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Domain-wall dynamics in the Landau-Lifshitz magnet and the classical-quantum
correspondence for spin transport
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We investigate the dynamics of spin in the axially anisotropic Landau-Lifshitz field theory with a magnetic
domain-wall initial condition. Employing the analytic scattering technique, we obtain the exact scattering data
and reconstruct the time-evolved profile. We identify three qualitatively distinct regimes of spin transport,
ranging from ballistic expansion in the easy-plane regime, absence of transport in the easy-axis regime, and
logarithmically enhanced diffusion for the isotropic interaction. Our results are in perfect qualitative agreement
with those found in the anisotropic quantum Heisenberg spin-1/2 chain, indicating a remarkable classical-
quantum correspondence for macroscopic spin transport.
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Introduction. The theory of exactly solvable partial dif-
ferential equations [1–4], colloquially known as the theory
of solitons [5], represents one of the cornerstones of theo-
retical and mathematical physics. While the technique has
been traditionally used mostly as a theoretical framework to
describe various nonlinear wave phenomena such as disper-
sive shock waves [6,7] and modulational instabilities [8–10],
soliton systems also played an instrumental role in a broader
range of physics applications, ranging from experimentally
relevant setups with cold atoms and BECs [11], ocean waves
[12], physics of plasmas and nonlinear media [13], Josephson
junctions and nonlinear optics [14–16], and many theoretical
concepts including the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [17,18], Gromov-Witten theory
[19], Painlevé transcendents [20–22], and random matrix the-
ory [23,24].

Exact results on the nonequilibrium properties of soliton
systems, both near and far from equilibrium, are nonetheless
extremely rare. This can attributed to the fact that, outside of a
few exceptional cases [25–28], the formal integration scheme
cannot be implemented in a fully analytic manner in general.
For this reason, in physics application one mostly relies on
linearization or various approximations [29] and asymptotic
techniques [30–32]. In this Rapid Communication, we iden-
tify an exceptional but physically relevant nonequilibrium
scenario where the issue can be overcome. We consider the
Landau-Lifshitz ferromagnet and calculate the exact nonlinear
Fourier spectrum (scattering data) for the magnetic domain-
wall initial profile. This enables us to analytically explore
its far-from-equilibrium transport properties. We study the
time evolution of the domain-wall profile and separately treat
three qualitatively different dynamical regimes. We conclude
by comparing our findings with the analogous problem in
the (integrable) quantum Heisenberg (anti)ferromagnet, and
highlight a remarkable classical-quantum correspondence for
the macroscopic spin transport.

Landau-Lifshitz model. The Landau-Lifshitz model is a
classical field theory which governs a precessional motion of

spin field on the unit sphere, described by the equation of
motion [1,33–37]

�St = �S × �Sxx + �S × J �S, �S · �S = 1, (1)

with �S ≡ (Sx, Sy, Sz )T. Choosing the uniaxial anisotropy ten-
sor J ≡ diag(0, 0, δ), there are three regions to be distin-
guished by the value of the parameter ε ≡ i

√
δ: the easy-

axis regime ε2 < 0, the easy-plane regime ε2 > 0, and the
isotropic case ε = 0. This model also appears in a long-
wavelength description of the spinor Bose gases [38,39].

Spin transport. To study spin transport, we consider the
initial profile in the form of a (smooth) domain wall of
width x0,

�S(x, t = 0) = (sech(x/x0), 0, tanh (x/x0))T, (2)

which connects two distinct (degenerate) vacua. With no loss
of generality we can put x0 = 1 by a simple rescaling x →
x0x, t → x2

0t , ε → ε/x0.
To characterize spin dynamics, it is natural to use a dynam-

ical quantity

m(t ) =
∫ ∞

0
dx[1 − Sz(x, t )], (3)

which measures the change of total magnetization in the right
half system and has been already employed in previous studies
[40,41].

Equation (1) is completely integrable and thus possesses
infinitely many conserved charges. Spin density Sz corre-
sponds to the globally conserved Noether charge and should
be distinguished from other charges (the momentum, energy,
and higher charges) which are all initially localized at the
domain boundary and undergo ballistic spreading, in exact
analogy to the expansion of local conserved charges in the
nonlinear Schrödinger equation [42].

Nonlinear Fourier transform. The standard procedure to
integrate nonlinear integrable wave equations such as Eq. (1)
is called the inverse scattering method. We briefly sketch the
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main relevant ideas below, while for the full description we
refer to one of the standard textbooks [1–3].

The framework of integrability relies on a geometric pic-
ture of linear parallel transport for the auxiliary wave function
ψ = ψ (x, t ),

∂σψ (λ; x, t ) = U[σ ](λ; x, t )ψ (λ; x, t ), (4)

for σ ∈ {x, t}, and the spatial and temporal connection com-
ponents are

U[x](λ) = 1

2i

∑
α

wαSασα, (5)

U[t](λ) = 1

2i

∑
α

[
wα

(
�S × �Sx

)α

σα − wxwywz

wα

Sασα

]
, (6)

respectively [1,36,43]. Here, wx = wy = √
λ2 − ε2, wz = λ,

and λ is the spectral parameter on a two-sheeted Riemann
surface μ(λ) = √

λ2 − ε2. Equation (1) follows from the
zero-curvature condition [∂x − U[x], ∂t − U[t]] = 0, which is
needed for the consistency of Eq. (4). Imposing the ini-
tial condition (2), we construct two Jost solutions of the
spatial part of Eq. (4) T±, characterized by asymptotic be-
havior T+(x → ∞) = exp (λxσz/2i) and T−(x → −∞) =
exp (−λxσz/2i)iσx. The transfer matrix T(λ; t ) is defined as
a unimodular constant matrix that interpolates between Jost
solutions T− = T+T(λ). It can be presented as

T(λ) =
(

a(λ) −b̄(λ)
b(λ) ā(λ)

)
. (7)

Complex functions a(λ) and b(λ) are called scattering ampli-
tudes and store full information about the initial profile. The
scattering data satisfy simple time evolution

a(λ, t ) = a(λ, 0), b(λ, t ) = b(λ, 0)ei(λ2−ε2 )t , (8)

which can be inferred from the temporal part of Eq. (4).
The conserved charges can be expressed as moments of the
“density of states” ρ(λ) = log |a(λ)|2.

The solution to Eq. (4) for the domain-wall profile (2) leads
to the following scattering data,

a(λ, 0) =
√

λ2 − ε2
2
(

1
2 − i

2λ
)

2
(1 − i
2 (λ − ε))
(1 − i

2 (λ + ε))
, (9)

b(λ, 0) = i
cosh

(
π
2 ε

)
cosh

(
π
2 λ

) . (10)

The time evolution for the spin field can be restored from
the scattering data (8) by the inverse transform, shown in
Fig. 1. The latter takes the form of a linear integral Fredholm-
type equation called the Gel’fand-Levitan-Marchenko (GLM)
equation [1]. Its precise form depends crucially on the value ε

and the type of boundary condition adjoined to Eq. (1). The
presented analysis is confined to the nontrivial topological
sector of the theory which requires certain (sometimes subtle)
adaptations of the standard procedure [44].

Easy-plane regime. The absence of zeros of a(λ) in
the upper-half λ plane for ε ∈ R means that the spectrum
comprises only a dispersive continuum of radiative modes.
A ballistic spin transport is observed in Fig. 2 (left). In fact,

�S(x, t = 0) {a(λ, 0), b(λ, 0)}

�S(x, t) {a(λ, t), b(λ, t)}

t

F

t

−1

GLM

FIG. 1. Schematic representation of the integration protocol: The
forward “nonlinear Fourier transform” F maps the initial spin field
�S(x, 0) to the spectral data {a(λ), b(λ)}. The latter satisfies simple
time evolution (8). The inverse transform F−1 amounts to solving an
appropriate linear integral equation from where one reconstructs the
time-evolved spin field �S(x, t ).

the origin of ballistic transport can be explained without
recourse to the exact solution. It suffices to consider a
hydrodynamic approximation to the equation of
motion [45]. Introducing slow variables Sz and
v ≡ −i[log S+(x)]x, along with the nonlinearity R ≡
[[Sz

x/
√

1 − (Sz )2]x[1/
√

1 − (Sz )2]]x, Eq. (1) can be put in
the form

Sz
t − [[1 − (Sz )2]v]x = 0, vt − [(ε2 − v2)Sz]x = R. (11)

By disregarding the nonlinearity term R, one has(
Sz

v

)
t

=
( −2Szv 1 − (Sz )2

ε2 − v2 −2Szv

)(
Sz

v

)
x

. (12)

This WKB-type approximation can alternatively be viewed
as the simplest case of a more general Whitham theory de-
scribing modulation of multiphase solutions to nonlinear wave
equations [45]. The system (12) can be brought into the Rie-
mann diagonal form ∂t r±(x, t ) + V±(x, t )∂xr±(x, t ) = 0, with
Riemann invariants r± = Szv ±

√
[1 − (Sz )2](ε2 − v2), and

characteristic velocities V+ = r−/2 + 3r+/2, V− = 3r−/2 +
r+/2.

The absence of scale in the initial profile motivates one
to seek for the self-similar solution depending on the ray
coordinate ξ = x/t , which yields the hydrodynamic equation
[V±(ξ ) − ξ ]∂ξ r±(ξ ) = 0. To single out a unique solution, we
need to additionally supply appropriate boundary conditions,
which are set by the values Sz(ξ±) = ±1 and v(ξ±) = v0 =
const at ξ±—boundaries of the ballistically expanding region
connecting two vacua. Inside this region the solution reads

Sz(ξ ) = ξ

2|ε| , v = |ε| = v0, ξ± = ±2|ε|, (13)

which implies linear growth of magnetization (3), namely,
m(t ) � t

∫ 2|ε|
0 dξ [1 − Sz(ξ )] = |ε|t . Notice that the density of

states ρ(λ) develops a singularity at λ∗ = |ε|, which thus
defines a natural scale in the spectrum. The velocity of the
hydrodynamic region is nothing but the velocity of the critical
dispersive modes v∗ = 2λ∗ = |ξ±|. Moreover, a nontrivial
solution on a Euler scale exists only strictly in the easy-plane
regime ε2 > 0, whereas for ε2 � 0 the hydrodynamic solution
trivializes, implying sub-ballistic transport.

Isotropic interaction. The behavior of spin transport is
shown in Fig. 2 (middle). For ε = 0, the density of states
ρ(λ) logarithmically diverges at λ → 0. As we demonstrate,
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FIG. 2. Time-dependent density profiles of Sz component in the easy-plane δ = −1 (left), isotropic δ = 0 (middle), and easy-axis δ = 9
(right) regimes, displaying ballistic spin transport, logarithmically enhanced diffusion, and absence of transport, respectively. The dashed lines
show |Sz| = {0.2, 0.4, 0.8}.
this turns out to be an artifact of the specific domain-
wall profile with perfectly antiparallel asymptotic spin fields.
For this reason, we also consider a deformed profile �S =
(cos 
, 0, sin 
)T, where 
 = (γ /π ) arcsin (tanh x) with the
“twisting angle” γ ∈ [0, π ). The induced correction to the
scattering data for γ ≈ π , computed with the first-order per-
turbation theory, displaces the zero of a(λ) at the origin,
a(0) ≈ i(π − γ )/2, rendering the density of states finite.

At the isotropic point, there is a unique class of self-similar
solutions to Eq. (1) which depends on the scaling variable
ζ = x/

√
t , governed by an ordinary differential equation

(ODE) [33],

−2ζ �Sζ = �S × �Sζ ζ , (14)

which is usually studied in the context of the vortex filament
dynamics [46]. For initial conditions with a jump discontinu-
ity at the origin, Eq. (14) can be solved analytically. For large
times, we observe that the twisted domain wall approaches the
self-similar profile. The latter manifestly yields normal spin
diffusion m(t ) ∼ D(γ )

√
t . The diffusion constant [47] D(γ )

plays a role of the filament curvature and can be approximated
as c

√
E , with c = √

2[π − 2 log(
√

2 + 1)] ≈ 2 and E = �S2
ζ

being the conserved energy [48]. Using the relation e−πE/2 =
cos(γ /2), one concludes that D(γ ) diverges as γ → π , ex-
plaining the breakdown of normal diffusion for the untwisted
profile (2). In order to quantify it, we have implemented an
efficient numerical solver of the inverse (GLM) transform
F−1 (see Fig. 1). Our data indicate a mild logarithmic (in
time) divergence of m(t ) (see Fig. 3, inset plot), which nicely
conforms with the type of singularity in the density of states.
The twist of the boundary conditions removes the singularity
and restores normal spin diffusion, as shown in Fig. 3.

Easy-axis regime. In distinction to the previous two
regimes, the scattering data acquire an additional discrete
component which physically corresponds to the (multi)soliton
modes, as shown in Fig. 2 (right). The simplest among them
are static (anti)kink modes with topological charge Q = ±1,
which coincide with domain wall (2) for x0 = ±1/

√
δ. The

kink persists in the spectrum for all δ > 0. Besides solitons,
the spectrum involves a continuous spectrum of radiative

modes, which, however, vanish for the the discrete set of
“reflectionless anisotropies” ε = i(2n + 1), n ∈ Z. The ana-
lyticity of a(λ) can be restored with the uniformization map,
λ(z) = (z + ε2z−1)/2; soliton modes are then characterized
by zeros of a(z) located in the upper-half z plane. The spec-
trum of the domain wall does not involve any asymptotically
free solitons, implying a trivial ballistic channel. The asymp-
totic scaling m(t ) ∼ t0 is then a consequence of the finite
difference between the domain-wall profile and the stable
kink. For instance, on the interval 0 < ε < 3i, the kink is the
only soliton mode and thus the steady state of the domain-wall

FIG. 3. Spin diffusion constant D(γ ) as a function of the twisting
angle γ , shown for the self-similarity solutions (open circles) and
numerical integration up to t = 2000 (red crosses). The blue dashed
line shows the leading term in the large-E asymptotic expansion
of the self-similar solution. Inset: Numerical solution to the inverse
scattering transform of the untwisted domain-wall profile (2).
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dynamics. On the other hand, for larger values of anisotropy
we obtained an infinite family of bound states which undergo
periodic oscillatory motion. To our knowledge, such solutions
have not been explicitly described previously in the literature
[43,49–51], but similar “wobbling kinks” have been already
identified in the sine-Gordon model [52–55]. For example, for
n = 1 the scattering data read

a(z) = i
(z − 3i)(z2 − 2iz + 9)

(z + 3i)(z2 + 2iz + 9)
, b(z) = 0, (15)

and describes the kink-breather bound state which can be
compactly parametrized by a complex stereographic angle ϕ,

Sz = 1 − |ϕ|2
1 + |ϕ|2 , Sx + iSy = 2ϕ

1 + |ϕ|2 , (16)

reading

ϕ = eη0 + eη+ + 2eη−

1 + 2eη0+η− + eη0+η+
. (17)

The phases ηi(x, t ) = i(kix + ωit ) and k0 = −3i, ω0 = 0, and
k± = ±i and ω± = k2

± − ε2 are determined from the scatter-
ing data (15). The full classification of the soliton spectrum is
postponed to Ref. [44].

Classical-quantum correspondence. The quantum inte-
grable (lattice) counterpart to the equation of motion (1) is the
celebrated anisotropic quantum Heisenberg spin chain H �
−∑

i (Ŝx
i Ŝx

i+1 + Ŝy
i Ŝy

i+1 + �Ŝz
i Ŝz

i+1), the oldest known model
solvable by the Bethe ansatz [56–59]. The time evolution
following a sharp magnetic domain and its dependence on
anisotropy � has already been a subject of study in the past
[40,41,60–64].

In the remainder of this Rapid Communication, we wish
to elaborate on the perfect qualitative agreement in the spin
dynamics of the classical and quantum anisotropic ferro-
magnets, in spite of rather discernible differences in the
respective microscopic dynamics: The spectrum of excitations
of quantum dynamics (classified in Refs. [57,59]) consists
of magnons (and bound states thereof) carrying a quantized
amount of spin, whereas classical dynamics corresponds to the
semiclassical long-wavelength spectrum of large spin-
coherent states [18,65–67].

To facilitate the comparisons, we briefly review the key
known results. Ballistic expansion of the magnetic domain
wall in the gapless regime |�| < 1 has been first computed
numerically using the hydrodynamic theory for quantum inte-
grable models [62] and later obtained analytically in Ref. [63].
The dynamical freezing of the magnetic domain wall in the
gapped regime |�| > 1 has been reported in Refs. [40,41,60].
In fact, the observed effect is once again a consequence of
stable topological kink vacua, representing inhomogeneous
(infinite-volume) ground states with a finite spectral gap
[68,69] (which become unstable at � = 1). At the isotropic
point, the observed logarithmically enhanced diffusion law
in the isotropic Landau-Lifshitz model (cf. Fig. 3) appears
to be compatible with the state-of-the-art numerical study
[41] (which is missed, somehow, in Ref. [64]). Curiously,
the same type of correction has been found in the asymptotic
behavior of the return probability amplitude for the domain-
wall initial state [70]. Our twisted domain-wall profile should
be understood as a classical analog of the tilted domain-wall

product states employed in Ref. [64] which exhibit normal
spin diffusion.

Although in this Rapid Communication we concentrated
solely on the spin dynamics in the far-from-equilibrium
regime (with a specific initial state), there exists robust evi-
dence that the classical-quantum correspondence holds also in
thermal equilibrium in the conventional framework of linear
response theory. The thermal spin diffusion constant (at half
filling) in the lattice Landau-Lifshitz model—defined via the
thermal average of the time-dependent autocorrelation C(t ) =
〈J (0)J (t )〉/L of the spin current J (t )—has been numerically
investigated in Ref. [71], where three distinct regimes have
been identified: ballistic transport with a finite Drude weight
D = limt→∞ C(t ) in the easy-plane regime, normal diffusion
with finite D = limt→∞

∫ t
0 C(t ′)dt ′ in the easy-axis regime,

and superdiffusion with a time-dependent diffusion constant
D(t ) ∼ t1/3 at the isotropic point. In the quantum Heisenberg
spin-1/2 chain the picture remains qualitatively the same:
In the easy-plane regime (|�| < 1), the finite spin Drude
weight has been attributed to hidden quasilocal conservation
laws [72,73] and computed exactly in Refs. [74,75] using the
hydrodynamic theory for integrable models [62,76]. In the
easy-axis regime (|�| > 1) one finds normal diffusion,
theoretically explained in Refs. [77,78]. Finally, the
divergence of the spin diffusion constant at the isotropic point
(at finite temperature and half filling) has been established
in Ref. [79]. Numerical simulations [40] provide convincing
evidence for superdiffusion with the Kardar-Parisi-Zhang
(KPZ) dynamical exponent α = 2/3, later theoretically
justified with the aid of a dimensional analysis in Ref. [80].

Conclusions. We have studied the spin transport in a uni-
axial Landau-Lifshitz ferromagnet initialized in a domain-
wall profile, as shown in Fig. 2. We have computed the
exact spectrum of nonlinear normal modes and expressed the
time-evolved spin field as a solution of the inverse scattering
transformation.

In the easy-plane regime we encountered ballistic expan-
sion, which, to the leading order, can be captured by a simple
hydrodynamic theory.

For the isotropic interaction, we rigorously established a
divergent spin diffusion constant and explain the origin of
the modified diffusion law with a multiplicative logarithmic
correction. The effect is shown to be a particularity of the
initial state and can be regularized by a twist of the bound-
ary conditions which restores normal diffusion. Such a “π
anomaly” can be understood as an “infrared catastrophe” due
to a logarithmic divergence of the mode occupation function
in the low-energy λ → 0 limit.

In the easy-axis regime, the spectrum of the domain wall
acquires nontrivial topologically charged (multi)soliton states
which consist of breather modes superimposed on a kink.
It remains an interesting open question whether wobbling
kinks survive quantization, similar to the problem of quantum
stability of cnoidal waves addressed in Ref. [67]. Analytic
continuation into the easy-plane phase, ε → −iε, can also
be understood as destabilization of the kink mode into a
dynamical domain wall.

Since the Landau-Lifshitz model can be regarded as a
generic integrable (1 + 1)-dimensional soliton system, it is
compelling to conjecture that the correspondence is a general
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feature of quantum integrable lattice models that admit a
semiclassical limit (such as, e.g., the sine-Gordon model,
nonlinear sigma models, nonlinear Schrödinger equation,
etc.). We hope that our results can stimulate further research in
this direction. A separate interesting issue is whether similar
correspondences appear even more broadly, e.g., in one of the
nonintegrable dynamical systems in higher dimensions.
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