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All ensembles of statistical mechanics are equivalent in the sense that they give the equivalent thermodynamic
functions in the thermodynamic limit. However, when investigating microscopic structures in the first-order
phase transition region, one must choose an appropriate statistical ensemble. The appropriate choice is
particularly important when one investigates finite systems, for which even the equivalence of ensembles does
not hold. We propose a class of statistical ensembles, which always give the correct equilibrium state even in
the first-order phase transition region. We derive various formulas for this class of ensembles, including the one
by which temperature is obtained directly from energy without knowing entropy. Moreover, these ensembles are
convenient for practical calculations because of good analytic properties. We also derive formulas which relate
statistical-mechanical quantities of different ensembles, including the conventional ones, for finite systems. The
formulas are useful for obtaining results with smaller finite-size effects, and for improving the computational
efficiency. The advantages of the squeezed ensembles are confirmed by applying them to the Heisenberg model
and the frustrated Ising model.
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I. INTRODUCTION

Using statistical mechanics, one can obtain not only the
thermodynamic functions but also the density operator, by
which one can investigate microscopic structures of equi-
librium states [1,2]. To obtain thermodynamic functions in
the thermodynamic limit, one can employ any statistical en-
semble because all statistical ensembles give the equivalent
thermodynamic functions, i.e., the functions are Legendre
transformations of each other [3]. This useful property, called
the equivalence of ensembles, holds even for the system
which undergoes the first-order phase transition, where the
thermodynamic functions exhibit the strongest singularities.
By contrast, to investigate microscopic structures in the first-
order phase transition region, one must choose an appropriate
statistical ensemble.

For example, consider the liquid-gas phase transition of
water at a pressure of 1 atm. If one uses the canonical
ensemble specified by temperature T , the phase transition
takes place at a single point T = 100 ◦C. However, at this
phase transition point, the molar ratio of the liquid and the
gas phases can take various values [1]. Consequently, the
equilibrium state changes discontinuously in temperature, and
it is impossible to obtain equilibrium states for each molar
ratio of liquid and gas phases using the canonical ensemble.
By contrast, if one employs the microcanonical ensemble
specified by energy, the phase transition takes place in a
finite region of energy, called the phase transition region or
coexisting region [4–6]. At every point in this region, the
ensemble gives the correct equilibrium state, in which all

*yoneta@as.c.u-tokyo.ac.jp
†shmz@as.c.u-tokyo.ac.jp

macroscopic variables including the liquid-gas molar ratio
are uniquely determined. When gradually heating up water
in experiments, one obtains a sequence of such equilibrium
states in the transition region.

As seen from this example, one must choose an appropriate
statistical ensemble, such as the microcanonical ensemble, to
obtain a correct density operator and thereby investigate mi-
croscopic structures in the first-order phase transition region.

The appropriate choice of the ensemble is particularly im-
portant when one investigates finite systems because even the
equivalence of ensembles (that holds in the thermodynamic
limit) does not hold for finite systems [7,8]. That is, even
when one is only interested in thermodynamic functions, one
must choose an appropriate statistical ensemble in order to
derive correct properties of finite systems from the func-
tions. For example, even with short-range interactions, finite
systems which undergo first-order phase transitions exhibit
thermodynamic anomalies such as a negative specific heat
[9–12]. In fact, the recent technical development enabled
the experimental realization of first-order phase transitions
in small systems, and evidence of the negative specific heat
was observed [13,14]. Nevertheless, the canonical ensemble
always gives positive specific heat. Moreover, it gives double
peaks of the energy distribution [15], i.e., an unphysical state
which is a classical mixture of macroscopically distinct states
[16,17]. To correctly obtain the negative specific heat and a
physical equilibrium state, one must use another ensemble
such as the microcanonical ensemble [7,8,16–21].

The use of an appropriate ensemble is also important for
numerical studies of the systems which undergo the first-order
phase transition. However, conventional ensembles are not
appropriate enough. If one employs the canonical ensemble,
its energy distribution has double peaks, which are separated
by exponentially suppressed phase coexisting states, near the
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transition point [22]. This degrades greatly the efficiency of
the Monte Carlo calculations using the importance sampling
with local update algorithms or the replica exchange method
[23] (also called parallel tempering) [24,25]. Furthermore, the
singularities of thermodynamic quantities at the first-order
transition point are smeared significantly in the canonical en-
semble for finite systems due to the large fluctuation [7,26,27].
This makes it difficult to identify the phase transition and to
determine its order [27]. By contrast, if such finite systems
are studied using the microcanonical ensemble, the phase
transitions are directly detected [28–31]. Unfortunately, how-
ever, the microcanonical ensemble has technical difficulties
in practical calculations. It is difficult, especially for quantum
systems, to construct a microcanonical ensemble. Moreover,
one needs to differentiate the entropy in order to calculate
the temperature, but it gives very noisy results in numerical
calculation [32].

Several attempts were made to overcome these problems.
For example, the Gaussian ensemble [28,29,33,34] and the dy-
namical ensemble [35] were conceived as elaborate numerical
methods for classical systems. Furthermore, the generalized
canonical ensemble [36–38] was introduced, which gives the
entropy in the thermodynamic limit via the Legendre trans-
formation even when the entropy is not concave. While its
mathematical aspects were studied, the physical aspects were
not discussed, such as the physical properties of the state
described by that ensemble.

In this paper, we propose a class of statistical ensembles,
which we call the squeezed ensembles. They always give
the correct equilibrium state even in the first-order phase
transition region. In particular, thermodynamic anomalies,
such as negative specific heat, are correctly obtained, which
appear generally in the transition region for finite systems
with short-range interactions. We derive various formulas for
this class of ensembles, including the one by which tem-
perature is obtained directly from energy without knowing
entropy.

Moreover, the squeezed ensembles are convenient for prac-
tical calculations because of good analytic properties. They
can be numerically constructed more easily than the micro-
canonical ensemble, and the construction is even easier than
that of the canonical ensemble in some cases. Furthermore,
efficient numerical methods, such as the replica exchange
method, are applicable in almost the same manner as in the
canonical ensemble.

We also derive formulas which relate statistical-
mechanical quantities of different ensembles, including
the conventional ones, for finite systems. The formulas are
useful for obtaining results with smaller finite-size effects, and
for improving the computational efficiency. The advantages
of the squeezed ensembles and these formulas are confirmed
by applying them to the Heisenberg model and the frustrated
Ising model.

Various ensembles, including the Gaussian and the dynam-
ical ensembles of the previous works, are included in the
class of squeezed ensembles. One can choose an appropriate
squeezed ensemble depending on the purpose, without losing
the above advantages. By contrast, the conventional ensem-
bles, such as the canonical and microcanonical ensembles,
are understood as certain limiting cases of the squeezed

ensembles so that some of the advantages are lost by the
limiting procedure.

II. SQUEEZED ENSEMBLE

A. Definition

We consider a quantum system which has N degrees
of freedom and the Hamiltonian Ĥ . To take the thermody-
namic limit, we use ĥ ≡ Ĥ/N and the energy density u ≡
energy/N .1 We assume that all quantities are nondimension-
alized with an appropriate scale. We denote the minimum and
the maximum eigenvalues of ĥ by εmin and εmax, respectively.

We assume that the equilibrium state is specified by the
energy density for each value of N . In other words, we assume
that the state described by the microcanonical ensemble is not
a classical mixture of macroscopically distinct states.

We also assume that the system is consistent with thermo-
dynamics in the sense that

σN (u) ≡ 1

N
log gN (u) (1)

converges to an N-independent concave function (entropy
density, s) as N → ∞, where gN (u) denotes the density of
microstates.2 For the moment, we assume that σN is also a
concave function for finite N . Later on, it turns out that this
assumption is unnecessary. Our formulation is valid even for
systems whose concavity of σN is broken.

We introduce the squeezed ensemble. Let η be a convex
function on [εmin, εmax]. We define the squeezed ensemble
associated with η by

ρ̂
η
N ≡ e−Nη(ĥ)

�
η
N

, (2)

where

�
η
N ≡ Tr[e−Nη(ĥ)]. (3)

When η(u) = βu, ρ̂
η
N gives the canonical ensemble. When

η(u) = ( u−ε
δ

)2n, ρ̂η
N approaches the microcanonical ensembles

as n → ∞. We will show that other, appropriate forms of η(u)
give better ensembles.

B. Requirements on η

As discussed in Sec. I, the canonical ensemble gives an
unphysical state at the first-order phase transition point. To
make the squeezed ensemble free from such deficiency, we
require

1Precisely speaking, u is the mean energy. It agrees with the
energy density only when a single uniform phase is realized in the
equilibrium state. For simplicity, we use the term “energy density”
throughout this paper even when several phases coexist.

2More precisely, σN is a twice continuously differentiable function
which closely approximates 1

N log gN and satisfies

lim
N→∞

σ
(n)
N (u) = s(n)(u) (n = 0, 1, 2).

We assume the existence of such σN . The validity of analysis based
on this assumption will be checked numerically in Sec. VII.
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FIG. 1. Schematic plot of the energy density distribution
in ρ̂

η

N , which is given by eNξ
η
N (u) = gN (u)(red dotted line) ×

e−Nη(u)(blue dashed line).

(a) η is a strongly convex function.
To calculate temperature easily [using Eq. (16) below] and to
simplify the analysis, we also assume

(b) η is a twice continuously differentiable function.
These conditions ensure that the squeezed ensemble gives
the correct equilibrium state even in the first-order phase
transition region, as follows.

We examine how the energy density distributes in ρ̂
η
N . Let

f be an N-independent function. Then,

Tr[ f (ĥ)e−Nη(ĥ)] =
∫

du f (u)eNξ
η
N (u), (4)

where ξ
η
N (u) ≡ σN (u) − η(u). ξ

η
N (u) takes the maximum at

u = υ
η
N which satisfies

βN
(
υ

η
N

) ≡ σ ′
N

(
υ

η
N

) = η′(υη
N

)
. (5)

Expanding ξ
η
N around υ

η
N and noting ξ

η
N

′′(υη
N ) < 0, we get

ξ
η
N (u) = ξ

η
N

(
υ

η
N

)− 1
2

∣∣ξη
N

′′(υη
N )

∣∣(u − υ
η
N

)2 + · · · . (6)

Hence, in the vicinity of υ
η
N , eNξ

η
N behaves as the Gaussian

distribution, peaking at υ
η
N , with the small variance 1

N |ξη
N

′′(υη
N )|

(Fig. 1).
Unlike the canonical ensemble, eNξ

η
N has a sharp peak even

when σ ′′
N (υη

N ) = 0 in the first-order phase transition region
thanks to the strong convexity of η, i.e.,

ξ
η
N

′′(
υ

η
N

) = σ ′′
N

(
υ

η
N

) − η′′(υη
N

)
< 0. (7)

Therefore, as proven in Appendix A, ρ̂
η
N represents the equi-

librium state specified by the energy density

uη
N ≡ Tr

[
ĥρ̂

η
N

]
(8)

in the following senses:
(i) We can obtain the expectation value of any “mechan-

ical variable” Â in the microcanonical ensemble ρ̂mic
N with

energy density uη
N as3

Tr
[
Âρ̂mic

N

(
uη

N

)] = Tr
[
Âρ̂

η
N

]
[1 + O(N−1)]. (9)

Here, by mechanical variable, we mean a local observable
[i.e., an observable on a continuous O(N0) site], such as the
two-point correlation functions, or the sum of local operators,
such as the total magnetization. Hence, both ensembles give
the same result in the thermodynamic limit, even in the first-
order phase transition region.

(ii) Any macroscopic additive observable Â has small
variance as

Tr
[
â2ρ̂

η
N

] − Tr
[
âρ̂

η
N

]2 = o(N0), (10)

where â ≡ Â/N .
Obviously, the state described by this ensemble depends on

η. In order to obtain the states specified by a series of energies,
it is convenient for practical calculations if η depends on
a parameter. We will discuss this parameter dependence in
Sec. III.

C. Genuine thermodynamic variables

We can also obtain genuine thermodynamic variables such
as the entropy and temperature. Using Eqs. (4)–(7) and apply-
ing Laplace’s method, we have

1

N
log �

η
N = σN

(
υ

η
N

) − η
(
υ

η
N

) + O(N−1 log N ), (11)

uη
N = υ

η
N + O(N−1). (12)

Therefore, we obtain

σN
(
uη

N

) = 1

N
log �

η
N + η

(
uη

N

) + O(N−1 log N ). (13)

It is sometimes convenient to rephrase this relation as

σN
(
uη

N

) = svN
N

(
ρ̂

η
N

) + O(N−1 log N ), (14)

where svN
N is the von Neumann entropy density,

svN
N (ρ̂) ≡ − 1

N
Tr[ρ̂ log ρ̂]. (15)

Using Eqs. (5) and (12), we also obtain

βN
(
uη

N

) = η′(uη
N

) + O(N−1). (16)

Here, since η′ = σ ′
N only at υ

η
N , replacing υ

η
N with uη

N yields
the difference of O(N−1).

In the thermodynamic limit, σN and βN converge to the
thermodynamic entropy density and inverse temperature, re-
spectively, which are well defined in the thermodynamic limit.
Therefore, one can obtain the temperature of the equilibrium
state specified by uη

N just by calculating uη
N , via Eq. (16). By

contrast, in order to calculate the temperature using the mi-
crocanonical ensemble, one needs to differentiate the entropy,
and it gives very noisy results in numerical calculation [32].

3We take the energy width of ρ̂mic
N as specified in Appendix A.
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In a similar manner, we obtain

cN
(
uη

N

) ≡
(

d (1/βN )

du

(
uη

N

))−1

=
(
βN

(
uη

N

))2

1
NTr[(ĥ−uη

N )2ρ̂
η
N ]

− η′′(uη
N

) + O(N−1)
. (17)

In the thermodynamic limit, cN converges to the thermody-
namic specific heat.

D. Interpretation

Although the above results have been derived naturally
using Laplace’s method, the following scenario may be more
intuitive from the viewpoint of the principle of equal weight.

Let us consider the equilibrium state of the target system
which is in weak thermal contact with an external system.
We note the ratio of the degrees of freedom of the external
system to that of the target system. Using the principle of
equal weight, one can obtain the canonical ensemble as the
ensemble of the target system if the external system is much
larger than the target system, and the microcanonical ensem-
ble if the external system is much smaller than the target
system. Then, we now consider the case where the external
system has about the same degrees of freedom as the target
system. In this case, the details of the external system affect
the state of the target system and there are infinitely many
ensembles as the state of the target system that converge the
same equilibrium state as N → ∞.

Suppose that the target system is in weak thermal contact
with the external system which has the same degrees of
freedom as the target system and that the restriction to the
interval [−εmax,−εmin] of the σN of the external system is
equal to −η(−u). Assume that the target system plus the
external system together are isolated, with fixed total energy
0. Then, applying the principle of equal weight to the total
system, we get ρ̂

η
N as an ensemble of the target system. We can

extract all statistical-mechanical quantities about the target
system because we are familiar with σN of the external system.

III. PARAMETER OF SQUEEZED ENSEMBLE

Suppose that η depends on a certain parameter κ . The
equilibrium states described by the squeezed ensemble are
specified by the parameter. We now examine the parameter de-
pendencies of the physical quantities defined by the squeezed
ensemble.

A. Energy density

Let K be a real interval for the parameter κ , and η be
a function on K × [εmin, εmax]. Assume that η(κ, ·) satisfies
conditions (a) and (b) for all κ . Then, for each κ, η(κ, ·)
corresponds to a squeezed ensemble. Thus, a quantity related
to the squeezed ensemble can be regarded as a function of κ .
To examine the parameter dependence, we assume

(c) η is a twice continuously differentiable function of two
variables.

For treating the systems which undergo the first-order
phase transition, it is necessary that the energy density uη

N (κ )

in the squeezed ensemble takes every possible value of the
energy density of the system. The canonical ensemble does
not satisfy this condition because κ of the canonical ensemble
corresponds to the inverse temperature β. In the thermody-
namic limit, ucan

N (β ) changes discontinuously in β at the first-
order phase transition point. Hence, as discussed in Sec. I,
the canonical ensemble is unable to describe the equilibrium
states in the first-order phase transition region, in which the
energy density takes continuous values. (As we will discuss
in Sec. IV, the correct state is not obtained even if the system
is finite.) By contrast, in the case of the squeezed ensemble,
the energy density changes continuously in κ thanks to the
strong convexity of η(κ, ·) for each κ . In fact,

∂υ
η
N

∂κ
(κ ) =

∂2η

∂κ∂u

(
κ, υ

η
N (κ )

)

σ ′′
N

(
υ

η
N (κ )

) − ∂2η

∂u2

(
κ, υ

η
N (κ )

)
(18)

is finite even in the first-order phase transition region. Further-
more, we take η such that

(d) inf
κ

uη
N (κ ) = εmin, sup

κ

uη
N (κ ) = ε̄,

where ε̄ is the arithmetic mean of the eigenvalues of ĥ. Then,
uη

N (κ ) takes every possible value of u in the physical region
εmin < u < ε̄.4

B. Thermodynamic function

As in the case of the conventional ensembles, we consider
the logarithm of the “partition function”

ψ
η
N (κ ) ≡ − 1

N
log �

η
N (κ ), (19)

which is a function not of a physical quantity (such as β) but
of our parameter κ . In numerical calculations (using, e.g., the
Monte Carlo calculation), ψ

η
N (κ ) can be obtained easily by

integrating

∂ψ
η
N

∂κ
(κ ) = Tr

[
∂η

∂κ
(κ, ĥ)ρ̂η

N (κ )

]
. (20)

Here, the right-hand side is obtained simply by calculating the
expectation value of ∂η

∂κ
(κ, ĥ).

Let us define the thermodynamic function associated with
η as the thermodynamic limit of ψ

η
N :

ψη(κ ) ≡ lim
N→∞

ψ
η
N (κ ). (21)

As proven in Appendix B, ψη is equivalent to the thermody-
namic entropy density in the following sense:

s(u) = inf
κ

{η(κ, u) − ψη(κ )}. (22)

Using this relation, one can obtain the thermodynamic entropy
from ψη without knowing uη

N . We can also invert this relation
as

ψη(κ ) = inf
u

{η(κ, u) − s(u)}. (23)

4We say the region εmin < u < ε̄ is physical because temperature is
positive in this region.
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(a) (b) (c)

FIG. 2. Schematic representations of Eqs. (22) and (23) and the Legendre transformation, for the case where the concavity of s is broken.
(a) For all u, there exists κ such that υη

∞(κ ) = u, at which η(κ, ·) − ψη(κ ) is tangent to s. (b) We can reconstruct s from the sets of the curves
which are characterized by ψη. (c) The Legendre transformation does not preserve the information in the nonconvex function. The set of the
lines forms the convex hull of s.

From a physical point of view, these relations are a gener-
alization of the equivalence of the entropy density and the
canonical free-energy density. From a mathematical point of
view, this is a generalization of the Legendre transformation,
to which it reduces for η(β, u) = βu.

It is worth mentioning that Eqs. (22) and (23) are valid even
when the concavity of the entropy is broken, as long as condi-
tions (e) and (f) of Sec. IV are satisfied. Even in such a case,
we can obtain entropy from ψη, as schematically explained in
Figs. 2(a) and 2(b). By contrast, the Legendre transformation
does not preserve the information in the nonconvex function
[Fig. 2(c)].

IV. NONCONCAVE σN

So far we have assumed that σN is concave. Since we con-
sider systems with short-range interactions, this assumption
is valid in the thermodynamic limit. However, for finite N , it
was suggested that the concavity of σN is broken in a system
which undergoes a first-order phase transition with a phase
separation [9–12], as illustrated schematically in Fig. 3(a). In
Appendix C, we prove this under reasonable conditions.

In order to obtain the correct equilibrium state even in such
a case, we require

(e) σN − η has a single peak
and

(f) σ ′′
N − η′′ is negative at the peak.

In fact, under these conditions, the energy density distri-
bution in ρ̂

η
N can still be well approximated by the Gaussian

distribution, and all results in Secs. II and III are valid.
Therefore, even for a system whose σN is not concave,

we can obtain the equilibrium states and the statistical-
mechanical quantities using a squeezed ensemble associated
with an appropriately chosen η. By contrast, using the canon-
ical ensemble, the equilibrium states with the energy density
in the region other than the black dotted lines in Fig. 3 cannot
be obtained (see Appendix D).

V. PHYSICAL NATURES OF A SYSTEM WITH
NONCONCAVE σN

The concavity breaking of σN causes thermodynamic
anomalies. In this section, we discuss physical natures of
equilibrium states with nonconcave σN .

A. Realization of equilibrium states with nonconcave σN

In general, an isolated system with sufficiently complex
dynamics evolves into (relaxes to) an equilibrium state.
During this “thermalization” process, the energy density
keeps the same value as that of the initial state, which may
be a nonequilibrium state such as a local equilibrium state.
In this way, one can obtain equilibrium states of any possible

(a)

1

2

1

2

(b)

0

(c)

FIG. 3. Schematic diagrams of (a) nonconcave σN , (b) βN , and (c) cN . In (a), the boundaries (orange circles) between the black dotted and
the red solid lines are intersections between σN and the double tangent line. These points correspond exactly to the points in (b) obtained using
the equal area law (i.e., areas 1 and 2 are equal).
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value of the energy density by tuning the energy density of the
initial state.

In particular, one can obtain an equilibrium state in the
region where concavity of σN is broken by tuning the energy
density of the initial state in such a region. Such an experiment
will be possible in various finite systems, such as cold atoms.

A more practical way is to heat the system slower enough
(across the transition temperature) so that a quasistatic process
is realized.

B. Measurability of statistical-mechanical quantities

As illustrated schematically in Fig. 3(b), βN has an S-
shaped curve. It is a physical quantity that can be measured
as follows. Let us place the target system in weak thermal
contact with an external system. We assume the external
system is sufficiently small so that its effect on the target
system is negligible. That is, the external system works as
a thermometer and the target system as a heat bath. After
the thermal equilibrium of the total system is reached, the
thermometer is in the canonical Gibbs state with β = βN (u),
where u is the energy density of the target system because the
canonical typicality [39–42] holds regardless of the concavity
of σN of the heat bath. Hence, one can read the value of βN (u)
from the thermometer. Using this setup with various values
of u, one can measure the function βN and cN of the target
system. Then, one will find not only the S-shaped βN but
also the anomalous behaviors of cN . The latter is illustrated
schematically in Fig. 3(c), where cN takes negative values
between the two singular points. See Refs. [43–45] for related
discussions.

Evidence of the concavity breaking of σN due to the first-
order phase transition has been observed both in experiments
[13,14] and in dynamical simulations [46–48].

C. Thermodynamic stability

Even when σN is not concave, the equilibrium states of an
isolated finite system are stable because of the energy conser-
vations. In this section, we discuss whether the equilibrium
states are stable when the system is in thermal contact with an
infinitely large heat bath.

Suppose that the system is initially isolated and in the
equilibrium state with energy density u. Then, let the system,
which we now call the target system, interact with a large
heat bath of inverse temperature β that is equal to βN (u).
According to the canonical typicality [39–42], the target sys-
tem is driven by the heat bath toward the canonical Gibbs
state. However, as discussed in Appendix D, if u lies in the
red solid or blue dashed region of Fig. 3, the equilibrium
state of the target system is not realized as a canonical Gibbs
state. Therefore, for such u, the equilibrium state of the target
system is no longer stable when attached to a heat bath.

More specifically, if u lies in the blue dashed region of
Fig. 3, the target system quickly evolves into the canonical
Gibbs state of the same temperature by absorbing or emitting
energy from or to the heat bath. That is, the equilibrium
state for such u is thermodynamically unstable. On the other
hand, if u lies in the red solid region the equilibrium state
of the target system is thermodynamically metastable. That

is, the state is maintained for a certain macroscopic timescale
because σN (u) is locally concave in such a region [49].

We can thus classify three types of regions in Fig. 3, for the
case where the target system is in thermal contact with a heat
bath, as the stable equilibrium states (black dotted line), the
metastable states (red solid line), and the unstable states (blue
dashed line).

VI. RELATION WITH OTHER ENSEMBLES
IN FINITE SYSTEMS

In finite systems, different ensembles are not completely
equivalent. The inequivalence is most prominent in the first-
order transition region. Let us investigate the effects of the
inequivalence.

A. Inequivalence of ensembles in finite systems

As an example, we consider the entropy density. What one
can calculate using statistical mechanics is a sequence indexed
by N such as

sη
N (κ ) ≡ η

(
κ, uη

N (κ )
) − ψ

η
N (κ ). (24)

As N → ∞, this sη
N (κ ) converges to thermodynamic entropy

density s(u) at u = uη
∞(κ ). In other words, there exists o(N0)

quantity δsη
N (κ ) such that

s
(
uη

∞(κ )
) = sη

N (κ ) + δsη
N (κ ). (25)

On the other hand, for another pair of (η̃, κ̃ ) which satis-
fies uη̃

∞(κ̃ ) = uη
∞(κ ), sη̃

N (κ̃ ) also converges to s(uη
∞(κ )), and

there exists o(N0) quantity δsη̃
N (κ̃ ) such that s(uη

∞) = sη̃
N (κ̃ ) +

δsη̃
N (κ̃ ). Generally, sη

N (κ ) and sη̃
N (κ̃ ) are different in finite

systems. The difference is o(N0) because sη
N (κ ) − sη̃

N (κ̃ ) =
δsη

N (κ ) − δsη̃
N (κ̃ ). Note that the rates at which δsη

N (κ ) and
δsη̃

N (κ̃ ) converge to 0 are different in general.
The same is true for other thermodynamic quantities.

Suppose that one calculates a thermodynamic quantity of
O(N0). What one can calculate using statistical mechanics
is a function sequence indexed by N that converges to the
thermodynamic quantity as N → ∞. Therefore, there is an ar-
bitrariness in the choice of the function sequence up to o(N0).
In order to emphasize the distinction from a thermodynamic
quantity, we call the function sequence that converges to the
thermodynamic quantity a “statistical-mechanical quantity.”

B. Formulas relating different ensembles

One might think that it is meaningless to calculate quan-
tities with such an arbitrariness accurately. However, it is
important in numerical calculation, where one has to deal
with finite systems inevitably, for the following reasons. The
rates of convergence of the statistical-mechanical quantities to
the thermodynamic quantities with increasing N are different
among ensembles. If we can choose an ensemble which
converges very quickly, it is advantageous for practical cal-
culations. On the other hand, there may also be an ensem-
ble that gives thermodynamic quantities that converge very
slowly, even though it is equivalent to other ensembles in
the thermodynamic limit. Using the following formulas, we
can evaluate the difference between the statistical-mechanical
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quantity calculated using a squeezed ensemble and that cal-
culated using a conventional ensemble (such as the canonical
ensemble and microcanonical ensemble). If necessary, we can
correct the difference from the conventional ensemble.

It is known that, for a system without phase transition, the
statistical-mechanical quantities in the canonical ensemble,
among those in various Gibbs ensembles, are closest to ther-
modynamic quantities of the infinite system [50]. Therefore,
it is useful to derive formulas by which a squeezed ensemble
gives statistical-mechanical quantities in the canonical ensem-
ble. Such formulas are obtained as follows.

First, let us derive formulas by which a squeezed ensemble
gives statistical-mechanical quantities in another squeezed
ensemble. Below in this section, we assume that η is differ-
entiable as many times as necessary. Using Eqs. (4)–(6) and
(19), we have

ψ
η
N = η

(
υ

η
N

) − σN
(
υ

η
N

) − 1

2N
log

2π

N
∣∣ξη

N
′′(

υ
η
N

)∣∣ + O(N−2),

(26)

uη
N = υ

η
N + ξ

η
N

′′′(
υ

η
N

)
2N

∣∣ξη
N

′′(
υ

η
N

)∣∣2 + O(N−2) (27)

for any choice of η that satisfies conditions (a) and (b).
Suppose that two squeezed ensembles associated with η and
η̃ satisfy υ

η
N = υ

η̃
N . Then, we have

ψη̃ = ψ
η
N + 1

2N
log

∣∣∣∣∣1 + η′′(υη
N

) − η̃′′(υη
N

)
ξ

η
N

′′(
υ

η
N

)
∣∣∣∣∣

+ η̃
(
υ

η
N

) − η
(
υ

η
N

) + O(N−2), (28)

uη̃
N = uη

N − ξ
η
N

′′′(
υ

η
N

)
2N

∣∣ξη
N

′′(
υ

η
N

)∣∣2

+ ξ
η
N

′′′(
υ

η
N

) + η′′′(υη
N

) − η̃′′′(υη
N

)
2N

∣∣ξη
N

′′(
υ

η
N

) + η′′(υη
N

) − η̃′′(υη
N

)∣∣2 + O(N−2).

(29)

These formulas relate statistical-mechanical quantities be-
tween different squeezed ensembles.

C. Formulas relating the squeezed ensemble
to the canonical ensemble

Next, using these formulas, let us derive formulas by
which the squeezed ensemble gives the canonical entropy
density scan

N and the canonical energy density ucan
N . Assume

that σ ′′
N (υη

N ) < 0. This assumption is satisfied in many cases
except when υ

η
N is in the phase transition region. Set η̃ = βu,

where

β = η′(υη
N

)
. (30)

Then, the squeezed ensemble associated with η̃ gives the
canonical ensemble at inverse temperature β. Using the re-
lation

ψcan
N (β ) = βucan

N (β ) − scan
N (β ), (31)

we get

scan
N (β ) = η

(
υ

η
N

) − ψ
η
N − 1

2N
log

(
1 + η′′(υη

N

)
ξ

η
N

′′(
υ

η
N

)
)

+ η′(υη
N

)(
ξ

η
N

′′′(
υ

η
N

) + η′′′(υη
N

))
2N

∣∣ξη
N

′′(
υ

η
N

) + η′′(υη
N

)∣∣2 + O(N−2), (32)

ucan
N (β ) = υ

η
N + ξ

η
N

′′′(
υ

η
N

) + η′′′(υη
N

)
2N

∣∣ξη
N

′′(
υ

η
N

) + η′′(υη
N

)∣∣2 + O(N−2). (33)

These are the desired formulas.
Although υ

η
N is unknown, using Eq. (27), we find

υ
η
N = uη

N − ξ
η
N

′′′(
υ

η
N

)
2N

∣∣ξη
N

′′(
υ

η
N

)∣∣2 + O(N−2). (34)

One can calculate ξ
η
N ’s derivatives at υ

η
N from the central

moments of energy distribution. For example, as the second-
and third-order derivatives, we have

ξ
η
N

′′(
υ

η
N

) = − 1

N Tr
[(

ĥ − uη
N

)2
ρ̂

η
N

] + O(N−1), (35)

ξ
η
N

′′′(
υ

η
N

) = Tr
[(

ĥ − uη
N

)3
ρ̂

η
N

]
NTr

[(
ĥ − uη

N

)2
ρ̂

η
N

]3 + O(N−1). (36)

Using Eqs. (34)–(36), we can calculate υ
η
N and ξ

η
N ’s derivatives

at υ
η
N with accuracy up to O(N−1). Substituting these into

Eqs. (30)–(33), we can calculate the statistical-mechanical
quantities in the canonical ensemble from the statistical-
mechanical quantities in the squeezed ensemble with accuracy
up to O(N−1).

VII. APPLICATION TO HEISENBERG MODEL

Before studying a system which undergoes a first-order
phase transition, we confirm the validity of our results by
applying our formulation to the Heisenberg chain, defined by
the Hamiltonian

Ĥ ≡ −J
∑

i

Ŝi · Ŝi+1, (37)

where J = +1 (ferromagnetic). The exact results at finite
temperature have been derived for N → ∞ [51].

We can freely choose η for practical convenience according
to the physical situation. Here, we choose K = (0,∞) and
η(κ, u) = −2κ log(l − u), which is particularly convenient
for quantum systems, because ρ̂

η
N and �

η
N are obtained by

simply multiplying the Hamiltonian repeatedly. In this model,
−0.75 � εmin < ε̄ < εmax � +0.75. Hence, we take l = 1(>
εmax), then η(κ, ·) satisfies conditions (a) and (b) for all κ > 0.
Furthermore, η satisfies conditions (c) and (d).

We calculate statistical-mechanical quantities in the
squeezed ensemble using thermal pure quantum formulation
[52]. Then, using Eqs. (11)–(16), we calculate ψcan

N , with an
error of O(N−1 log N ), from the statistical-mechanical quanti-
ties in the squeezed ensemble as

ψcan
N

(
∂η

∂u

(
κ, uη

N

)) = ψ
η
N (κ ) + η

(
κ, uη

N (κ )
) − ∂η

∂u

(
κ, uη

N

)
× uη

N (κ ) + O(N−1 log N ), (38)
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10−3

10−2

|ψ
ca

n
N

(β
)
−

ψ
ca

n (
β
)|

N

∝ N −1

∝
N −2

FIG. 4. Difference between ψ can
N (obtained using the squeezed

ensemble) and the exact canonical free-energy density of the infinite
system at β � 2.82. ψ can

N is calculated using Eq. (38) (red crosses)
and corrected using Eqs. (30)–(36) (blue crosses).

which corresponds to the result obtained in the previous work
[53]. The result at β � 2.82 is plotted by the red crosses in
Fig. 4.

Furthermore, we correct the difference from the canonical
free-energy density using Eqs. (30)–(36), which reduces an
error to O(N−2). The result is plotted by the blue crosses in
Fig. 4. It is confirmed that the difference from the canonical
free-energy density is proportional to N−2.

VIII. APPLICATION TO FRUSTRATED ISING MODEL

To confirm the advantages of our formulation for studying
the systems which undergo first-order phase transitions, we
apply our formulation to the two-dimensional frustrated Ising
model on the square lattice, defined by the Hamiltonian

Ĥ ≡ −J1

∑
〈i, j〉

σ̂ z
i σ̂ z

j +J2

∑
〈〈i, j〉〉

σ̂ z
i σ̂ z

j . (39)

Here, σ̂ z
i = ±1 is a classical variable, and 〈i, j〉 and 〈〈i, j〉〉

denote the nearest and the next-nearest neighbors, respec-
tively. We take both couplings J1, J2 positive, and measure
energy density and temperature in units of J1. It is known that
the model undergoes a weak first-order phase transition for
0.5 < J2/J1 � 0.67 [54]. We take J2/J1 = 0.6. The numerical
simulations are performed for systems of size L × L with
periodic boundary conditions.

We choose K = (−∞, ε̄) and η(κ, u) = 1
2λ(u − κ )2. This

η satisfies conditions (a)–(b) for positive λ and defines the so-
called Gaussian ensemble introduced by Hetherington [33].
As proven in Appendix C, the concavity of σN is broken for fi-
nite N . Since the second-order derivative of η(κ, ·) is given by
λ, η satisfies conditions (e) and (f) for sufficiently large λ even
in the case of the nonconcave σN . In the classical systems, it
is easy to calculate the energy of a given configuration and
the energy change due to a change in the local configuration.
Therefore, this choice of η is convenient for classical systems
which undergo first-order phase transitions.

u

βN

λ = 0.5
λ = 1
λ = 5
λ = 10

λ = 0.5

FIG. 5. Relation between βN and u for L = 64, obtained using
the canonical ensemble (crosses), and the squeezed ensembles with
various values of λ (filled symbols). The result after the correction is
also plotted for λ = 0.5 (open circles).

We calculate the expectation values of mechanical vari-
ables in the squeezed ensemble using the Monte Carlo cal-
culations. The acceptance probability can be easily com-
puted using the Metropolis algorithm [55]. As argued in
Sec. III, the equilibrium state changes continuously in κ .
Therefore, the replica exchange method [23] works well [25]
even in the first-order phase transition region, unlike the
canonical ensemble. Other advantages of the Gaussian en-
semble for studying the phase transitions were already studied
in Refs. [28,29]. These advantages are enjoyed also by other
choices of η as long as conditions (e) and (f) are satisfied.

Figure 5 shows the relation between u and βN for L =
64. We calculate βN using the canonical ensemble and the
squeezed ensemble with various values of λ. When the
canonical ensemble is used, u is given as a function of β,
which is a single-valued function, changing monotonically
and continuously, even when σN is not concave. Hence, the
effect due to the first-order phase transition is greatly di-
minished. This should be contrasted with the results of the
squeezed ensemble, which show that, for sufficiently large λ,
βN becomes a multivalued, S-shaped function in the transition
region. Consequently, one can correctly obtain the negative
specific heat due to the first-order phase transition by using
the squeezed ensemble.

It is also seen from Fig. 5 that the functional form of βN (u)
without correction (full circles) becomes insensitive to the
magnitude of λ for sufficiently large λ. This is because the
error in βN by Eq. (16) scales as O(N−1λ−1). In fact, Eq. (27)
gives

β
η
N (κ ) ≡ ∂η

∂u

(
κ,

(
uη

N (κ )
)

(40)

= βN
(
uη

N (κ )
) +

∂3ξ
η
N

∂u3

(
κ, υ

η
N (κ )

)

2N
∣∣ ∂2ξ

η
N

∂u2

(
κ, υ

η
N (κ )

)∣∣ + O(N−2) (41)

= βN
(
uη

N (κ )
) + σ ′′′

N

(
υ

η
N (κ )

)

2Nλ
∣∣1 − σ ′′

N (υη
N (κ ))
λ

∣∣ + O(N−2). (42)
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c N

u

FIG. 6. Relation between cN and u for L = 64 and λ = 5.

Therefore, the larger λ gives the smaller error, when using
Eq. (16). On the other hand, the computational efficiency
decreases with λ because the acceptance probability for con-
figurations with higher energy is e−O(Nλ). To compromise
these conflicting demands, we can take λ small (to get a good
efficiency) such as λ = 0.5 and correct the result using the
formulas derived in Sec. VI (to decrease the error). In fact,
we can obtain the relation between u and βN with an error of
O(N−2) from Eqs. (5) and (27) using the squeezed ensemble
with small λ (open circles in Fig. 5), and it agrees well with
βN calculated using the squeezed ensemble with larger λ.

As discussed in Sec. IV, cN takes negative values in the
transition region for finite N . To confirm this fact, we calculate
the relation between u and cN for L = 64 from Eq. (17) using
the squeezed ensemble with λ = 5. The results are plotted in
Fig. 6. It is confirmed that cN takes negative values between
the two singular points.

Finally, we investigate how the result approaches that of
the infinite system. Figure 7 shows the relation between βN

u

βN

L = 64
L = 128
L = 256

FIG. 7. Relation between βN and u for various values of L and
λ = 5.

and u for various values of L, where βN is calculated using
the squeezed ensemble with λ = 5. With increasing L, the
S-shaped region shifts toward the transition temperature of
the infinite system, and this makes it possible to precisely
extrapolate the transition temperature [28,56–58]. As L in-
creases, the amplitude of the S shape decreases. This implies
that the concavity of σN is broken due to the finite system
size.

IX. SUMMARY

To summarize, we have proposed the squeezed ensembles
(Secs. II and III). They give the correct equilibrium state
even in the first-order phase transition region, as the micro-
canonical ensemble does. In particular, for finite systems,
one can correctly obtain thermodynamic anomalies such as
negative specific heat, which appear generally in the transition
region even when interactions are short ranged (Secs. IV
and V and Appendix C). Moreover, the squeezed ensembles
have good analytic properties, which yield useful analytic
formulas (Sec. II C) including the one by which temperature
is obtained directly from energy without knowing entropy
[Eq. (16)]. The squeezed ensembles are convenient for practi-
cal calculations because they can be numerically constructed
easily, and efficient numerical methods, such as the replica
exchange method, are applicable straightforwardly. We also
derive formulas which relate statistical-mechanical quantities
of different ensembles for finite systems (Sec. VI). The for-
mulas are useful for obtaining results with smaller finite-size
effects, and for improving the computational efficiency. We
have confirmed the advantages of the squeezed ensembles and
these formulas by applying them to the Heisenberg model
(Sec. VII) and the frustrated Ising model (Sec. VIII).
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APPENDIX A: PROOF OF EQS. (9) AND (10)

Consider systems with the translational invariance. We
make a reasonable assumption that, by taking an appropriate
constant C depending only on N , the expectation value of
â ≡ Â/C in the microcanonical ensemble converges to an
N-independent continuous function of u as N → ∞. Then,
by symmetry, the expectation value approaches a constant
multiple of the expectation value of an appropriate additive
observable as N → ∞.

We denote by ρ̂mc
N (u − δ(u), u] the microcanonical ensem-

ble with the energy shell (u − δ(u), u]. There is an arbitrari-
ness in the choice of δ. Here, we take δ as follows. Let δ0 be a
positive constant of O(N0) such that εmin + δ0 < υ

η
N , and let

δ be a positive-valued function such that

∫ u′

u′−δ(u′ )
du eNσN (u) =

∫ εmin+δ0

εmin
du eNσN (u) (A1)
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for all u′ ∈ [εmin + δ0, ε
max]. Then, it holds

Tr
[
âρ̂

η
N

] =
∫

du Tr
[
âρ̂mc

N (u − δ(u), u]
]eNξ

η
N (u)

�
η
N

+ e−O(N ), (A2)

Tr
[
â2ρ̂

η
N

] =
∫

du Tr
[
â2ρ̂mc

N (u − δ(u), u]
]eNξ

η
N (u)

�
η
N

+ e−O(N ). (A3)

Using Eq. (A2) and applying Laplace’s method, we have

Tr
[
âρ̂

η
N

] = Tr
[
âρ̂mc

N

(
υ

η
N − δ

(
υ

η
N

)
, υ

η
N

]] + O(N−1) (A4)

= Tr
[
âρ̂mc

N

(
uη

N

)] + O(N−1). (A5)

Therefore, we have Eq. (9).
Since we assumed that the equilibrium state is specified by the energy density, we have

Tr
[
â2ρ̂mc

N (u)
] − Tr

[
âρ̂mc

N (u)
]2 = o(N0) (A6)

for all macroscopic additive observable Â. Then, using Eqs. (A3) and applying Laplace’s method, we have

Tr
[
â2ρ̂

η
N

] − Tr
[
âρ̂

η
N

]2
(A7)

=
∫

du
(
Tr

[
â2ρ̂mc

N (u − δ(u), u]
] − Tr

[
âρ̂mc

N (u − δ(u), u]
]2)︸ ︷︷ ︸

o(N0 )

eNξ
η
N (u)

�
η
N

(A8)

+
∫

du Tr
[
âρ̂mc

N (u − δ(u), u]
]2 eNξ

η
N (u)

�
η
N

−
(∫

du Tr
[
âρ̂mc

N (u − δ(u), u]
]eNξ

η
N (u)

�
η
N

)2

︸ ︷︷ ︸
O(N−1 )

+e−O(N ) (A9)

= o(N0), (A10)

for all macroscopic additive observable Â. Therefore, we have Eq. (10).

APPENDIX B: PROOF OF EQS. (22) AND (23)

Equation (23) can be immediately obtained from Eq. (11).
Equation (22) is proved as follows. Using Eq. (23), we have

s(u) � η(κ, u) − inf
u

{η(κ, u) − s(u)} (B1)

= η(κ, u) − ψη(κ ) (B2)

for all κ . Then, we have

s(u) � inf
κ

{η(κ, u) − ψη(κ )}. (B3)

On the other hand, using Eq. (23), we have

inf
κ

{η(κ, u) − ψη(κ )} (B4)

� η(κ, u) − ψη(κ ) (B5)

= η(κ, u) − inf
u

{η(κ, u) − s(u)} (B6)

= η(κ, u) − η
(
κ, υη

∞(κ )
) + s

(
υη

∞(κ )
)

(B7)

for all κ . The continuity of υ
η
∞ in κ [Eq. (18)] implies that

there exists κ such that υ
η
∞(κ ) = u, then it holds

inf
κ

{η(κ, u) − ψη(κ )} � s(u). (B8)

Therefore, we have Eq. (22).

APPENDIX C: GENERALITY OF CONCAVITY
BREAKING OF σN

We prove that the concavity breaking always occurs for
finite N under reasonable conditions. For proper handling of
a system which undergoes a first-order phase transition, we
consider a more general case where the equilibrium state is
specified using a general set of extensive variables.

1. Concavity breaking in liquid-gas systems

As an example, we take a d-dimensional system which
undergoes a first-order liquid-gas phase transition (whereas
general systems will be discussed in Appendix C 2). Its equi-
librium state is assumed to be specified by the energy U ,
volume V , and number of particles N . Hence, for a given value
of N, σN is a function of the energy per particle u ≡ U/N , and
the volume per particle v ≡ V/N , i,e.,

σN = σN (u, v). (C1)

We investigate properties of σN (u, v), for each fixed value of
N , in the state space spanned by u and v. Note that in this state
space the liquid-gas coexisting region is a two-dimensional
region, whereas it is a one-dimensional region (line) in the
state space spanned by temperature T and pressure P.

Suppose that the system is in an equilibrium state where
liquid and gas phases coexist. We assume that the thick-
ness and surface area of phase boundaries are O(N0)
and O(N1−1/d ), respectively. Furthermore, we assume that
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N

Liquid
(ũLiquid, ṽLiquid)

Gas
(ũGas, ṽGas)

(a)

N

Liquid
(uLiquid, vLiquid)

Gas
(uGas, vGas)

(b)

FIG. 8. Comparison of the equilibrium states with the same values of (u, v) for two cases where (a) the effects of the phase boundaries are
ignored and (b) not.

finite-size effects in each phase are smaller than those due
to the phase boundaries. This condition is natural and rea-
sonable, as discussed in Appendix C 4. Under the above
conditions, we show that the concavity of σN is always broken
for finite N in such an equilibrium state.

Let us compare the equilibrium states with the same values
of (u, v) for two cases where (a) the effects of the phase
boundaries are ignored and (b) not (Fig. 8).

First, we consider case (a). We denote a physical quantity
in this case by a tilde over its symbol, such as σ̃N . Since phase
boundaries are ignored, one can define quantities (such as the
number of particles) in each phase without ambiguity. Let
Ñ p, ũp, and ṽp be the number of particles, energy per particle,
and volume per particle, respectively, in phase p. Since phase
boundaries are ignored, the fraction ν̃ p ≡ Ñ p/N satisfies∑

p

ν̃ p = 1, (C2)

and u, v, and σ̃N agree with the weighted arithmetic means as

u =
∑

p

ν̃ pũp, (C3)

v =
∑

p

ν̃ pṽp, (C4)

σ̃N (u, v) =
∑

p

ν̃ pσN (ũp, ṽp). (C5)

Next, we consider case (b) where effects of phase bound-
aries are not ignored. For U, V , and N of the whole system
including the phase boundaries, we take their values same as
those in case (a). Then, the fraction and the state of the bulk
of each phase change slightly (if possible) as compared with
the case where the phase boundaries can be neglected. Hence,
compared with σ̃N , the σN changes according to two main
causes: the number of possible configurations of the phase

boundaries and the changes in the fraction and the state of
the bulk of each phase.

Let us compare σN (u, v) and σ̃N (u, v). For this purpose, we
consider an equilibrium state with the number of particles M
and the same values of (u, v), where 1 � M/N . Let us com-
pare the microstates for two cases where (c) surface area of the
phase boundaries is O(M1−1/d ) and (d) M/N times that in the
equilibrium state with the number of particles N (Fig. 9). The
density of microstates (c) agrees with eM(σ̃N (u,v)+O(M−1/d )). On
the other hand, the density of microstates (d) is larger than
eMσN (u,v). Therefore, if σN (u, v) were larger than σ̃N (u, v),
in the sufficiently large system, the density of microstates
(c) would be exponentially smaller than the density of mi-
crostates (d). Hence, the macrostate with the phase boundaries
whose surface area is O(M1−1/d ) would not be realized as
an equilibrium state which is a typical macrostate with the
largest number of microstates. Since such an equilibrium state
contradicts with our assumption, we conclude

σN (u, v) < σ̃N (u, v). (C6)

From Eqs. (C2)–(C6), we find

σN (ν̃Gas(ũGas, ṽGas) + (1 − ν̃Gas)(ũLiquid, ṽLiquid ))

< ν̃GasσN (ũGas, ṽGas) + (1 − ν̃Gas)σN (ũLiquid, ṽLiquid )
(C7)

for certain values of ũp, ṽp and ν̃Gas ∈ (0, 1). This shows that
the concavity of σN (u, v) is broken.

This concavity breaking occurs in equilibrium states where
liquid and gas phases coexist, i.e., in the phase-coexisting
region in the state space spanned by (u, v).

2. Concavity breaking in general systems

The above discussions can easily be extended to general
systems with short-range interactions, as follows.

M

Liquid
ũ
Liquid + O(M

−1/d),

ṽ
Liquid + O(M

−1/d)

Gas
ũ
Gas + O(M

−1/d),

ṽ
Gas + O(M

−1/d)

(c)

M

Liquid

u
Liquid

,

v
Liquid

Gas

u
Gas

,

v
Gas

(d)

FIG. 9. Comparison of the microstates with sufficiently large M and the same values of (u, v) for two cases where (c) surface area of the
phase boundaries is O(M1−1/d ) and (d) M/N times that in the equilibrium state with the number of particles N .
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Consider a d-dimensional system whose equilibrium states
is specified by extensive variables X1, X2, . . . , XM and N .
Hence, for a given value of N , σN is a function of
(x1, x2, . . . , xM ), where xi ≡ Xi/N . Suppose that the system
which undergoes a first-order phase transition and that several
phases coexist in the phase transition region. We assume that
the thickness and surface area of phase boundaries are O(N0)
and O(N1−1/d ), respectively. Furthermore, we assume that
finite-size effects in each phase are smaller than those due to
the phase boundaries. Then, concavity of σN is always broken
for finite N .

3. Concavity restoration in the thermodynamic limit

The anomalous behavior of σN is peculiar to the finite sys-
tems and the concavity of σN recovers in the thermodynamic
limit [59,60]. Since the surface area of the phase boundaries
is O(N1−1/d ), the contribution of the phase boundaries to
xi and σN is O(N−1/d ). On the other hand, in the model
with the long-range interaction obtained using the mean-field
approximation, the concavity of σN is broken even in the
thermodynamic limit. Therefore, an S-shaped caloric curve of
such a model (so-called van der Waals loop) is an unphysical
artifact of the approximation and must be distinguished from
S-shaped βN in the finite system with short-range interaction.

4. Validity of the condition

In Appendices C 1 and C 2, we have assumed that finite-
size effects can be neglected except for those due to the phase
boundaries. Here, we discuss the validity of this condition. Let
us compare the asymptotic behavior of the finite-size effects
due to the phase boundaries and those due to other causes at
large N . We consider the case where surface effects can be
neglected.

As mentioned in Appendix C 2, the finite-size effects due
to the phase boundaries on σN are O(N−1/d ). With short-
range interactions, the spatial dimension of the system which
undergoes a first-order phase transition at finite temperature
satisfies d > 1 [61,62]. On the other hand, the finite-size
effects excluding those due to the phase boundaries on σN is
expected to be O(N−1). In fact, the difference between the
transition points in finite and infinite systems is O(N−1) [56].

Therefore, for sufficiently large N , finite-size effects can be
neglected except for those due to the phase boundaries.

APPENDIX D: INAPPLICABILITY OF THE
CANONICAL ENSEMBLE

We examine whether the canonical ensemble is applicable
to the system with nonconcave σN [Fig. 3(a)]. The canonical

FIG. 10. The energy density distribution in the canonical ensem-
ble in the case where σN is not concave.

ensemble corresponds to the case where η = βu, and the
equilibrium state is specified by β. Since neither conditions (a)
nor (e) and (f) are satisfied by this choice of η, the following
difficulty arises for systems with nonconcave σN .

If σN were strictly convex, the energy density distribution
in the canonical ensemble would have a single peak. The peak
position υcan

N would be uniquely determined as the solution to
βN (υcan

N ) = β [Eq. (5)]. However, this property is lost in the
case where σN is not concave.

For example, suppose that one wants to investigate mi-
croscopic structures of the equilibrium state with the energy
density u∗ on the blue dashed line in Fig. 3. This is impossible
if one uses the canonical ensemble. In fact, if one takes
β = β∗ ≡ βN (u∗) in the canonical ensemble, there are three
points of u [purple squares in Fig. 3(b)] that give the same
value of βN . Consequently, the energy distribution becomes
bimodal, as shown in Fig. 10, and takes the local minimum
at u∗. Hence, the desired equilibrium state is not obtained,
and one cannot investigate its microscopic structures. This
should be contrasted with a squeezed ensemble, whose energy
distribution has the global maximum at u = u∗, giving the
desired equilibrium state correctly.

Similarly, for u on the red solid line, the energy density
distribution in the canonical ensemble at β = βN (u) has the
local (but not global) maximum at u.

To sum up, the equilibrium states with the energy density
in the region other than the black dotted line in Fig. 3 cannot
be obtained using the canonical ensemble.
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