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Phonon hydrodynamics, thermal conductivity, and second sound in two-dimensional crystals
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Starting from our previous work in which we obtained a system of coupled integrodifferential equations
for acoustic sound waves and phonon density fluctuations in two-dimensional (2D) crystals, we derive here
the corresponding hydrodynamic equations, and we study their consequences as a function of temperature
and frequency. These phenomena encompass propagation and damping of acoustic sound waves, diffusive
heat conduction, second sound, and Poiseuille heat flow, all of which are characterized by specific transport
coefficients. We calculate these coefficients by means of correlation functions without using the concept of
relaxation time. Numerical calculations are performed as well in order to show the temperature dependence of
the transport coefficients and of the thermal conductivity. As a consequence of thermal tension, mechanical and
thermal phenomena are coupled. We calculate the dynamic susceptibilities for displacement and temperature
fluctuations and study their resonances. Due to the thermomechanical coupling, the thermal resonances such as
the Landau-Placzek peak and the second-sound doublet appear in the displacement susceptibility, and conversely
the acoustic sound wave doublet appears in the temperature susceptibility, Our analytical results not only apply
to graphene, but they are also valid for arbitrary 2D crystals with hexagonal symmetry, such as 2D hexagonal
boron nitride, 2H-transition-metal dichalcogenides, and oxides.
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I. INTRODUCTION

Phonon hydrodynamic phenomena such as propagation
and attenuation of sound waves [1], thermal conductivity
[2–7], Poiseuille flow [8–11], and second sound [8,10–19] in
insulating three-dimensional (3D) crystals have been investi-
gated for many years via experiment and theory. From a mi-
croscopic point of view, these phenomena are closely related
to anharmonic phonon interaction [3,7]. Recently, the subject
has seen a resurgence due to the discovery of 2D crystals
[20]. Layered and 2D crystals exhibit a peculiar anharmonic
interaction, linear in in-plane displacements and quadratic
in out-of-plane displacements (flexural modes). This leads
to unusual static effects such as negative thermal expansion
[21,22], and it is also at the origin of unusual high thermal
conductivity in graphene [23,24]. In particular, it was found
[24,25] that the ZA (flexural acoustic) modes carry most of
the heat in suspended graphene, and that the selection rule for
anharmonic phonon scattering in 2D crystals restricts momen-
tum dissipating umklapp scattering. Numerical calculations
using the single-mode relaxation time approximation confirm
that thermal transport is dominated by ZA modes [26].

A study of phonon lifetimes as a function of the wave vec-
tor throughout the 2D Brillouin zone has shown that in a broad
temperature range below room temperature, the decay rate of
flexural modes is much less affected by umklapp processes
than the decay rate of in-plane modes [27]. The distinctive role
played by flexural modes in anharmonic scattering processes
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has stimulated recent theoretical studies of hydrodynamic
phenomena such as second sound and Poiseuille flow in 2D
crystals [28–30]. In these works, the derivation of hydrody-
namic phenomena is based on the solution of a linearized
Peierls-Boltzmann transport equation (kinetic equation) for
the space- and time-dependent phonon density distribution,
either by iterative methods [28] or by a variational approach
[29,30]. It was concluded that in 2D crystals, hydrodynamic
phenomena should exist in a broad temperature range up to
and above room temperature. For a recent review of the litera-
ture and a discussion on thermal transport in 2D materials, see
Ref. [31].

While in the aforementioned studies all emphasis was
concentrated on the kinetic equation, the present authors
have recently derived a system of dynamic equations for
in-plane displacement correlations coupled to phonon density
fluctuations [32]. A linear coupling between in-plane lattice
displacements and ZA phonon density fluctuations is a direct
consequence of the anharmonic interaction mentioned before.
As a result of linear-response theory and Green’s functions
techniques, we find that phonon density fluctuations enter as
an additional driving term in the sound wave equation for in-
plane lattice deformations, while the kinetic equation contains
an additional term due to coherent lattice displacements. This
calls for a study of the ensuing thermomechanical effects on
phonon hydrodynamics in 2D crystals. Such an investigation
will also pave the way for a broader use of experimental tech-
niques [33] since thermal effects will appear in mechanical
response and vice versa.

The content of this paper is as follows. In Sec. II we recall
the basic concepts and results of our previous work [32]. In
Sec. III we present solutions for the coupled system of dy-
namic equations, first by assuming only energy conservation
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in the collision term of the kinetic equation, and second by
taking also into account approximate conservation of crystal
momentum. In the former case, temperature variations will
be described by a diffusion equation coupled to the in-plane
lattice deformations, while in the latter case, depending on
the frequency of the perturbation, temperature fluctuations
will be described either by a wave equation (second sound)
coupled to lattice deformations (first sound) or by Poiseuille
flow. In both cases, the equation for in-plane sound waves
will be coupled to temperature fluctuations. In the steady-state
case, phonon transport in a confined crystal is described by
Poiseuille flow. In Sec. IV we derive thermal and mechanical
dynamic response functions and study their resonances in
the diffusive and second-sound regime. In Sec. V we calcu-
late transport coefficients such as lattice viscosity, kinematic
phonon viscosity, and thermal diffusion by using a correlation
function method developed by Götze and one of the present
authors [34]. In Sec. VI we present numerical evaluations of
these transport coefficients as functions of temperature for
the case of graphene. Concluding remarks in Sec. VII and a
comment on recent experiments close the paper.

II. BASIC CONCEPTS

We recall some basic concepts and results from our previ-
ous work [32] on sound waves and flexural mode dynamics
in 2D hexagonal crystals. The previous paper is hereafter
referred to as paper I. The Hamiltonian operator that describes
the coupling between acoustic in-plane and out-of-plane dis-
placements was defined as H = Hh + �(3). In terms of normal
coordinates Qα

�q and their conjugate momenta Pα
�q one has

Hh = 1

2

∑
�q,α

[
Pα

�q
†Pα

�q + ω2(�q, α)Qα
�q

†Qα
�q
]
,

�(3) = 1

2

∑
�p,�k,�q,i

�(3)

(
i ζ ζ

�q �k �p
)

Qi
�qQζ

�k Qζ

�p. (1)

The wave vectors �q, �k, and �p all belong to the first 2D
Brillouin zone (BZ), and α = {1, 2, ζ } refers to the three
acoustic polarizations: LA (longitudinal acoustic in-plane),
TA (transverse acoustic in-plane), and ZA (flexural acoustic),
respectively. It is understood that ω2(�q, α) is the renormalized
flexural phonon frequency, and hence ω(�q, ζ ) is linear in �q at
long wavelengths [27]. Throughout this paper, polarizations
denoted with Latin indexes i, j = {1, 2} refer only to in-plane
modes.

At long wavelengths, the Fourier-transformed center-of-
mass displacements per unit cell si(�q) are related to the normal
coordinates by

si(�q) = 1√
m

Qα
�q δαi, (2)

where m is the total mass per unit cell, i.e., m = 2mC,
mB + mN, or mMo + 2mS in the case of graphene, hexagonal
boron nitride (h-BN), or MoS2. The corresponding conjugate
momenta are

pi(�q) = √
mPα

�q δαi. (3)

The third-order anharmonic coupling, calculated for the case
of a central force interaction potential between nearest neigh-
bors in a 2D hexagonal crystal of N unit cells, is given by

�(3)

(
i ζ ζ

�q �k �p
)

= i8√
Nm3

∑
s

φ
(3)
izz (A1; Bs)cos

[
(�q + �k + �p) · �ρ(Bs)

2

]

× sin

[ �q · �r(Bs)

2

]
sin

[�k · �r(Bs)

2

]

× sin

[ �p · �r(Bs)

2

]
	(�q + �k + �p). (4)

Here the interaction parameters φ
(3)
izz (A1; Bs) and the vectors

�r(Bs), �ρ(Bs) have been defined in paper I. The crystal mo-
mentum conservation function 	(�q + �k + �p) =∑�G δ�q+�k+�p,�G
accounts for normal (N-processes) and umklapp processes
(U -processes) when the reciprocal 2D lattice vector �G = 0 or
�G �= 0, respectively.

In terms of phonon creation and annihilation operators bα†
�q

and bα
�q , the normal coordinates are written as

Qα
�q =

√
h̄

2ω(�q, α)

(
bα†

−�q + bα
�q
)
,

Pα
�q = −i

√
h̄ω(�q, α)

2

(
bα

�q − bα†
−�q
)
, (5)

where bα
�q and bα†

�q satisfy the usual commutation rules for Bose
operators. Using linear-response theory and thermal Green’s
functions techniques, we have derived in paper I the following
system of coupled dynamic equations. The first one describes
sound waves due to coherent in-plane lattice deformations
si(�q, ω):

[mω2δi j − v2DqkqlCik, jl ]s j (�q, ω)

= −Fi(�q, ω) + iq j
h̄

N

∑
�k,α

δαζ h ji(�k, ζ )n′(�k, α)ν(�k, α; �q, ω).

(6)

The second one is a kinetic equation,

[ω − qivi(�k, α)]ν(�k, α; �q, ω) + ih̄ωqiδαζ hi j (�k, ζ )s j (�q, ω)

+ qivi(�k, α)h̄ω(�k, α)
�(�q, ω)

T
= −iĈν(�k, α; �q, ω), (7)

where the quantity ν(�k, α; �q, ω) describes the deviation from
local equilibrium of the dynamic phonon density distribution
[see Eq. (10) below]. Both equations are coupled by the
thermoelastic coupling

hi j (�k, ζ ) = 1

2mωR(�k, ζ )

∑
s

φ
(3)
izz (A1; Bs)

× [�k · �r(Bs)]2r j (Bs). (8)

In agreement with Onsager’s reciprocity principle, the cou-
pling is symmetric in Eqs. (6) and (7). The structure of the
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anharmonic coupling �(3), Eq. (1), implies that only the flex-
ural phonon density deviation n′(�k, ζ )ν(�k, ζ ; �q, ω) is coupled
to the in-plane deformations. The factor n′(�k, ζ ) stands for

n′(�k, α) = n(�k, α)[1 + n(�k, α)]

kBT
= −1

h̄

∂n(�k, α)

∂ω(�k, α)
, (9)

where kB is the Boltzmann constant and n(�k, α) =
[exp(h̄ω/kBT ) − 1]−1 is the equilibrium Bose-Einstein dis-
tribution for acoustic phonons of energy h̄ω(�k, α), at equi-
librium temperature T . The remaining quantities occurring
in Eqs. (6) and (7) are the Fourier-transformed external me-
chanical force Fi(�q, ω) and temperature perturbation �(�q, ω),
the collision operator Ĉ [see Eqs. (13)–(15) below], the
isothermal elastic constants Cik, jl , the phonon group velocity
vi(�k, α) = ∂ω(�k, α)/∂ki, and the area of the crystal unit cell
v2D. As shown in paper I, ν(�k, α; �q, ω) is related to the
nonequilibrium phonon density n(�k, α; �q, ω) by

n(�k, α; �q, ω) = ñ(�k, α; �q, ω) + n′(�k, α)ν(�k, α; �q, ω), (10)

where

ñ(�k, α; �q, ω) = {exp[h̄ω(�k, α; �q, ω)/kBT ] − 1}−1 (11)

is the local equilibrium phonon distribution with frequency

ω(�k, α; �q, ω) = ω(�k, α) − iδαζ qi
hi j (�k, ζ )√

N
sj (�q, ω). (12)

As originally pointed out by Akhiezer [35], a sound wave
passing through a crystal causes a disturbance of the distri-
bution of thermal phonons [18,36,37]. It was shown in paper I
that as a consequence of collisions (quadratic effects in �(3))
the in-plane phonon density is driven out of equilibrium, too.
The collision term in the kinetic equation (7) then stands for

Ĉν(�k, α; �q, ω) = C(1)ν(�k, α; �q, ω)δα,ζ

+ (1 − δαζ )C(2)ν(�k, α; �q, ω), (13)

where

C(1)ν(�k, ζ ) = 1

n′(�k, ζ )

∑
�p�h,i

{
W

(
ζ ζ i
�h �k �p

)
[ν(�k, ζ ) − ν(�h, ζ ) + ν( �p, i)]

+W

(
i ζ ζ

�p �h �k

)
[ν(�k, ζ ) − ν( �p, i) + ν(�h, ζ )] + W

(
ζ i ζ

�k �p �h

)
[ν(�k, ζ ) − ν( �p, i) − ν(�h, ζ )]

}
(14)

and

C(2)ν(�k, j) = 1

n′(�k, j)

∑
�p�h

{
1

2
W

(
j ζ ζ

�k �p �h

)
[ν(�k, j) − ν( �p, ζ ) − ν(�h, ζ )] + W

(
ζ j ζ

�p �k �h

)
[ν(�k, j) − ν( �p, ζ ) + ν(�h, ζ )]

}
.

(15)

Here and in the following, we simplify the actual notation by not mentioning explicitly the �q, ω dependence of the quantity
ν(�k, α). We recall that expressions (13)–(15) correspond to linearized collision terms of Peierls-Boltzmann-type kinetic
equations. The transition probabilities W in (14) and (15) are given by

W

(
ζ j ζ

�k �p �h

)
= 2π h̄

∣∣∣∣∣� (3)

(
ζ j ζ

−�k �p �h

)∣∣∣∣∣
2√

kBT n′(�k, ζ )n′( �p, j)n′(�h, ζ )δ(ω(�h, ζ ) − ω(�k, ζ ) + ω( �p, j)),

W

(
j ζ ζ

�p �h �k

)
= 2π h̄

∣∣∣∣∣� (3)

(
j ζ ζ

−�p �h �k

)∣∣∣∣∣
2√

kBT n′( �p, j)n′(�h, ζ )n′(�k, ζ )δ(ω(�h, ζ ) − ω( �p, j) + ω(�k, ζ )), (16)

with

� (3)

(
j ζ ζ

−�p �h �k

)
=

�(3)

(
j ζ ζ

−�p �h �k

)
√

8ω(�k, ζ )ω( �p, j)ω(�h, ζ )
. (17)

While the δ-functions account for phonon energy conservation
in scattering processes involving three phonons, the
	-function contained in �(3) ensures that crystal momentum
is only conserved up to a reciprocal-lattice vector. Since
U -processes involve large wave vectors close to the BZ
boundaries, the corresponding phonon energies h̄ωBZ are
relatively large (see, e.g., acoustic phonon dispersions
in graphene) [38]. The phonon occupation factors n′
contained in the transition probabilities W are only

significant for temperatures kBT ≈ h̄ωBZ. As it is well known
(see, e.g., Ziman [7]), U -processes are frozen out as ≈e−�D/T ,
with �D of the order of the Debye temperature. With
decreasing T , only N-processes survive. We recall that the
hydrodynamic regime corresponds to a situation in which
the system is close to full thermodynamic equilibrium.
Such a local equilibrium situation is established by
N-processes while the subsequent decay to total equilibrium
is described by U -processes or other crystal momentum
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destroying processes such as impurity and boundary
scattering.

While Eq. (6) describes long-wavelength and low-
frequency sound waves, the reduction of the kinetic
equation (7) to the hydrodynamic case, i.e., to an equa-
tion for local temperature fluctuations, requires an additional
procedure. The principle is based on the existence of con-
servation laws and the solution of the kinetic equation in
terms of the corresponding local densities [39]. We observe
that Eq. (7) is an inhomogeneous linear integral equation

with a Hermitian kernel. Indeed defining a scalar product
for any two functions a1(�k, α) and a2(�k, α) of the phonon
variables as

〈a1|a2〉 = 1

N

∑
�p,α

a∗
1( �p, α)n′( �p, α)a2( �p, α), (18)

we obtain for the collision term

〈ν1|Ĉ|ν2〉 = 〈ν2|Ĉ|ν1〉, (19)

where

〈ν1|Ĉ|ν2〉 = 1

N

∑
�p

⎧⎨
⎩ν∗

1 ( �p, ζ )C(1)ν2( �p, ζ ) +
∑

j

ν1( �p, j)∗C(2)ν2( �p, j)

⎫⎬
⎭

= 1

N

∑
�k �p�h, j

{
W

(
ζ j ζ

�k �p �h

)
[ν∗

1 (�k, ζ ) − ν∗
1 (�h, ζ ) − ν∗

1 ( �p, j)][ν2(�k, ζ ) − ν2(�h, ζ ) − ν2( �p, j)]

+ 1

2
W

(
j ζ ζ

�p �h �k

)
[ν∗

1 (�k, ζ ) + ν∗
1 (�h, ζ ) − ν∗

1 ( �p, j)][ν2(�k, ζ ) + ν2(�h, ζ ) − ν2( �p, j)]

}
. (20)

Consequently, Ĉ is a Hermitian operator and admits a spectral
representation

Ĉ =
∑

l

ωl |χ l〉〈χ l |
〈χ l |χ l〉 , (21)

where ωl and χ l are the corresponding eigenvalues and or-
thogonalized eigenfunctions. Since the transition probabilities
satisfy W � 0, the eigenvalues ωl (also called relaxation
frequencies) satisfy ωl � 0. From the conservation of energy
in the phonon scattering processes, Eq. (16), it follows that

χ0(�k, α) = h̄

T
ω(�k, α) (22)

is an eigenfunction of Ĉ with eigenvalue ω0 = 0. Strictly
speaking, there are no further conservation laws for the
scattering processes. However, at low temperature where U -
processes are frozen out, crystal momentum h̄�k can be treated
as a conserved quantity.

III. HYDRODYNAMIC EQUATIONS

The solution of an inhomogeneous linear integral equation
with a Hermitian kernel can be obtained by means of a series
expansion in terms of the eigenfunctions [40]. We will start
from an expansion of the nonequilibrium phonon density
ν(�k, α; �q, ω) in terms of the eigenfunctions χ l (�k, α) of the
collision operator. We proceed in two steps: first (Sec. III A)
we will assume that only phonon energy is conserved in
collisions, and second (Sec. III B) we will in addition treat
crystal momentum as an almost conserved quantity.

A. Energy conservation

The nonequilibrium phonon density is written as

ν(�k, α; �q, ω) = θ (�q, ω)χ0(�k, α) +
∑
l>0

al (�q, ω)χ l (�k, α).

(23)

Here we have separated off the coefficient a0(�q, ω) = θ (�q, ω),
which refers to phonon energy conservation. In the follow-
ing, we will calculate the resolvent of the integral equation
(7) by using perturbation theory. Following Ref. [19], we
define the hydrodynamic regime as that one for which the
external frequency ω (and corresponding wave vector �q) is
small in comparison to the relaxation frequencies ωl . We con-
sider the situation of high T such that a distinction between
N-processes and U -processes is irrelevant. Then χ l (�k, ω) with
l > 0 exhausts the spectrum of crystal momentum conserving
and destroying scattering processes. Recalling from Sec. II
that ν has the dimension of energy, we see that the quantity
θ (�q, ω) has the dimension of temperature. To perform a re-
duction from the �k, α-dependent phonon density ν(�k, α; �q, ω)
to an equation for the temperature fluctuations θ (�q, ω), we
insert expression (23) into Eqs. (6) and (7). We then isolate the
quantities θ (�q, ω) and al (�q, ω) by multiplying Eq. (7) scalarly
with χ0(�k, α) and χ l (�k, α), respectively. In evaluating the
scalar products, we take into account the parity of the relevant
functions: while ω(�k, α) and hi j (�k, ζ ) are even in �k → −�k,
vi(�k, α) is uneven.

Defining the specific heat per unit cell as

cv = h̄2

T
〈ω|ω〉 (24)
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and the thermal tension [27] by

βi j = h̄2

T v2D
〈hi j |ω〉 = h̄2

Nv2DT

∑
�k

h ji(�k, ζ )n′(�k, ζ )ω(�k, ζ ),

(25)

we obtain from Eq. (6)

[mω2δi j − v2DqkqlCik, jl ]s j (�q, ω)

= −Fi(�q, ω) + iv2Dq jβ jiθ (�q, ω)

+ ih̄q j

∑
l>0

〈h ji|χ l〉al (�q, ω), (26)

and from Eq. (7)

ωθ (�q, ω) − qih̄
∑
l>0

〈ωvi|χ l〉
cv

al (�q, ω)

+ iωv2Dqiβi j s j (�q, ω)
T

cv

= 0 (27)

and

(ω + iωl )〈χ l |χ l〉al (�q, ω) + ih̄ωqi〈χ l |hi j〉s j (�q, ω)

= qih̄
〈χ l |viω〉

T
[θ (�q, ω) − �(�q, ω)]. (28)

Taking into account that 0 � ω < ωl , we use the
approximation

al (�q, ω) = 1

ωl〈χ l |χ l〉
{

− h̄ωqi〈χ l |hi j〉s j (�q, ω)

− iqi h̄
〈χ l |viω〉

T
[θ (�q, ω) − �(�q, ω)]

}
, (29)

and we eliminate al (�q, ω) in Eqs. (26) and (27) with the
following results:

[mω2δi j − v2Dqkql (Cik, jl − iωηik, jl )]s j (�q, ω)

= −Fi(�q, ω) + iv2Dq jβ jiθ (�q, ω) (30)

and

(ω + iqiqkλik )θ (�q, ω)

= iqiqkλik�(�q, ω) − iωqiβi jv2DT c−1
v s j (�q, ω). (31)

Here we have introduced the tensors

ηi j,kl = h̄2

v2D

∑
l>0

〈hi j |χ l〉〈χ l |hkl〉
ωl〈χ l |χ l〉 , (32)

λik = h̄2
∑
l>0

〈ωvi|χ l〉〈χ l |vkω〉
T cvωl〈χ l |χ l〉 . (33)

As already mentioned, θ (�q, ω) has the dimension of temper-
ature. Taking the static limit (ω → 0) of Eq. (31), we see
that θ (�q, ω = 0) is equal to the external temperature source
�(�q, ω = 0). We therefore infer that θ (�q, ω) is the local
temperature in the hydrodynamic regime. Equation (31) has
the meaning of a temperature diffusion equation where the
quantity λi j is the thermal diffusion coefficient. On the right-
hand side of this equation, beside the external temperature
source, the lattice deformations si(�q, ω) act as an additional

perturbation. The coupling between thermal and mechanical
quantities, i.e. the local temperature and the coherent lattice
deformations, is mediated by the thermal tension coefficient
βi j . Similarly, in the equation of motion (30) for the in-plane
lattice deformations, in addition to the elastic restoring forces
there appears now a dissipation term with dynamic viscosity
ηi j,kl , while the local temperature variations, again mediated
by the thermal tension, act as an additional driving force.

After inverse Fourier-transforming, we rewrite Eqs. (30)
and (31) as hydrodynamic equations where si(�r, t ) and θ (�r, t )
are slowly space- and time-dependent variables describing the
deformation of the crystalline lattice and the changes of the
temperature, respectively:

m∂2
t si(�r, t ) − v2D(Cik, jl − ηik, jl∂t )∂k∂l s j (�r, t )

= −Fi(�r, t ) − v2Dβ ji∂ jθ (�r, t ) (34)

and

∂tθ (�r, t ) = λik∂i∂k[θ (�r, t ) − �(�r, t )]

− βi jv2DT c−1
v ∂t∂is j (�r, t ). (35)

Here ∂ j stands for ∂/∂r j and ∂t = ∂/∂t . From now on, this
scenario will be addressed as the diffusion regime (DR).

In the absence of an external heat source and of coupling to
the lattice, the last equation reduces to the Fourier temperature
diffusion equation. In the static limit (∂t = 0) and in the
absence of mechanical forces, Eqs. (34) and (35) reduce to

θ (�r, t ) = �(�r, t ),

∂l sk (�r, t ) = C−1
i j,klβi j�(�r, t ), (36)

i.e., the equation of thermal expansion. We observe that so far
we did not make use of hexagonal symmetry, hence Eqs. (30)
and (31) or equivalently (34) and (35) are valid for 2D crystals
of any symmetry.

B. Energy and crystal momentum conservation

In Sec. III A we have shown that if only phonon energy is
conserved in scattering processes, temperature changes satisfy
a diffusion equation. Here we will assume a situation in
which U -processes and other crystal momentum-destroying
processes such as phonon scattering with static impurities are
relatively unimportant, while N-processes are still efficient to
establish local equilibrium. Treating crystal momentum as an
almost conserved quantity, we replace Eq. (23) by

ν(�k, α; �q, ω) = θ (�q, ω)χ0(�k, α) +
∑
i=1,2

ai(�q, ω)χ i(�k)

+
∑
l>2

al (�q, ω)χ l (�k, α), (37)

where the crystal momentum

χ i(�k) = h̄ki (38)

is treated as an eigenfunction with eigenfrequency ωi, and
where ai(�q, ω) has the dimension of velocity. We assume
that χ i(�k) with i = 1, 2 exhausts the spectrum of momentum-
destroying processes and that χ l (�k, α) with l > 2 refers to
N-processes. Such a separation is meaningful at low T where
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U -processes freeze-out. If in addition other momentum-
destroying processes such as elastic impurity scattering are
included in the collision operator, we assume that the con-
centration of impurities is sufficiently weak such that the
combined relaxation frequency ωi still satisfies ωi < ωl for
i = 1, 2 and l > 2. The meaning of the first two terms on the
right-hand side of Eq. (37) can be traced back by linearizing
the local displaced or drifting phonon distribution:

nL(�k, α; �q, ω)

=
[

exp

(
h̄ω(�k, α; �q, ω) − h̄�k · �a(�q, ω)

kB[T + θ (�q, ω)]

)
− 1

]−1

, (39)

where �a(�q, ω) is the drift velocity, and ω(�k, α; �q, ω), Eq. (12),
is the acoustic phonon frequency in a deforming lattice. The
last term in Eq. (37) accounts for N-processes with relaxation
frequencies ωl . It has been noticed that Eq. (39) corresponds
to a distribution function toward which normal processes relax
[37] in a deformed lattice. In the steady-state case, we recover
the displaced phonon distribution with a constant drift velocity
[5,41].

In extending the procedure of Sec. III A we now calculate
θ , al , and ai. By taking the scalar products, we use the fact that
χ i(�k) is an uneven function of �k. Substituting ν(�k, α; �q, ω),
Eq. (37), into Eq. (7), multiplying scalarly by χ0(�k, α), and
eliminating al by using now 0 � ω < ωl with l � 2, we
obtain

(ω + iqiqkλ
′
ik )θ (�q, ω)

= iqiqkλ
′
ik�(�q, ω) − iωqi

T

cv

βi jv2Ds j (�q, ω)

+ qidikak (�q, ω). (40)

Here the quantities λ′
ik are defined by an expression similar

to Eq. (33) except that the l-sum does not include terms with
l = 0, 1, 2 that refer to conserved quantities. In the last term
on the right-hand side we have defined

di j = 〈χ0|viχ
j〉

〈χ0|χ0〉 = h̄2

cv

〈ω|vik j〉. (41)

The quantities ai(�q, ω) are found to satisfy

[(ω + iωi )δik + iq jqhπ
′
i j,kh]ak (�q, ω)

= q j
cvd ji

T 〈χ i|χ i〉 [θ (�q, ω) − �(�q, ω)] (42)

for fixed i. Here we have defined the transport coefficient

π ′
i j,kh =

∑
l>2

〈χ iv j |χ l〉〈χ l |vhχ
k〉

〈χ l |χ l〉ωl〈χ i|χ i〉 , (43)

which is due to N-processes and which plays the role of
kinematic viscosity of the phonon gas (see the second-sound
regime and Poiseuille flow below). In writing down Eq. (42),
we have neglected an additional transport coefficient that
couples the phonon drift velocity to the lattice deformations
si since there is already a coupling to si by the thermal tension
in Eq. (40). Defining the matrix

�ik (�q, ω) = (ω + iωi )δik + iq jqhπ
′
i j,kh, (44)

we obtain

ak (�q, ω) = �−1
ki (�q, ω)

cvq jd ji

T 〈χ i|χ i〉 [θ (�q, ω) − �(�q, ω)]. (45)

Though Eq. (45) would be an appropriate tool to discuss
the frequency dependence of the thermal conductivity [42]
without resorting to the Callaway model [41], we will not
pursue this path here but restrict ourselves to the study of
second sound and phonon Poiseuille flow.

To simplify the algebra, we will only retain the diagonal
elements of the matrix �ik and restrict ourselves to a 2D
crystal with hexagonal symmetry [43]. Then second-rank
tensors will reduce to scalars, viz., λ′

i j = λ′δi j , βi j = βδi j ,
di j = dδi j , and ωi ≡ ωV , i =∈ {1, 2}, and Eq. (45) becomes

ak (�q, ω) = cvqkd

T 〈χ k|χ k〉
[θ (�q, ω) − �(�q, ω)](
ω + iωV + iq2

jπ
′
k j,k j

) , (46)

which shows that the phonon drift velocity is damped by crys-
tal momentum-dissipating processes ωV and by N-processes
(q2π ′). In the following, we will study the system of coupled
equations (40) and (46) for two distinct hydrodynamic fre-
quency regimes: (i) ωV < ω < ωl and (ii) ω < ωV < ωl .

Case (i) corresponds to the frequency window condition
[15], necessary for the existence of second sound. Substituting
ak (�q, ω) into Eq. (40), we get for a 2D crystal with hexagonal
symmetry the wave equation[

ω2 − q2V 2
θ + iω

(
ωV + q2λ′ + q2

jπ
′
k j,k j

)]
θ (�q, ω)

= [−q2V 2
θ + iωq2λ′]�(�q, ω)

− iω2 T

cv

βv2Dqisi(�q, ω), (47)

where

V 2
θ = cv

T

d2

〈χ k|χ k〉 (48)

has the dimension of velocity squared and q2 = q2
1 + q2

2. In
obtaining this result, we have neglected quadratic contribu-
tions in the dissipative terms such as ωV λ′, π ′λ′ as well as
ωV β, π ′β. In analogy with the corresponding phenomenon
originally studied in superfluid helium [44], a wave equation
for temperature or equivalently phonon density fluctuations
is called second sound. In Eq. (47), the squared second-
sound velocity Vθ accounts for the restoring forces while
the damping is determined by the relaxation frequency ωV

and the dissipation coefficients λ′ and π ′ that are inversely
proportional to the relaxation frequencies ωl for N-processes.
Besides the external temperature source, dynamic lattice de-
formations act as periodic temperature perturbations. The
converse mechanism is readily studied by inserting the ansatz
(37) into Eq. (6) for the lattice displacements. Applying
again the method of successive determination of ai and
eliminating al , we obtain as a result an equation similar to
Eq. (30) where θ (�q, ω) is determined by Eq. (47). Trans-
forming Eq. (47) to a space- and time-dependent equation,
we get{

∂2
t − V 2

θ ∂2
j + [ωV − (λ′ + π ′

k j,k j )∂
2
j ]∂t
}
θ (�r, t )

= [−V 2
θ ∂2

j − λ′∂2
j ∂t
]
�(�r, t ) − β

T

cvv2D
∂2

t ∂isi(�r, t ). (49)
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FIG. 1. Second-sound velocity calculated for graphene accord-
ing to Eq. (48).

The corresponding equation for the lattice deformation si(�r, t )
is of the same form as Eq. (34) where now θ (�r, t ) satis-
fies Eq. (49). This scenario will from now on be addressed
as the second-sound regime (SSR). In Fig. 1 we plot the
second-sound velocity Vθ calculated for graphene as a func-
tion of temperature T . It ranges from ∼550 ms−1 at T =
1 K to ∼3.6 kms−1 at T = 430 K and increases mono-
tonically with temperature, in agreement with the results of
Lee et al. [28].

Turning to the case (ii), we take ω = 0 and fix the exter-
nal heat sources such that a constant temperature gradient
is maintained in the crystal [9,10]. In real space, Eq. (46)
leads to (

π ′
k j,k j∂

2
j − ωV

)
ak (�r) = cvd

T 〈χ k|χ k〉∂kθ (�r). (50)

This equation describes the steady-state flow of a phonon gas
driven by a temperature gradient. In analogy with the flow
of a fluid of material particles in a confined space under the
influence of a pressure difference [45], Eq. (50) describes the
Poiseuille flow of a phonon gas [8,9,11]. To be specific, we
consider a 2D hexagonal crystal with rectangular shape of
length L → ∞ and width w. A constant temperature gradient
is applied along L taken as the �x direction. Then �a is solely
a function of y, and π ′

ki,ki reduces to π ′
12,12 = π ′

66. We use
Voigt’s notation with (11) ≡ 1, (22) ≡ 2, and (12) ≡ 6. We
then solve the differential equation (50) with boundary condi-
tions �a(y = ±w/2) = 0. Finally, we average over the width w

and obtain

�a = −〈ω|k1v1〉
T 〈k1|k1〉

1

ωV

[
1 − 2

wαw

tanh
(αww

2

)]�∇θ, (51)

where αw = √ωV /π ′
66 has the dimension of inverse length.

Using dimensional arguments, we identify c/ωV and π ′
66/c,

where c is of the order of the sound velocity, with the mean
free paths lV and lN for momentum-dissipating processes and
N-processes, respectively. These definitions were previously
introduced by Gurzhi [9]. Noting that the corresponding heat

current per unit cell reads

�Q = 1

N

∑
�k,α

h̄2ω(�k, α)�v(�k, α)n′(�k, α)�k · �a, (52)

we define the thermal conductivity κ2D per unit cell from
comparison of Eqs. (51) and (52) as

�Q = −κ2D �∇θ. (53)

The thermal conductivity per unit volume [23,24] κ is
obtained by division of κ2D by the effective volume v3D =
v2D × h, where h is the interlayer distance in the correspond-
ing 3D material:

κ = h̄2〈ω|k1v1〉2

v3DT 〈k1|k1〉
1

ωV

[
1 − 2

wαw

tanh
(αww

2

)]
. (54)

This expression provides a unified description of the tempera-
ture variation of the thermal conductivity. We notice that αw is
determined by both momentum-dissipating processes and by
N-processes through ωV and π ′

66, respectively. Anticipating
the results of Secs. V and VI, where we show that π ′

66 is
a strongly increasing function with decreasing temperature,
and assuming a sample of finite width such that αww < 2, we
see that αw → 0 at low T . Then expansion of tanh( αww

2 ) in
Eq. (54) leads to

κ = h̄2〈ω|k1v1〉2w2

12v3DT 〈k1|k1〉π ′
66

. (55)

Here κ is independent of U -processes and intrinsic impurity
scattering but limited by the scattering of N-processes against
the sample boundaries. At high T where αww � 2, Eq. (54)
gives

κ = h̄2〈ω|k1v1〉2

v3DT 〈k1|k1〉ωV
. (56)

A quantitative discussion of κ as a function of T requires
the explicit knowledge of ωV and π ′

66, and will be given in
Sec. VI.

We observe that the results of this subsection have been
obtained for ωV < ωl . At high T or with large impurity
scattering, this condition breaks down. At low frequencies and
long wavelengths such that ω and q2π ′ can be neglected in
comparison with ωV in the denominator of Eq. (46), we find
that Eq. (40) reduces to Eq. (31) with λ given by Eq. (33), i.e.,
we recover the situation of Sec. III A.

We conclude by showing how to calculate ωV without
impurity scattering. Starting from Eq. (20) with ν(�k, α) = ki

we obtain for the relaxation frequency ωU due to U -processes:

ωU = 〈ki|Ĉ|ki〉
〈ki|ki〉

= 1

N〈ki|ki〉
∑
�k �p�h, j

{
W

(
ζ j ζ

�k �p �h

)
[ki − hi − pi]

2

+ 1

2
W

(
j ζ ζ

�p �h �k

)
[ki + hi − pi]

2

}
.
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Symmetrizing the first term on the right-hand side with respect
to ( �p, j) and (�h, ζ ) and reordering terms,

ωU = 1

2N〈ki|ki〉
∑
�k �p�h, j

[ki + hi + pi]
2

×
{

2W

(
ζ j ζ

�k - �p -�h

)
+ W

(
j ζ ζ

- �p �h �k

)}
. (57)

Typical calculations of thermal conductivity by ab initio
methods [28,29,46] involve also all combinations of (only)
in-plane scattering processes. For a quantitative comparison,
the inclusion of in-plane scattering to ωU can be done by
adding to the right-hand side of Eq. (57) the terms

W

(
i j k
�k �p �h

)
= 2π h̄

∣∣∣∣� (3)

(
i j k

−�k �p �h
)∣∣∣∣

2

×
√

kBT n′(�k, i)n′( �p, j)n′(�h, k)

× δ(ω( �p, j) − ω(�k, i) + ω(�h, k)) , (58)

where

� (3)

(
i j k
�k �p �h

)
=

�(3)

(
i j k
�k �p �h

)
√

8ω(�k, i)ω( �p, j)ω(�h, k)
. (59)

With this addition, the relaxation frequency ωU will be re-
ferred to as ω̃U instead. The expression for �(3)(�k, i; �p, j; �h, k)
is similar to Eq. (4), except for the interatomic potentials
φ

(3)
i jk (A1; Bs), which refer to in-plane anharmonic interactions.

For more details on the specific values and symmetries, see
Ref. [27].

IV. TEMPERATURE AND DISPLACEMENT RESPONSE

Having obtained the hydrodynamic solutions to Eqs. (6)
and (7), we now investigate their implications on the structure
of the correlations functions. Such a study is also of relevance
in view of experiments [33].

In the following, we will restrict ourselves again to 2D
crystals of hexagonal symmetry. Then there are only two in-
dependent elastic constants C11,11 and C11,22, while 2C12,12 =
C11,11 − C11,22. Using Voigt’s notation and observing that in
2D crystals these quantities have the dimension of tension
coefficients, we write γ11 ≡ C11,11, γ12 ≡ C11,22, and γ66 ≡
C12,12. The other fourth-rank tensors ηi j,kl and π ′

i j,kl also have
the same symmetries as the elastic constants. To calculate
the dynamic structure functions Sγ (�q, ω) with γ = {ss, θθ},
we first determine the dynamic susceptibilities χγ (�q, ω), take
the imaginary parts χ ′′

γ (�q, ω), and use the fluctuation dissipa-
tion theorem [47,48]

Sγ (�q, ω) = [1 + n(ω)]χ ′′
γ (�q, ω), (60)

with n(ω) = [exp(h̄ω/kBT ) − 1]−1. In accordance with
Secs. III A and III B, we will consider separately the diffusive
regime and the second-sound regime.

A. Diffusive regime

To calculate the displacement-displacement response func-
tion Sss, we consider Eqs. (30) and (31) in the absence of
the external temperature source �(�q, ω). Taking �q = {q1, 0},
we solve Eq. (31) with respect to θ (�q, ω) and then substitute
the result into Eq. (30). For the longitudinal case �s = {s1, 0},
we obtain[

ω2 − c2
Lq2

1 + iq2
1ωη̂11 − q2

1
ωβ ′2

ω + iq2
1λ

]
s1(�q, ω)

= −F1(�q, ω)/m. (61)

Here we have defined

c2
L = γ11v2D/m,

β ′2 = v2
2DT β2

mcv

,

η̂11 = v2D

m
η11,11, (62)

where cL is the isothermal sound velocity and β ′2 accounts for
the coupling to local temperature fluctuations. Equation (61)
describes damped longitudinal sound waves. Beside the kine-
matic viscosity η̂11, temperature diffusion acts as a mechanism
of sound absorption.

Differentiating Eq. (61) on both sides with respect to
the external force F1(�q, ω), we obtain the longitudinal
displacement-displacement susceptibility

χss(�q, ω) = δs1(�q, ω)

δF1(�q, ω)
= −1

m

×
{
ω2 − c2

Lq2
1 + iq2

1ωη̂11 − q2
1

ωβ ′2

ω + iq2
1λ

}−1

.

(63)

The resonances can be analyzed by hand in important limiting
cases. At large sound wave frequencies where temperature
fluctuations cannot follow, i.e., ω = cLq1 > q2

1λ, the heat dif-
fusion pole at ω = −iq2

1λ can be neglected and the resonances
are damped sound waves centered at ±cad

L q1, where

cad
L = (c2

L + β ′2) 1
2 (64)

is the adiabatic sound velocity. In the opposite regime, i.e.,
ω < q2

1λ, the heat diffusion pole leads to an additional reso-
nance at ω = 0, the Landau-Placzek peak [49]. The relative
strength of these resonances is most conveniently studied by
observing that the denominator of Eq. (63) is a polynomial of
third order in ω. Finding the roots by performing a perturba-
tion expansion in powers of small q1 and making subsequently
a partial fraction decomposition, we obtain

χss(�q, ω) = 1

m

⎧⎨
⎩ 1

2cad
L q1

[
1

ω + cad
L q1 + iq2

1η̂11/2

− 1

ω − cad
L q1 + iq2

1η̂11/2

]

+ iλβ ′2

cad
L

4[
ω + iq2

1λ
( cL

cad
L

)2]
⎫⎬
⎭. (65)
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FIG. 2. Left panel: Plot of the dynamic structure function
Sss(�q, ω) in the diffusive regime according to Eq. (63). Right panel:
Plot of the dynamic structure function Sθθ (�q, ω) (dimensionless) in
the diffusive regime according to Eq. (67). All relevant parameters
are given in Table I.

The first two terms on the right-hand side of Eq. (65) reflect
the sound wave resonances while the third term is due to
temperature diffusion. We next determine the imaginary part
χ ′′

ss(�q, ω) and calculate the sum rule [19]

mc2
Lq2

1

∫ ∞

−∞

dω

π

χ ′′
ss(�q, ω)

ω
=
(

cL

cad
L

)2

+
(

β ′

cad
L

)2

. (66)

The first term on the right-hand side has its origin in the Bril-
louin doublet and the second term is due to the heat diffusion
peak. We see that as a consequence of the coupling of lattice
deformations to temperature diffusion, the elastic sum rule is
not completely exhausted by the isothermal sound waves but
there is in addition a contribution of weight (β ′/cad

L )2 due to
the central Landau-Placzek peak. In the left panel of Fig. 2
we have plotted the dynamic structure function Sss(�q, ω) for a
hypothetical 2D crystal with the parameters listed in Table I.
As we can observe, the Brillouin doublet and the Landau-
Placzek peak are clearly present.

To calculate the dynamic temperature-temperature sus-
ceptibility, we put Fi(�q, ω) = 0 in Eq. (30) and eliminate
s j from the coupled system of Eqs. (30) and (31). Dif-
ferentiating the resulting equation for θ (�q, ω) with respect
to the external temperature source �(�q, ω), we obtain the
susceptibility

χθθ (�q, ω) = δθ (�q, ω)

δ�(�q, ω)
= iq2

1λ

ω + iq2
1λ − Q(q1, ω, T )

, (67)

TABLE I. Parameters used for the calculation of the structure
functions Sss and Sθθ in the diffusive regime.

m q1 (m−1) cL (ms−1) β ′2 q1η̂11 q1λ T (K)

2 mC 4 × 105 23 × 103 c2
L/10 cL/10 cL/5 100

with

Q(�q, ω) = q2
1ωβ ′2

ω2 − c2
Lq2

1 + iωq2
1η̂11

.

Repeating the same steps performed above for χss(�q, ω), we
obtain again three resonances: a sound wave doublet at ±cad

L q1

and a heat diffusion peak at ω = 0. The difference with
χss(�q, ω) is that the strength (weight) of the resonances has
been reversed: here the heat diffusion peak is the dominating
feature, while the sound wave doublet has weight (β ′/cad

L )2.
The corresponding scattering law Sθθ (�q, ω) is again readily
obtained by taking the imaginary part of Eq. (67) and applying
relation (60). The result is plotted in the right panel of Fig. 2
where again we have used the parameters listed in Table I.

B. Second-sound regime

Here we start from the wave equation (47) for local tem-
perature fluctuations. As already noticed at the end of Sec. III,
the wave equation for the lattice deformations is formally the
same as Eq. (30). We follow the same steps as Sec. IV A, now
applied to Eqs. (30) and (47). The longitudinal displacement-
displacement susceptibility is readily obtained as

χss(�q, ω) = δs1(�q, ω)

δF1(�q, ω)

= − 1

m

{
ω2 − c2

Lq2
1+iq2

1ωη̂11−ω2q2
1β

′2R(�q, ω)
}−1

,

(68)

where

R(�q, ω) = 1

ω2 − q2
1V 2

θ + iωq2
1λ̃

,

λ̃ = ωV

q2
1

+ λ′ + π ′
11. (69)

The resonances of χss(�q, ω) are now given by the zeros of a
polynomial of fourth order in ω. In the limit of small wave
vectors, we apply again perturbation theory and perform a
partial fraction decomposition. The result reads

χss(�q, ω) = − 1

m

{
1

2c̃Lq1

(
1 − β ′2V 2

θ(
c2

L − V 2
θ

)2
)[

1

ω − c̃Lq1 + iq2
1η̂11/2

− 1

ω + c̃Lq1 + iq2
1η̂11/2

]

+ β ′2V 2
θ

2Ṽ q1
(
c2

L − V 2
θ

)2
[

1

ω − Ṽθq1 + iq2
1λ̃/2

− 1

ω + Ṽθq1 + iq2
1λ̃/2

]}
, (70)
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FIG. 3. Left panel: Plot of the dynamic structure function
Sss(�q, ω) in the second-sound regime according to Eq. (68). Right
panel: Plot of the dynamic structure function Sθθ (�q, ω) in the second-
sound regime according to Eq. (72). All relevant parameters are given
in Table II.

with

c̃L =
[

c2
L + β ′2c2

L

c2
L − V 2

θ

] 1
2

,

Ṽθ =
[
V 2

θ + β ′2V 2
θ

V 2
θ − c2

L

] 1
2

. (71)

The symbol c̃L stands for the first-sound velocity renormal-
ized by thermal tension due to heat waves (second sound),
while Ṽθ is the second-sound velocity renormalized by the
presence of coherent dynamic lattice deformations (first-
sound waves). From Eq. (70) we see that the resonances
are given by a sound wave doublet centered at ±c̃Lq1 and
a second-sound doublet at ±Ṽθq1. The weight of these res-
onances in the dynamic displacement-displacement suscep-
tibility or equivalently in the dynamic structure function
Sss(�q, ω) is given by 1 − β ′2V 2

θ /(c2
L − V 2

θ )2 and β ′2V 2
θ /(c2

L −
V 2

θ )2, respectively. In the right panel of Fig. 3 we have plotted
the dynamic structure function Sss(�q, ω) for a 2D crystal in the
second-sound regime with the parameters listed in Table II.
According to the partial fraction decomposition in Eq. (70)
there are four distinguishable peaks. The doublet with larger
intensity appears at ±c̃Lq1 ≈ ±1.06 cLq1 while the smaller
one, closer to ω = 0, appears at ±Ṽθq1 ≈ ±0.93 Vθq1. As we
can see, the renormalization barely changes the position of
the first- and second-sound peaks (with the a priori chosen

TABLE II. Parameters used for the calculation of the structure
functions Sss and Sθθ in the second-sound regime.

m q1 (m−1) cL (ms−1) β ′2 q1η̂11 q1λ̃ V T (K)

2 mC 4 × 105 23 × 103 c2
L/10 cL/10 cL/7 cL/2 100

parameters) and so the main difference with the diffusive
regime is the splitting of the central Landau-Placzek peak into
a second-sound doublet.

The dynamic temperature-temperature susceptibility is ob-
tained by differentiating Eq. (47) for θ (�q, ω) with respect to
the external temperature source �(�q, ω), after having elimi-
nated s(�q, ω) by means of Eq. (30). The result reads

χθθ (�q, ω) = δθ (�q, ω)

δ�(�q, ω)

= −q2
1V 2

θ + iωq2
1λ

′

ω2 − q2
1V 2

θ + iωq2
1λ̃ − ω2q2

1β
′2P(�q, ω)

, (72)

where

P(�q, ω) = 1

ω2 − q2
1c2

L + iωq2
1η̂11

.

The resonances of χθθ (�q, ω) are given by the zeros of the same
polynomial of fourth order in ω as in the case of χss(�q, ω).
Carrying out again a partial fraction decomposition, we obtain

χθθ (�q, ω) = − q2
1V 2

θ

{
β ′2c2

L

2c̃Lq1
(
c2

L − V 2
θ

)2
×
[

1

ω − c̃Lq1+iq2
1η̂11/2

− 1

ω+c̃Lq1 + iq2
1η̂11/2

]

+ 1

2Ṽθq1

(
1 − β ′2c2

L(
c2

L − V 2
θ

)2
)

×
[

1

ω−Ṽθq1 + iq2
1λ̃/2

− 1

ω + Ṽθq1+iq2
1λ̃/2

]}
.

(73)

Comparison with Eq. (70) for χss shows that the first-
sound doublet has now the smaller weight β ′2c2

L/(c2
L − V 2)2

while the second-sound doublet has the larger weight 1 −
β ′2c2

L/(c2
L − V 2)2. This trend can be observed clearly in the

right panel of Fig. 3, where we plot the values of χθθ (�q, ω)
in the second-sound regime for the same parameters listed in
Table II.

It is important to note that at low T where flexural modes
are dominant, the thermal expansion αT or equivalently the
thermal tension β is negative in 2D crystals [21,22], as has
been found by experiments in graphene [50,51]. At higher T
the excitation of in-plane phonons gives in addition a positive
contribution to αT and β, which can even lead to a change
of sign as is suggested by atomistic Monte Carlo simulations
[52]. This effect is material- [53] and size-dependent [27].

V. TRANSPORT COEFFICIENTS

In Sec. III we derived a series of hydrodynamic equations
by applying a formal solution method to the kinetic equa-
tions. Thereby the nonequilibrium phonon density has been
expanded in terms of eigenfunctions of the collision operator
Ĉ. The corresponding eigenvalues are the relaxation frequen-
cies of the crystal. Separating the spectrum into two classes
corresponding to slowly varying secular variables (conserved
and quasiconserved quantities) and fast varying variables,
respectively, we have used perturbation theory to formulate
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the hydrodynamic equations for the secular variables such
as lattice deformations and local temperature. In addition to
restoring forces that account for the oscillatory part (e.g.,
elastic constants and sound velocities), the hydrodynamic
equations contain dissipative terms that account for the trans-
formation of kinetic energy into heat. The dissipative terms
are characterized by the so-called kinetic coefficients or trans-
port coefficients such as viscosity and thermal conductivity.

The transport coefficients η, λ, λ′, and π ′ have been
formulated in terms of projections of the currents of secular
variables onto the eigenfunctions χ l belonging to the fast
variables of the collision operator. While formally compact,
expressions (32), (33), and (43) are not very practical, since
neither χ l nor the corresponding eigenfrequencies ωl are
explicitly known. Here we will follow a more systematic
approach where transport coefficients are written as correla-
tion functions of currents of secular variables [54,55] in the
limit of zero frequency [48]. Taking in turn the currents as
secular variables, Götze and one of the present authors [34]
have expressed the correlation functions in terms of memory
kernels for which closed expressions in the form of multiple
integrals over the Brillouin zone are obtained.

As shown in Ref. [34], a transport coefficient � that
describes the decay of a secular variable A (or a set of secular
variables) can be cast into the form of a matrix equation,

� = iχ JJ (0)[m̂KK (i0)]−1χ JJ (0)[χAA(0)]−1, (74)

where the factors on the right-hand side can be calculated
by perturbation theory. The tensor properties of the factors
depend on the nature of the transport coefficient. Here χ JJ (0)
is the static current-current susceptibility, J stands for the
nonsecular part of the current of A, and χAA(0) is the static
A-A susceptibility. The memory function m̂KK (i0) is the
zero-frequency limit ω → +i0 of a higher hierarchy current-
current correlation function, where the current K is obtained
from J taken in turn as a secular variable. Closed expres-
sions of the memory function are obtained by evaluating the
K-K correlation functions by means of decoupling techniques
[34,56] and by taking subsequently the zero-frequency limit
[48]. See Eqs. (80), (87), and (95) below.

In the following, we will present the main steps of im-
plementation of Eq. (74) for the calculation of the transport
coefficients η̂11, λ, λ′, and π ′

66. For additional details of the

method, see Ref. [34]. To calculate the in-plane kinematic
viscosity η̂11, we take the in-plane momentum �p(�q), Eq. (3),
conjugate to the in-plane deformation �s(�q) as a secular vari-
able. Then Eq. (74) leads to

η̂pq = iχ JJ
pn (0)[m̂KK (i0)]−1

nl χ JJ
lq (0)[χ pp(0)]−1. (75)

The indexes p, q, n, and l correspond here to Voigt’s nota-
tion: η̂11,11 ≡ η̂11, η̂22,22 ≡ η̂22, η̂11,22 ≡ η̂12, and η̂12,12 ≡ η̂66.
These definitions apply to all fourth-rank tensors, including
current-current susceptibilities and memory kernels as well.
We now specify all factors that occur in η̂pq. The momentum-
momentum static susceptibility is given by χ

pp
1 (0) = 1. The

nonsecular part of the current of �p(�q) reads

Jn = 1√
N

∑
�k

γn(�k, ζ )bζ†
�k bζ

�k , (76)

where

γn(�k, ζ ) = h̄√
m

[
hn(�k, ζ ) − ω(�k, ζ )

βv2D

cv

]
, (77)

with [32]

h1(�k, ζ ) ≡ h11(�k, ζ ) =
√

3h(3)a3

16mω(�k, ζ )

(
k2

x + k2
y

3

)
,

h2(�k, ζ ) ≡ h22(�k, ζ ) =
√

3h(3)a3

16mω(�k, ζ )

(
k2

y + k2
x

3

)
,

h6(�k, ζ ) ≡ h12(�k, ζ ) = h(3)a3

8
√

3mω(�k, ζ )
kxky. (78)

Here h(3) is the anharmonic coupling constant [27] between
in-plane and out-of-plane displacements, and a is the lattice
constant. The current-current susceptibility reads

χ JJ
pn (0) = 1

N

∑
�k

γp(�k, ζ )n′(�k, ζ )γn(�k, ζ ). (79)

Symmetry implies χ JJ
11 (0) = χ JJ

22 (0) and χ JJ
12 (0) = χ JJ

21 (0).
The subtraction of the term proportional to h̄ω(�k, ζ ) on the
right-hand side of Eq. (77) corresponds to the absence of
the l = 0 term in Eq. (32). The elements of the matrix
m̂KK (i0) are

m̂KK
nl (i0) = iπ h̄

N

∑
�k,�k1,�k2,i

∣∣∣∣∣�
(

i ζ ζ

�k �k1
�k2

)∣∣∣∣∣
2√

kBT n′(�k, i)n′(�k1, ζ )n′(�k2, ζ )
{
[γn(�k1, ζ ) − γn(�k2, ζ )]

× [γl (�k1, ζ ) − γl (�k2, ζ )][δ(ω(�k, i) − ω(�k1, ζ ) + ω(�k2, ζ )) + δ(ω(�k, i) + ω(�k1, ζ ) − ω(�k2, ζ ))]

+ [γn(�k1, ζ ) + γn(�k2, ζ )][γl (�k1, ζ ) + γl (�k2, ζ )]δ(ω(�k, i) − ω(�k1, ζ ) − ω(�k2, ζ ))
}
, (80)

where ω(�k, i) with i = {1, 2} are the in-plane phonon frequen-
cies, and �(�k, i; �k1, ζ ; �k2, ζ ) has been defined by Eq. (17).
While a quantitative evaluation of η̂ and the other kinetic
coefficients is only possible by numerical calculations (see
the next section), the asymptotic behavior as a function of
temperature has to be obtained by analytical means. Assuming

a linear dispersion for the in-plane phonon frequencies and a
quadratic dispersion for the flexural mode, we have studied
the T -dependence of the various susceptibilities and memory
kernels. We then find by means of Eqs. (79) and (80) that in the
limit T → 0, the susceptibility χ JJ (0) diverges while mKK (i0)
vanishes ∝T . Hence we conclude that η̂ diverges with
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T → 0. At high T we find that χ JJ (0) ∝ T and mKK (i0) ∝
T 2, hence η̂ tends to a constant value.

Next we consider the thermal diffusion coefficient λi j =
λδi j , which has been introduced in Sec. III, Eq. (33). The
corresponding secular variable in this case is the harmonic
phonon energy density

ε(�q) = 1√
N

∑
�k,α

h̄ω(�k, α) bα†
�k− �q

2

bα
�k+ �q

2

. (81)

Expression (74) leads to the thermal diffusion coefficient

λ = iχ JJ (0)[m̂KK (i0)]−1χ JJ (0)[χεε (0)]−1, (82)

where all factors on the right-hand side are scalars. The
energy-energy density susceptibility is given by

χεε (0) = h̄2〈ω|ω〉 = T cv, (83)

and the corresponding current reads

Ji = 1√
N

∑
�k,α

γi(�k, α)bα†
�k bα

�k , (84)

with

γi(�k, α) = h̄ω(�k, α)vi(�k, α). (85)

The current-current susceptibility reads

χ JJ (0) = h̄2〈ωv1|ωv1〉 (86)

and the memory function is obtained as

m̂KK (i0) = iπ h̄

N

∑
�k,�k1,�k2,i

∣∣∣∣∣� (3)

(
i ζ ζ

�k �k1
�k2

)∣∣∣∣∣
2√

kBT n′(�k, i)n′(�k1, ζ )n′(�k2, ζ )[γ1(�k, i) + γ1(�k1, ζ ) + γ1(�k2, ζ )]2

× [δ(ω(�k, i) − ω(�k1, ζ ) + ω(�k2, ζ )) + δ(ω(�k, i) + ω(�k1, ζ ) − ω(�k2, ζ )) + δ(ω(�k, i) − ω(�k1, ζ ) − ω(�k2, ζ ))]. (87)

Proceeding as outlined above, we find by analytical reasoning that at low T the susceptibility χεε (0) and χ JJ (0) vary as T 2 and
T 3, respectively, and that mKK (i0) ∝ T 3. Hence we conclude that the thermal diffusion λ vanishes ∝ T for T → 0. At high T
we obtain χεε ∝ T , χ JJ (0) ∝ T , and mKK (i0) ∝ T 2, which means that λ vanishes as T −1.

Finally, we consider the kinetic coefficients λ′ and π ′ introduced in Sec. III. The calculation of λ′ requires the subtraction of
the crystal momentum as a secular variable from the energy current. Equation (85) has to be replaced by

γ ′
1(�k, α) = h̄[ω(�k, α)v1(�k, α) − k1gλ], (88)

where gλ = 〈k1v1|ω〉/〈k1|k1〉. The kinetic coefficient λ′ is then obtained by replacing γ1 by γ ′
1 in the expression for χ JJ and m̂KK

that enter Eq. (82) for λ. The asymptotic T behavior of λ′ is the same as that for λ.
The kinetic coefficient π ′

i j,kl defined in Eq. (43) plays the role of kinematic viscosity of the phonon gas and the secular variable
is the crystal momentum density

πi(�q) = 1√
N

∑
�k,α

h̄ki bα†
�k− �q

2

bα
�k+ �q

2

. (89)

Since π ′ is a fourth-rank tensor, it has the symmetry of the elastic constants. Using again Voigt’s notation, we may write π ′
pq as

π ′
pq = iχ JJ

pn (0)[m̂KK (i0)]−1
nl χ JJ

lq (0)[χππ (0)]−1. (90)

The crystal momentum susceptibility reads

χππ (0) = h̄2〈k1|k1〉 = h̄2〈k2|k2〉. (91)

The momentum currents are given by

Jn = 1√
N

∑
�k,α

γn(�k, α)bα†
k bα

k , (92)

with

γ1(�k, α) = h̄
[
v1(�k, α)k1 − ω(�k, α)gπ

11

]
,

γ2(�k, α) = h̄
[
v2(�k, α)k2 − ω(�k, α)gπ

22

]
,

γ6(�k, α) = h̄v2(�k, α)k1 = h̄v1(�k, α)k2, (93)

where gπ
11 = gπ

22 = 〈ω|k1v1〉/〈ω|ω〉. The static current-current susceptibilities are

χ JJ
np (0) = 〈γn|γp〉 (94)
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and the relevant elements of the memory function are obtained as

m̂KK
nl (i0) = iπ h̄

N

∑
�k,�k1,�k2,i

∣∣∣∣∣�
(

i ζ ζ

�k �k1
�k2

)∣∣∣∣∣
2√

kBT n′(�k, i)n′(�k1, ζ )n′(�k2, ζ ){[γn(�k, i) − γn(�k1, ζ ) − γn(�k2, ζ )]

× [γl (�k, i) − γl (�k1, ζ ) − γl (�k2, ζ )]δ(ω(�k, i) − ω(�k1, ζ ) − ω(�k2, ζ )) + [γn(�k, i) − γn(�k1, ζ ) + γn(�k2, ζ )]

× [γl (�k, i) − γl (�k1, ζ ) + γl (�k2, ζ )]δ(ω(�k, i) − ω(�k1, ζ ) + ω(�k2, ζ )) + [γn(�k, i) + γn(�k1, ζ ) − γn(�k2, ζ )]

× [γl (�k, i) + γl (�k1, ζ ) − γl (�k2, ζ )]δ(ω(�k, i) + ω(�k1, ζ ) − ω(�k2, ζ ))} . (95)

At low T we find by analytical means that in leading order
of T , χππ (0) ∝ T , χ JJ (0) ∝ T , and mKK (i0) ∝ T 3. Hence π ′
diverges as T −2 for T → 0. At high T we get χππ (0) ∝ T ,
χ JJ (0) ∝ T , and mKK (i0) ∝ T 2, and we conclude that π ′
vanishes as T −1. Here and before, high T means T larger than
h̄ωD/kB, where ωD is a BZ boundary frequency.

Notice that in obtaining the results Eqs. (80), (87), and
(95), we do not make use of the concept of a wave-vector-
dependent relaxation time. The multiple integral expressions
are reminiscent of transport theory results obtained by means
of variational methods [6,7,57], however in the present ap-
proach we do not resort to any trial function. A numerical
evaluation of the transport coefficients is then reduced to a
calculation of the single and multiple �k-integrals occurring
in the factors χAA(0), χ JJ (0), and mKK (i0). Such a program
will be carried out in the next section, where we study the
temperature evolution of the transport coefficients.

VI. TEMPERATURE DEPENDENCE OF
TRANSPORT COEFFICIENTS

As follows from the analytical results of Secs. III and V,
the evaluation of the transport coefficients η, λ, π ′ and the
thermal conductivity κ can be achieved by calculating the
corresponding susceptibilities and memory functions. For this
purpose, we need to calculate simple and triple integrals inside
the two-dimensional BZ. These integrals involve the har-
monic frequencies ω(�k, α), the group velocities �v(�k, α), the
anharmonic interactions �(�k1, α1; �k2, α2; �k3, α3), and the mo-
mentum and energy conservation functions 	(�k1, �k2, �k3, �G)
and δ(ω(�k1, α1), ω(�k2, α2), ω(�k3, α3)). We will use the corre-
sponding input parameters for graphene [27].

Following the steps of Ref. [27], we first generate the
hexagonal BZ for graphene, and then for each of the N �k-
points in the BZ we calculate the acoustic phonon disper-
sions by direct diagonalization of the dynamical matrix [38].
Because of band-crossing, we also make use of an auxiliary
algorithm to keep the correct sorting of phonon modes after
diagonalization.

The evaluation of simple integrals for the calculation of
scalar products, e.g., β and d , or susceptibilities, e.g., χ JJ (0)
and χεε (0), is performed in a straightforward way by sum-
ming over all �k-points and the three acoustic polarizations.
In Figs. 1, 4, 5, and 6, the number of �k-points used is N =
25 600. Triple integrals are required specifically for memory
functions m̂KK (i0). To evaluate them, we generate a set of
all possible combinations {�k1, �k2, �k3} from the original list of

�k-points in the BZ. Among all these combinations, those that
satisfy �k1 + �k2 + �k3 = 0 belong to the N-processes group, and
those that satisfy �k1 + �k2 + �k3 = �G, for any reciprocal vector
�G, belong to the U -processes group. The explicit distinction
between normal and umklapp groups allows us to determine
their contributions separately, as will be shown below. En-
ergy conservation is enforced by means of a Gaussian func-
tion (ε

√
π )−1 exp{[−ω(�k1, α1) + ω(�k2, α2) + ω(�k3, α3)]/ε}2,

where a broadening parameter ε = 5 cm−1 is chosen. Memory
functions are then evaluated by summing over normal and
umklapp groups.

In the left panel of Fig. 4, the solid blue line shows the
temperature evolution of the dynamic viscosity η11 calculated
for graphene according to Eqs. (75)–(80). Because of the
even �k-dependence of the thermoelastic coupling hi j (�k, ζ ), the
scalar products 〈hi j |χ k〉 for k = {1, 2} in Eq. (32) are zero.
This makes the summation condition l > 2 equivalent to l >

0, resulting in ηi j having the same value in both the diffusive
and second-sound regimes. As was observed, the dynamic
viscosity shows a steep increase with T → 0 in accordance

FIG. 4. Left panel: dynamic viscosity η11 calculated for graphene
according to Eqs. (62) and (75). As mentioned in the text, the values
of η11 shown by the solid blue line are the same in both the DR and
the SSR. As a comparison, the dash green line shows the calculations
with β = 0. Right panel: thermal diffusivity λ (in the DR) and λ′ (in
the SSR) calculated for graphene according to Eq. (82) shown by
the solid blue and dashed green lines, respectively. The dot-dashed
cyan and dotted red lines show the corresponding N-processes
contributions.
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FIG. 5. Left panel: kinetic phonon viscosity π ′
66 calculated ac-

cording to Eq. (90). Right panel: relaxation frequencies ωU and ω̃U

calculated for graphene according to Eq. (57) shown by the solid blue
and the dashed green lines, respectively. The relaxation frequency ω̃U

includes the in-plane scattering terms described by Eq. (58).

with the T -dependence discussion in the previous section and
then presents a local minimum at T ∼ 140 K. The reason for
this local minimum is related to the temperature dependence
of the thermal tension β, which remains negative according
to Eq. (25) (the change in sign of β at higher temperatures
is a direct consequence of in-plane scattering [27]). The right
panel shows the values of the thermal diffusion coefficients
λ and λ′ calculated according to Eqs. (81)–(88). In addition,
we plot the corresponding N-processes contributions to λ and
λ′. As expected, the low-T behavior in both the diffusion and
second-sound regimes is dominated entirely by N-processes.
The contribution of U -processes becomes only noticeable
above T ∼ 60 K.

FIG. 6. Thermal conductivity κ calculated for rectangular
graphene samples with widths w = 100, 50, and 20 μm according
to Eq. (54). The dot-dashed cyan line shows the behavior of κ with
w = 100 μm including in-plane scattering.

The kinematic viscosity coefficient π ′
66 for graphene,

which enters in the expression for the thermal conductivity
κ [Eq. (54)], is plotted in the left panel of Fig. 5. According
to Eqs. (89)–(95), this coefficient presents a steep increase
with T → 0 and a monotonically decreasing behavior for
increasing T . The right panel of Fig. 5 shows the temperature
evolution of the relaxation frequency ωU calculated according
to Eq. (57) and the values of ω̃U , i.e., the relaxation frequency
ωU with the addition of the in-plane scattering terms Eqs. (58)
and (59). At low T , both frequencies are essentially the same,
meaning that in-plane scattering can be completely neglected.
With T increasing above ∼150 K, the relative difference
between ωU and ω̃U becomes noticeable, and in particular it
reaches a value of ∼70% at T = 300 K.

Figure 6 shows the thermal conductivity κ calculated for
graphene according to Eq. (54) for three different widths
w = 100, 50, and 20 μm. At low T , κ behaves as predicted
by Eq. (55) and tends to zero with π ′

66 → ∞. With increasing
T , π ′

66 decreases and, as far as the relaxation frequency ωV of
crystal momentum-destroying processes is small, κ increases.
At high T where U -processes are dominant (we assume
that impurity scattering is negligible and hence ωV ≡ ωU ), κ

decreases with increasing T , in accordance with Eq. (56). In
the intermediate-temperature regime, κ reaches a maximum
that is determined by the subtle interplay of the T -dependence
of π ′

66 and ωU . The maximum shifts to higher T with lower
sample width w, in agreement with Refs. [46,58].

A quantitative comparison with the results of other works
[28,29,46,58] shows that our values of κ for T above 150 K
are larger. Also the inclusion of in-plane scattering does not
resolve this discrepancy. A further reduction of the values of
κ requires the inclusion of impurity scattering and possibly
of fourth-order scattering processes of flexural (ZA) phonons
[59]. We expect that the latter lead to a reduction of π ′

66
or equivalently to a decrease of the mean free path lN for
N-processes.

VII. CONCLUSIONS

Starting from coupled dynamic equations for in-plane lat-
tice displacements (6) and flexural phonon kinetics (6), we
have used perturbative methods to obtain the hydrodynamic
equations describing elastic sound waves and local tem-
perature fluctuations. We have distinguished two scenarios:
(i) if phonon energy is the only conserved quantity, temper-
ature fluctuations are described by a diffusion equation; (ii) if
in addition crystal momentum is taken as an almost conserved
quantity and the frequency window condition is fulfilled [15],
temperature fluctuations are described by a wave equation, the
so-called second sound. In the zero-frequency limit and in the
presence of a constant temperature gradient, scenario (ii) leads
to Poiseuille flow.

The present study differs from previous theoretical works
on the thermal properties of 2D crystals (see references in
Sec. I) in several respects. We start from coupled dynamic
equations derived from a microscopic Hamiltonian [32] and
obtain therefrom a unified description for elastic and thermal
hydrodynamic phenomena. The coupling is mediated by the
elastic tension coefficient, which is an anharmonic effect
due to the coupling between in-plane and flexural lattice
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displacements. By investigating the elastic and thermal re-
sponse functions, we have shown how the thermal reso-
nances (second sound or Landau-Placzek peak) appear in
the displacement-displacement response function while con-
versely the sound wave doublet is present in the thermal
response. The interplay of elastic and thermal phenomena in
various scattering laws is a challenge for new experiments.
Indeed, most recently second sound has been observed in
graphite at temperatures above 100 K by means of time-
resolved optical measurements [60]. The method is based on
the transient thermal grating technique [61]. The spatial and
temporal decay of the thermal grating by second-sound heat
transport is reflected, as a consequence of thermomechanical
coupling, in the surface displacement field that acts as a
transient diffraction grating.

A further distinct aspect of our work is the calculation of
various transport coefficients such as the first sound viscosity
η, the thermal diffusion λ, and the phonon viscosity π ′.
Together with the crystal momentum relaxation frequency ωV ,
these coefficients characterize the broadening of elastic and
thermal resonances and determine the strength of the thermal
conductivity κ . Using Kubo-Mori response theory, we have
written the transport coefficients as relaxation functions of
generalized currents of secular variables, and we calculated
the current-current relaxation functions by means of an equa-
tion of motion method due to Götze and one of the present
authors [34]. Thereby we have obtained closed expressions for
the transport coefficients in the form of multiple integrals over

the Brillouin zone that are reminiscent of variational theory
results [6,7,57]. A quantitative evaluation of the transport
coefficients and their T -dependence has been performed by
numerical calculations in Sec. VI. In addition, we have studied
the asymptotic behavior at low and high temperatures by ana-
lytical means. In particular, we found that the viscosities η and
π ′ diverge at low T while the thermal diffusion λ tends to zero.
Special care has been devoted to the calculation of Poiseuille
flow [9] and the static thermal conductivity κ . We have solved
the differential equation (50) that describes phonon drift in
the presence of a static temperature gradient for a rectangular
2D crystal with width w. The thermal conductivity, Eq. (54),
then depends on ωV and π ′

66. At low T and for a sample with
finite width, it follows from Eq. (55) and from the already
mentioned divergence of π ′ that κ vanishes with T → 0. At
high T where ωV is large and π ′

66 vanishes, Eq. (56) shows
that κ tends asymptotically to zero with increasing T . The
complete temperature evolution of κ is presented in Fig. 6.
We recall that π ′

66 is due to N-processes; see Eq. (43) and
the remark following Eq. (51). The vanishing of κ is then
the ultimate consequence of the disappearance of thermal
phonons as heat carriers in the zero-temperature limit.
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