some of the phonon branches are only partially observed or
show weak signal: For instance, the phonon branch with E1g

symmetry at the � point (in-plane vibration) cannot be ob-
served in the chosen scattering geometry (see also discussion
below). However, it gains an out-of-plane component for q >

0, see Fig. 3, which results in (weak) IXS signal. Furthermore,
we observe a quadratic dispersion of the ZA branch (also
called flexural mode) near the � point, which is typical for

FIG. 3. Transition of the phonon eigenvectors from the � to the
M point of the branch with E1g (TO) symmetry at the � point.
Appendix B for a complete overview of the phonon eigenvectors at
the �, K , and M points.
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TABLE I. Phonon frequencies (given in cm−1) of MoS2 at the �, K , and M high-symmetry points from our DFT calculations and
experiments (Raman and IR spectroscopy at � and IXS at K , M). n.a. – identifies not active phonon modes in Raman and IR experiments. The
phonon modes are labeled by their irreducible representations in the factor groups D6h (�), D3h (K), and D2h (M). For a group theory analysis
of phonons in MoS2, see also Ref. [39]. Lines connect phonons that belong to the same phonon branch.

Γ (space group D4
6h) K (D4

3h) M (D17
2h) Γ

irr. rep. Raman IR DFT irr. rep. IXS DFT irr. rep. IXS DFT irr. rep.

E1u
TA

n.a. →0 0.0
E 186 183.1

B1g 161
154.7

E1u
TA

LA B2u 158.7 LA
A2u ZA

E 189 186.0
B1u 176

169.7 A2u ZA

E2g
TO

31 – 32  [37]a

n.a.

32.2
B2g 179.4

E2g
TO

LO A2 239
232.5 Ag 235

231.5 LO
B2g ZO

n.a.
56.6 A1 235.8 B3u 234.6 B2g ZO

E2u
LO

280.7 E 327 322.3
B3g 302.1

E2u
LO

TO Au 305.5 TO

E1g
LO

286 – 289  [36,37]b 283.3
A2 334 334.5 B2g 328.7

E1g
LO

TO
E 334 335.9

B1u 338 338.1 TO

E2g
LO

383 – 384  [36,37]b 379.2
Ag 353

354.8
E2g

LO
TO A1 340 339.0 B3u 355.6 TO

E1u
LO

n.a.
384 [36]

379.4
E 373 370.1

B1g 361 361.4
E1u

LO
TO 380.4 B2u 364 362.9 TO

B1u ZO
n.a.

401.3 A2 384
376.7 B1u 392

384.7 B1u ZO
A1g ZO 408 – 410  [36,37]b 408.5 A1 379.4 B2g 386.0 A1g ZO
A2u ZO

n.a.
470 [36] 462.2

E 398 393.0
Ag 410

406.6 A2u ZO
B2g ZO n.a. 467.1 B3u 407.1 B2g ZO

aMeasured with 633 nm excitation.
bMeasured with 457 nm excitation.

two-dimensional atomically thin sheets [41] and underlines
the 2D nature of the MoS2 layers even within the bulk
crystal.

One challenge for lattice-dynamics simulations in layered
materials is the proper description of the effect of noncova-
lent interactions, which bind the individual layers together.
This is particularly relevant for the rigid-layer, low-frequency
shear, and breathinglike modes in the vicinity of the �

point, where the force constants are small and dominated
by contributions from the noncovalent interlayer coupling.
The commonly used local density approximation (LDA) to
DFT appears to offer a consistently good agreement with
experimental phonon frequencies for a wide range of lay-
ered and bulk crystals but largely benefits from its intrin-
sic overbinding, which causes a hardening of the predicted
phonons at the cost of significantly lower-quality lattice
constants.

Therefore, we implemented the contributions from the
popular DFT-D3 van-der-Waals corrections [31] to the dy-
namical matrix [42] to the density functional perturbation
theory code in the QUANTUM ESPRESSO package [30]. These
semiempirical corrections introduce an additional attractive
London-like interatomic potential, which compensates for the
underbinding and intrinsic exponential decay of nonclassical
interactions in the GGA-PBE exchange-correlation approx-
imation [29] we used for our computations. The obtained
lattice constants of a = 3.158 Å and c = 12.229 Å from our

PBE+D3 calculations are close to the lattice constants of
our MoS2 sample of aexp = 3.161 Å and cexp = 12.297 Å,
suggesting a convincing description of both covalent and
noncovalent interatomic bonding in MoS2, in agreement with
previous studies [22,32,33].

The inclusion of noncovalent interactions leads to a notice-
able improvement for the values of the low-frequency modes
close to the � point, which are significantly underestimated
in the GGA-PBE approximation without the D3 correction
(not shown). Our calculated phonon dispersion is in excellent
quantitative agreement with the IXS measurements for the
acoustic and low-energy optical modes (Table I) and correctly
describes the small ‘bumps’ in the dispersion of the Davydov
pair of the LA-derived branch [E2g (LO, shear mode) and E1u

(LA) at the � point] along �-K-M-�, see Fig. 2.
We find a small overestimation of our predicted frequen-

cies of the out-of-plane acoustic (ZA) mode compared to the
IXS measurements. While the deviation is within the margin
of error in our measurements, we note that this mode is
particularly difficult to converge with the cutoff energy of the
plane-wave expansion that we use in our calculations, due to
the weak forces between the rigidly oscillating layers. This
situation is similar to the ZA modes in graphite and layered
boron nitride.

For the higher-frequency modes, our PBE+D3 approach
appears to perform slightly less well compared to the
Raman measurements and the local-density approximation
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results from Ref. [26], and systematically underestimates the
frequencies of the Raman active modes by a few cm−1, see
Table I. In general, the predictions from LDA calculations are
somewhat higher than those from our PBE+D3 calculations,
hence leading to a slightly better agreement between theory
and the Raman and IXS measurements for the high-energy
optical modes compared to PBE+D3 calculations, while the
agreement for the acoustic and low-energy optical modes is
worse. The good quality predictions of the optical modes
appears to be consistent for a wide range of layered crystals
but is to a certain extent fortuitous due the intrinsic overbind-
ing of LDA causing a hardening of the predicted phonons at
the cost of significantly lower-quality lattice constants. The
DFT-D3 method hence simultaneously offers an accurate de-
scription of both vibronic and structural properties of layered
MoS2 that goes beyond the capabilities of noncorrected local
DFT approximations such as LDA, PBE, or PBEsol [43].

An improved quantitative agreement over the full fre-
quency range of MoS2 and similar layered materials hence re-
quires an exchange-correlation approximation that predicts a
stronger (weaker) in-plane covalent bonding than PBE (LDA)
and sufficiently soft interlayer noncovalent interaction. Due
to the generally attractive nature of the DFT-D3 corrections,
a good description of both structural and vibronic properties
would then require an exchange-correlation functional that
slightly overestimates both in-plane and out-of-plane lattice
constants. An alternative to semiempirical dispersion correc-
tions might be an approach based on nonlocal van-der-Waals
correlation functionals from the vdW-DF [44,45] or the VV10
[46] families that are combined with the PBEsol functional
or similar approximations, which are well suited for the
description of lattice constants in extended systems.

While we observed the phonon dispersion of eight of the
nine Davydov pairs in the experiment, we were unable to
access the almost degenerate branches derived from the two
LO modes around 35 meV (E2u and E1g at the � point) in
the �-K and �-M directions in our scattering geometries.
In order to understand this, we simulated the dynamical
structure factor [47,48] using data from our DFT calculations,
see Appendix A for details. The simulations suggest that
destructive interference of the counterphase oscillation of the
sulfur sublayers in each MoS2 layer cause extinction of the
structure factor for all q vectors along the �-M and �-K-M
directions, if a Bragg peak (h k 0) is used.

Using a Bragg peak (h k l ) with a suitable out-of-plane
component l �= 0 should lead to activation of the LO E1g

and E2u branches, caused by symmetry breaking of the phase
factors from the atomic positions, which lifts the destructive
interference. The intensity can be enhanced through a wise
choice of the Bragg peak such that it aligns the signs of
the contributions from the atomic displacements and of the
phase factors from the atomic positions. This is illustrated
in Fig. 4(a) for simulated measurements at the Bragg peak
(−2 4 2) in the direction (q 0 0). Further, our simulations cor-
rectly reproduce the deactivation of the transverse E2u branch
and activation of the longitudinal E1g branch in the vicinity
of the K point that we observed in our IXS experiments near
the (0 0 12) peak, see Fig. 4(b). This arises from a change
of atomic displacement patterns of the longitudinal E2u and
E1g modes from a pure in-plane to a pure out-of-plane nature

(a) (h k l)=(-2 4 2) (b) (h k l)=(0 0 12)
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FIG. 4. (a) Simulated dynamical structure factor illustrating the
possible observation of the branches associated to the longitudinal
E1g/E2u modes at the (−2 4 2) Bragg peak. (b) Simulation used for
the assignment of the measured out-of-plane phonon energies at the
(0 0 12) Bragg peak, showing the emergence of significant scattering
cross section for the longitudinal E1g/E2u branches around K.

close to the K point, such that these modes behave similarly
to the ZO modes. On the other hand, the transverse E2u and
E1g modes adopt a mixed out-of-plane/in-plane nature in the
middle of the �-K and �-M lines [thus coupling to the (0 0 12)
Bragg peak] but revert back to a pure in-plane character in the
vicinity of the K point, see Table III in Appendix B.

An overview of the measured phonon frequencies, com-
pared to Raman and IR spectroscopy data at the � point and to
DFT calculation at the �, K, and M points, is given in Table I.
A detailed comparison of our IXS data with measurements
performed by electron energy loss spectroscopy (EELS) [49]
and inelastic neutron scattering (INS) [24] are given in the
Supplemental Material [50].

IV. CONCLUSIONS

In conclusion, the complete phonon dispersion relation
of MoS2 is determined experimentally in the high-symmetry
directions of the Brillouin zone. In combination with DFT
calculations, the data clearly show the 2D character of the
lattice vibrations in this layered crystal. Therefore, the results
are relevant for the monolayer form of MoS2 and isostructural
TMDCs as well. In particular, the understanding of scattering
processes involving phonons, such as in electron transport or
optical transitions involving the indirect band gap or the two
K valleys, will in future be based on the knowledge of the
phonon dispersion relation.
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APPENDIX A: SIMULATION OF IXS INTENSITIES

To supplement our experimental data and obtain more
insight into the observed relative scattering intensities, we
simulated the dynamical structure factor of MoS2 for inelastic
x-ray (and neutron) scattering. Following Ref. [47], we com-
pute the one-phonon contribution to the dynamical structure
factor for a reduced phonon wave vector q through

S(q, ω)hkl ∝
3Nat∑

j

∣∣∣∣∣
∑

d

fd (Ghkl + q)√
2Md

e−Wd (Ghkl +q)(Ghkl + q)

· eq jd ei(Ghkl +q)·xd
∣∣2

F DHO
q j (ω), (A1)

where xd and Md are the position and mass of atom d in the
unit cell, respectively, eq jd is the displacement of atom d due
to phonon mode j, and Ghkl is the reciprocal lattice vector
corresponding to the Bragg peak (h k l). Nat is the number
of atoms in the unit cell, e2Wd is the Debye-Waller factor of
atom d , while fd is the wave-vector-dependent form factor
and readily available in tabulated form.

We approximate the spectral shape and temperature de-
pendence of the structure factor due to electron-phonon and
phonon-phonon scattering by a damped harmonic oscillator
(DHO) model [48]

F DHO
q j (ω) = 4ω

π (1 − eh̄ω/kBT )

γq j(
ω2 − �2

q j

)2 + 4ω2γ 2
q j

,

where ωq j and γq j are the angular frequency and linewidth
of phonon mode j at wave vector q, respectively. �2

q j =
ω2

q + γ 2
q j is the effective frequency of the phonon mode. The

Debye-Waller factor e2Wd is potentially important in our case
as it might be different for different atoms/species and cause
further qualitative differences of the phonon modes, e.g.,
modes with smaller or larger oscillations of the molybdenum
atoms, in terms of inelastic scattering of x rays. We thus
explicitly included the Debye-Waller factor, with [47]

Wd (Ghkl + q) = h̄

4Md Nq

∑
q

3Nat∑
j

1

ωq j

∣∣(Ghkl + q) · eq jd

∣∣2

· coth

(
h̄ωq j

2kBT
h̄

)
, (A2)

which requires a sum over Nq vectors in the first Brillouin
zone of the crystal. We found a negligible qualitative de-
pendence of our results on Wd . Frequencies and normal-
ized eigenvectors of the phonon modes for the calcula-
tion of the dynamical structure factor were obtained from
Fourier interpolation along the �KM and �M paths that we
used in our IXS experiments. The integration over the first
Brillouin zone in Eq. (A2) was performed over a regular grid
of 30 × 30 × 6 q points. The linewidth γq j could be derived
ab initio from calculations of the contributions of electron-
phonon and phonon-phonon coupling to the imaginary part
of the phonon self-energy, for example using the EPW and
D3 codes in the QUANTUM ESPRESSO package. However,
for reasons of simplicity, we opted for using a value of
0.05 cm−1 in our calculations instead. The simulated dynami-

cal structure factors for the longitudinal and transverse optical
modes corresponding to our experimental setups are shown
in Fig. 5.

In general, the simulated spectra are in good qualitative
agreement with our experimental observations and explain the
observed signals and relative intensities for the 12 included
optical modes. In particular, our simulations correctly predict
the branches associated to the longitudinal E2u and E1g modes
at the � point around 35 meV to be inactive for most of
the �-K and �-M directions in our experimental geometries
[54]. This can be understood from the atomic displacement
patterns in Tables II–IV. For these two branches, the two
sulfur sublayers in each MoS2 vibrate in opposite phase,
causing destructive interference in Eq. (A1). For wave vectors
with a vanishing out-of-plane component, i.e., q = (qg1 qg2 0),
the atomic displacements of the sulfur atoms remain perfectly
in-plane for most of the �-K and �-M high-symmetry lines,
and the contributions from the vibrating sulfur layers exactly
cancel each other out. At the same time, the contributions to
Eq. (A1) from the equilibrium atomic positions xd are equal
for all sulfur atoms in a MoS2 layer for the out-of-plane com-
ponent qz = 0. The dynamical structure factor hence vanishes,
explaining our observations. As the contributions to the struc-
ture factor within each MoS2 layer cancel, this result does not
depend on the relative movement (in-phase or counterphase)
of the two MoS2 layers that is the difference between the
E2u and E1g modes at �. From our simulations, it also does
not depend on the Bragg peak used in the measurements
as long as the z component of the phonon wave vector is
zero.

On the other hand, our DFT calculations suggest that the
dispersion of the optical modes is very weak in the out-of-
plane, i.e., �-A direction. This feature could be exploited in
order to gain experimental access to the full dispersion of
the longitudinal E�

2u/E�
1g branches: A significant out-of-plane

component of the wave vector should break the symmetry of
the vibration of the two sulfur sublayers in each of the MoS2

layers and lift the destructive interference. Alternatively, one
could attempt to break the symmetry of the contributions
ei(Ghkl +q)·xd in Eq. (A1) from the equilibrium positions of the
sulfur atoms by scattering the x rays off lattice planes (h k l)
with l �= 0. Figure 6 shows the simulated dynamical structure
factors for a selection of Bragg peaks in �-M and “�′-M ′”
(with an offset qz = 1

4 ) direction. In all cases, breaking of
the sulfur sublayer symmetry activates the longitudinal E�

1g

or the longitudinal E�
2u. The similarity of the results for

qz = 0 and qz = 1
4 suggest that the activation mainly arises

from a symmetry breaking of the phase factors from the
equilibrium atomic positions, while the contribution from
symmetry breaking of the displacement patterns is compar-
atively small. Depending on the choice of Bragg peak used
for IXS, the phase factors ei(Ghkl +q)·xd can cause destructive
interference between the sulfur sublayers, hence lowering or
even extinguishing the scattering intensity, or can cause con-
structive interference. A choice of Bragg peak that properly
aligns the signs of the phase factors from the equilibrium
atomic positions with the signs of the corresponding con-
tributions from the atomic displacement, (Ghkl + q) · eq jd ,
hence should make the longitudinal E2u and E1g branches
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FIG. 5. Simulated dynamical structure factors for the Bragg peaks and paths in reciprocal space used in our IXS experiments. The phonon
dispersion of the optical branches from our DFT calculations is shown as an overlay (dashed lines). The intensity is given in arbitrary units and
is meaningful for comparison of the relative scattering intensity between the different experimental geometries.

experimentally accessible along the �-K and �-M paths in
future experiments.

This approach is not necessary for the transverse E�
2u and

E�
1g branches. For these modes, the displacements of the

sulfur atoms gain a significant out-of-plane component for

wave vectors away from the � point, which causes a natu-
ral symmetry breaking of the contributions from the atomic
displacement patterns. The two modes hence behave sim-
ilarly to the ZO modes and contribute to IXS for a
Bragg peak with an out-of-plane component, in case of our
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FIG. 6. Dynamical structure factors for a selection of experimental geometries that might yield scattering contributions from the Davydov
pair of branches associated to the longitudinal E2u and E1g modes at the � point, which we did not observe in our experiments (except near
the K point). The scattering intensity shows a strong qualitative and quantitative dependence of the chosen Bragg peak, while the effect of
symmetry breaking through an out-of-plane offset of the phonon wave vectors is small.

experiments (k k l ) = (0 0 12). As our simulations suggest,
(k k l ) = (2 2 2) or similar combinations of qg1 and qg2 suit-
able for transverse modes might work as well or even better
along the �-K and �-M direction. The situation reverses
in the vicinity of the K point: Here, the transverse E2u

and E1g modes revert back to completely in-plane displace-
ment patterns, while the longitudinal modes evolve into pure
out-of-plane vibrations, see Table III. This causes an ap-
parent crossing of the transverse and longitudinal E�

2u and
E�

1g branches close to the K point in both IXS experiments
and the simulated dynamical structure factor in Fig. 5(e).
However, the calculated dispersion and the evolution of
the atomic displacement patterns along the �-K path sug-
gest that this apparent crossing is an actual anticrossing

and that the scattering intensity is transferred from the
(pseudo)transverse modes to the (pseudo)longitudinal modes
in the vicinity of the K point.

APPENDIX B: DISPLACEMENT PATTERNS AT �, K,
AND M HIGH-SYMMETRY POINTS

Tables II–IV depict a compilation of displacement patterns
at the high-symmetry points �, K , and M, as derived from our
DFT calculations. For each phonon the following information
is given: the symmetry at the high-symmetry point and corre-
sponding symmetry at the � point of the branch, along with
its energy (in cm−1 and meV) and projections onto the planes
depicted in the bottom right panel of Table II.
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TABLE II. Phonon eigenvectors of MoS2 at the � point. Frames surround Davydov pairs. For each phonon the
projections onto the planes depicted in the panel on the bottom right are shown.
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TABLE III. Eigenvectors of the MoS2 phonons at the K point. Layout according to Table II.
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TABLE IV. Eigenvectors of the MoS2 phonons at the M point. Layout according to Table II.
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