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Condensed matter systems realizing Weyl fermions exhibit striking phenomenology derived from their
topologically protected surface states as well as chiral anomalies induced by electromagnetic fields. More
recently, inhomogeneous strain or magnetization were predicted to result in chiral electric E5 and magnetic
B5 fields, which modify and enrich the chiral anomaly with additional terms. In this Rapid Communication,
we develop a lattice-based approach to describe the chiral anomaly, which involves Landau and pseudo-Landau
levels and treats all anomalous terms on equal footing, while naturally incorporating Fermi arcs. We exemplify
its potential by physically interpreting the largely overlooked role of Fermi arcs in the covariant (Fermi level)
contribution to the anomaly and revisiting the factor of 1/3 difference between the covariant and consistent
(complete band) contributions to the E5 · B5 term in the anomaly. Our framework provides a versatile tool for the
analysis of anomalies in realistic lattice models as well as a source of simple physical intuition for understanding
strained and magnetized inhomogeneous Weyl semimetals.
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Quantum anomalies describe the breaking of a classical
symmetry by quantum fluctuations [1]. The chiral anomaly,
the nonconservation of the chiral charge of three-dimensional
Weyl fermions, is relevant to different domains in physics
since Weyl fermions mediate the pion decay into photons [2,3]
and are emergent quasiparticles in Weyl semimetals [4–9].
The physics is particularly transparent in the Landau level
picture pioneered by Nielsen and Ninomiya [10], requiring
only basic quantum mechanics. In a magnetic field B, the
conical Weyl dispersion evolves into Landau levels with a
degeneracy proportional to |B| [10]. Since momentum along
the direction of the magnetic field remains a good quantum
number, the Landau levels disperse in that direction, with the
zeroth Landau level having a linear dispersion with a sign
determined by the chirality; all other Landau levels have a
quadratic dispersion. The zeroth Landau levels of the left-
and right-handed Weyl fermions furthermore connect at high
energy. Consequently, an electric field (E) with a component
along the dispersion transfers left-handed fermions to right-
handed fermions (or vice versa), resulting in a nonconserva-
tion of left and right particle numbers proportional to E · B
[1,10,11].

Other fields, such as chiral pseudoelectromagnetic fields,
torsion, or curvature, activate the chiral anomaly beyond E
and B [12–22]. Weyl semimetals are ideal to probe the chi-
ral anomaly in the presence of chiral pseudoelectromagnetic
fields. To motivate this, recall that their low-energy degrees

of freedom are pairs of chiral Weyl quasiparticles at topo-
logically protected band touchings (Weyl nodes), separated in
energy-momentum space by a four-vector bμ [9]. A space-
and time-dependent bμ, as in strained or inhomogeneously
magnetized Weyl semimetals [15] or 3He [23,24], gener-
ates chiral pseudomagnetic (B5 = ∇ × b) and pseudoelectric
(E5 = −∂t b − ∇b0) fields, which couple with opposite signs
to opposite chiralities [16,17,25–28]. These pseudofields en-
hance or generalize phenomena ranging from transport to
interface physics [16,17,29–39]. Unlike B, which generates
Landau levels dispersing in opposite directions for opposite
chiralities, B5 generates pseudo-Landau levels that disperse in
the same direction for both chiralities [16,17,25,26,40].

Applying the Landau level picture to chiral fields leads to
puzzling conclusions: For example, because of the chirality-
independent dispersion of the zeroth pseudo-Landau level due
to B5, E increases (or decreases) the number of fermions for
both chiralities at a rate proportional to E · B5, giving an ap-
parent nonconservation of the total charge. This is expressed
as the so-called covariant anomaly [1,40]

∂μJμ

5,cov = 1

2π2
(E · B + E5 · B5), (1)

∂μJμ
cov = 1

2π2
(E5 · B + B5 · E). (2)

Neither the covariant chiral (Jμ

5,cov = Jμ
L,cov − Jμ

R,cov) nor vec-
tor (Jμ

cov = Jμ
L,cov + Jμ

R,cov) currents are conserved. In field
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theory, to explicitly restore charge conservation, the covari-
ant currents are supplemented by Bardeen polynomials δ jμ,
which act as boundary conditions for the accumulated charge
at the cutoff energy [41–44]. This procedure defines the
consistent anomaly [1,40]

∂μJμ

5 = 1

2π2

(
E · B + 1

3
E5 · B5

)
, (3)

∂μJμ =0. (4)

The consistent anomaly conserves charge, and thus deter-
mines observables [42,45] by discarding unphysical responses
[40–42,46]. The Bardeen polynomials, however, sacrifice in-
tuition of the covariant picture based on Landau levels and
obfuscate the restoration of charge conservation in specific
lattice implementations.

Despite the field theory of the consistent and covariant
anomalies being well understood for a long time [40], a simple
physical picture of their origin on a lattice, with guaranteed
charge conservation, is still missing. In this Rapid Communi-
cation, we provide such a picture using as building blocks the
Landau and pseudo-Landau levels. It leads to our two main
results: First, we identify the Fermi arcs as a source for the
covariant anomaly terms of Eq. (2) and relate them to the
Bardeen polynomials. Second, we show that when B5 > B,
the Fermi surface twists into a bowtie shape, a property central
to our understanding of how the term E · B5 redistributes
charge within the sample. Our picture allows us to address
as well the 1/3 disparity between the second term in Eq. (3)
and Eq. (1). We argue that a necessary condition for its
identification is a B5 profile that spatially separates chiral
charge creation and annihilation. Similar to how Landau levels
simplified our understanding of the chiral anomaly [10], we
use pseudo-Landau levels (developed in Ref. [17]) to provide
a unified and simple lattice picture of the consistent and
covariant anomalies with specific implications for experiment.

Our starting point is the Weyl semimetal model [46]

H = v[sin(ky)σx − sin(kx )σy]τz + v sin(kz )τy + mτx

+ t
∑

i

[1 − cos(ki )]τx + v
∑

μ

uμbμ, (5)

with a = 1 the lattice constant, σi (τi) spin (orbital) Pauli
matrices, and uμ = (σzτy,−σxτx,−σyτx, σz ). For small bμ =
(b0, b) and m2 < v2|b2 − b2

0|, the model has one pair of
Weyl nodes near � [46,47]. Unless stated otherwise, we
set m = 0 and t = 2v/

√
3. When b is oriented along a

reciprocal lattice vector, this parameter choice gives two
Weyl nodes located at ±b[1 + O(b2

0)] + O(b5
j ) and energies

±vb0[1 + O(b2
j )] + O(b3

0). Our results also apply to gener-
alizations of Eq. (5) that model Dirac (e.g., Cd3As2, Na3Bi)
and Weyl (e.g., TaAs family) materials [48–50]. We further
define γ μ = (τx, iσyτy,−iσxτy, iτz ) and γ 5 = iγ 0γ 1γ 2γ 3 =
σzτy, such that uμ = γ 0γ μγ 5 and the space-dependent chiral
charge density is

J0
5 (x) ≡ ρ5(x) =

∑
n∈occ.

〈ψn(x)|γ 5|ψn(x)〉. (6)

The charge density ρ(x) is obtained by replacing γ 5 with the
identity in Eq. (6). While our lattice model (5) includes a τx

(b)

(c)

(a)

FIG. 1. Anomalies due to E · B and E · B5. (a) The spectrum of
Hamiltonian (5) for a slab finite along y, showing the coexisting
Fermi arcs and Landau levels of B = Bẑ. The color scale denotes
the wave function’s position along y. (b), (c) The Landau (pseudo-
Landau) levels of B (B5) on the red (blue) triangle plane show the
anomaly in the presence of E = Ezẑ (E = Exx̂), where the spectral
flow at the Fermi surface is shown by green (orange) arrows. We im-
plement E using the gauge choice k → k − Et . The left panels show
the occupation at t = 0, while the right panels show the dispersion
for t > 0 with Ex,zt = 0.08 and the same momenta occupied as in the
left panels [51]. Here, L = 100 and �B = 1/

√
B = 11.2.

term that explicitly breaks conservation of ρ5, we show in
Ref. [51] how this effect is controlled.

The Hamiltonian (5) (with v = 1) derives from an effective
field theory with action

S =
∫

d4x ψ̄[γ μ(i∂μ − Aμ − bμγ 5) − m]ψ, (7)

where ψ̄ = ψ†γ 0 and repeated indices are summed. S yields
two species of Weyl fermions of opposite chiralities, cou-
pled to an external chiral field bμ and a vector field Aμ,
and separated by bμ for m = 0. The lattice regularization is
given by the Wilson map ki → sin ki [52], and m → m +
t
∑

i (1 − cos ki ) [53].
Spatial and temporal variations of b generate the chiral

fields B5 = ∇ × b and E5 = −∂0b. The simplest realization
of B5 occurs at the boundary of any Weyl semimetal with
vacuum, where the Weyl node separation bμ goes to zero
[17,26,40]. For example, for a slab along y, b(y) = bz[�(y −
L/2) − �(y + L/2)]ẑ gives B5(y) = bz[δ(y − L/2) − δ(y +
L/2)]x̂, localized at the surface, which generates surface
pseudo-Landau levels dispersing along ±kx, with opposite
signs at each surface [17]. Their Fermi surface traces an
arc, establishing the correspondence between surface pseudo-
Landau levels induced by B5 and topological surface states.
Analogously, a uniform external magnetic field B = Bẑ par-
allel to the Weyl node separation leads to a spectrum hosting
bulk Landau levels dispersing along ±kz, where the sign is
set by the Weyl node chirality. When both B and a surface B5

are present, Landau and pseudo-Landau levels coexist and the
Fermi surface at the Fermi energy εF (set to εF = 0 hereafter)
traces a rectangle [54]; see Fig. 1(a) [55,56].

The coexistence of Landau and pseudo-Landau levels pro-
vides an ideal platform to discuss the anomalies. Apply-
ing E = Ezẑ pumps charges of one chirality to the other,
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(a) (b)

(c)

FIG. 2. Anomaly due to E · B5 with a constant bulk B5 = B5ẑ.
(a) Energy spectrum with the same color coding and boundary
conditions as Fig. 1. (b) The pseudo-Landau levels of B5 show an
anomaly when E = Eẑ with the spectral flow indicated by the green
arrows. The left panel shows the occupation at kx = 0.2 [gray plane
in (a)] at t = 0; in the right panel, Et = 0.05. (c) Left: The spatial
profile of the charge δρ relative to that at t = 0, normalized by the
total charge ρ0 for different times (colors), showing a surface to
bulk charge redistribution. The y axis is chosen such that only the
(positive) bulk contribution is visible, which is exactly canceled by
the (negative) surface contribution. Right: Derivative of the density
with respect to the vector potential A for different times, which equals
∂Az ρ = B5/(2π 2) in the bulk (dashed line). The derivatives with
respect to vector potential and time are related via ∂tρ = −E · ∂Aρ.
In (a) and (b), L = 100 and �5 = 1/

√
B5 = 11.1; in (c), L = 200 and

�5 = 15.8.

connecting Landau levels of B through the band bottom
and realizing the E · B term in Eq. (3) [10] [see Fig. 1(b)].
Similarly, since the pseudo-Landau levels disperse along ±kx

on each surface, applying E = Exx̂ depletes charges from one
surface and generate charges on the other [Fig. 1(c)]. We can
interpret [10] this as an anomaly of each surface state due
to E · B5. In contrast to the chiral anomaly in the absence
of chiral fields, where the total charge is locally conserved,
the spatial separation of the two surfaces leads to an apparent
violation of local charge conservation, as in Eq. (2). Our
pseudo-Landau level picture demonstrates the surface origin
of the covariant anomaly, ∼E · B5.

Our picture tracks how charge is explicitly conserved.
The spectral flow between the pseudo-Landau levels at each
surface happens via the bulk Landau levels connecting them,
fixing local charge conservation. The effect of E results in an
adiabatic shift of kx, which via position-momentum locking
[17] generates a Hall current

δj = − 1

2π2
bzExŷ. (8)

We can interpret this as the net current flowing along ŷ
between surfaces through the bottom of the band. In the bulk,
bz is constant leading to ∇ · δj = 0 and no accumulation
of charge. At the surface, the Weyl node separation varies,
leading to a finite divergence of the spatial current, positive
on one surface and negative on the other.

Similarly, more general profiles of B and B5 can be under-
stood in terms of Landau and pseudo-Landau levels. For in-
stance, a uniform bulk B5 ‖ ẑ arises from b = B5yx̂. Its spec-
trum [Fig. 2(a)] shows a characteristic butterfly Fermi surface,

obtained from the rectangular Fermi surface [Fig. 1(a)] by
noticing that the two bulk Landau levels have lengths B ± B5.
When B5 > B, the Fermi surface twists, leading to Fig. 2(a)
(found to lead to peculiar quantum oscillation signals in an
unrelated context [57]). An E = Eẑ parallel to B5 [Figs. 2(b)
and 2(c)] makes the bulk gain charge above the Fermi level
(upward arrows), while the surface loses charge (downward
arrows). This is consistent with the lattice numerics [Fig. 2(e)]
where the spatial profile of the charge relative to that at t = 0
is shown for different times.

Our previous examples (Figs. 1 and 2) are a consequence of
the covariant anomaly which only considers the depletion and
growth of charges at the Fermi level. By construction, the cor-
responding current Jμ

cov misses information from states away
from the Fermi level, and thus it is not conserved as dictated
by Eq. (2) [51]. The consistent current Jμ is obtained from
the covariant current by adding the Bardeen polynomials δ jμ

such that ∂μ(Jμ
cov + δ jμ) = ∂μJμ = 0 [41,42]. Using Eq. (2)

and the definition of the pseudofields,

δ j0 = 1

2π2
b · B, δj = 1

2π2
(b0B − b × E). (9)

Comparing (9) to (8) of our first example (Fig. 1), we identify
the latter as a part of the Bardeen polynomials [40]. The ben-
efit of the Landau level approach is its intuitive interpretation:
In the first example, E5 = 0 and the finite E · B5 pumps charge
from one surface to another via the anomalous Hall effect
[Eq. (8)] through ∂t J0

cov = E · B5/(2π2). Our second example,
Fig. 2, can be interpreted similarly. In the bulk charge grows
as ∂t J0

cov = E · B5/(2π2) locally while at the surface, charge
is depleted since B5 has the opposite sign. The corresponding
current (9) pumps charge from the surface to the bulk. Since
b = B5yx̂, there are local currents in the bulk δj ∼ B5Eyŷ and
∇ · δj = B5 · E/(2π2) is precisely the growth rate of local
charge [Fig. 2(c)], reconciling the Fermi surface (covariant)
picture with the charge conserving (consistent) picture on the
lattice [58].

Moving on to spatiotemporally varying Weyl node sep-
arations, consider first b = −E5t ẑ, yielding uniform E5 ‖ ẑ.
A B 
= 0 activates the second term of (2), suggesting that
charge is created at the Fermi surface at a rate E5 · B/(2π2).
For our lattice model (5), E5 shifts the band bottom, pushing
charge above a fixed energy [Fig. 3(a)]. Rigid shifts of the
band conserve total charge, giving the consistent picture of
the anomaly. However, if one insists on only considering
the low-energy gray region in Fig. 3(a), the charge appears
to emerge from the vacuum, as expected from the covariant
anomaly. The connection between these pictures is shown in
Fig. 3(b), where charge growth near the Fermi surface equals
charge loss near the band bottom, which in turn equals the
Bardeen polynomial δ j0, Eq. (9).

We end by addressing the factor of 1/3 disparity between
the prefactors of the E5 · B5 anomalies. This difference im-
plies that the band bottom current must add −2/3 to the Fermi
surface contribution, irrespective of the precise pseudofield
profile. One may argue that this factor arises from the topolog-
ical nature of the Bardeen polynomials [44], yet we find that
topology alone does not explain the conditions which give 1/3
for a generic lattice model.
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FIG. 3. Anomaly due to E5 · B. (a) Occupation at kx = 0.2 and
B ‖ E5 ‖ ẑ for different times [different colors, (b)], where dark
(light) colors represent filled (empty) states and the gray shaded
region is the low-energy regime, isolating the covariant anomaly.
We implement E5 by b → b − E5t and use the same boundary
conditions as Fig. 1 with L = 100 lattice sites and �B = 11.2. (b) The
charge in the gray low-energy regime ρlow linearly increases with E5t .
Since the total charge is conserved, the charge in the band bottom
decreases at the same rate (not shown).

To illustrate the conditions for isolating the 1/3,
consider [36]

b = cB

2

[
erf

(
y − L

4√
2ξ

)
− erf

(
y + L

4√
2ξ

)
− 1

]
x̂ + bzẑ, (10)

(a)

(b)

(d)

(c)

(e)

FIG. 4. Anomaly due to E5 · B5. (a) The Weyl node separation
(10) and its corresponding B5. (b) Energy spectrum with a real
space color encoding that reflects the periodic boundary conditions.
(c), (d) Where B5 > 0 [red in (d)], a parallel E5 pushes left- and right-
handed chiral charges above and below the Fermi level, respectively,
annihilating chiral charge. Where B5 < 0 (blue), chiral charge is
created. (e) The spatial distribution of chiral charge creation and
annihilation follows and equals B5 (red solid line) for charges ρFS

5

traversing the original Fermi surface (blue dashed line). With all
bands, the total chiral charge creation is ∼1/3 of that at the Fermi
surface, as predicted by the consistent anomaly (black dotted line).
We use L = 360, a B5 broadening ξ = 6 and peak height cB = 1.25,
and a delta function broadening η = 10−6v [51].

with cB a constant and erf (x) the error function [Fig. 4(a)].
In a periodic system of length L in the y direction, this pro-
file realizes interfaces at ±L/4 between two Weyl semimet-
als with different node separations, connected by regions
where b smoothly changes to give B5 = B5(y)ẑ with B5(y) =

cB√
2πξ

[e−(y− L
4 )

2
/(2ξ 2 ) − e−(y+ L

4 )
2
/(2ξ 2 )]. This profile maintains

the useful property that the two chiralities (eigenstates of γ 5)
are well separated in momentum space [Fig. 4(c)]. Adding
E5 ‖ B5 to produce a chiral anomaly, chiral charge (6) is
created/annihilated in spatially separated regions [Fig. 4(d)],
at a rate that closely follows the spatial profile of B5 as ex-
pected from Eq. (3) [Fig. 4(e)]. The Fermi surface contribution
to the chiral charge is calculated as

dρFS
5 (y)

db
=

∑
n

〈ψn|γ 5�y|ψn〉〈ψn|∂bH|ψn〉δ(μ − εn), (11)

with �y the projector to the position y [51]. Comparing the
chiral charge pumped at the Fermi surface and that in the full
spectrum to the expected value proportional to B5, we see that
they are close, but neither perfectly reproduces the field theory
prediction.

To determine the factors behind this mismatch we note that
the erf profile minimizes the spatial overlap between regions
of chiral charge creation and annihilation (∂ρ5/∂bz > 0 and
< 0 at y ≈ +L/4 and y ≈ −L/4, respectively). However,
for both chiralities, there exist regions in momentum space
[light/dark regions in Fig. 4(b)] where the states are not
well localized in real space. These regions spread out with
increasing ξ , such that the erf profile evolves into a sinusoid-
like function, resulting in a poorer match between the B5(y)
profile and the chiral charge response [51]. The sensitivity of
the result to these regions, highlighted by the failure of the
sinusoidlike profile where no clear spatial separation exists,
implies that the value 1/3 is modified by such effects for
generic profiles of B5. This detrimental overlap is minimized
if L � ξ � a is satisfied, allowing the intriguing possibility
that an exact 1/3 may be recovered in this limit. Finally, all
anomaly terms present finite size and quadratic corrections to
the low-energy field theory (7), which we discuss in Ref. [51].

In summary, we have provided an intuitive lattice pic-
ture that is based on Landau and pseudo-Landau levels and
connects the covariant and consistent anomalies. We explic-
itly identified the Hall current as the Bardeen polynomial
that connects the covariant anomalies of the Fermi arcs and
restores charge conservation, most notably when the Fermi
surface knots into a bowtie. We expect that the bowtie Fermi
surface and its response to external fields will be important
to understand strained Weyl semimetals experimentally, in
particular, their transport properties.

Our work highlights that measuring the consistent or co-
variant anomaly (e.g., the factor of 1/3) depends on whether
the experimental probe is sensible to only the Fermi surface
or rather the entire Fermi sea. Additionally, perturbations such
as strain allow other model parameters to depend on position,
e.g., the Fermi velocity, as well as additional terms in Eq. (7)
[59]. Our work motivates the study of these questions to
interpret incipient experiments in strained Weyl semimetals.
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