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Wannier pairs in superconducting twisted bilayer graphene and related systems

Sujay Ray,1 Jeil Jung,2 and Tanmoy Das1,*

1Department of Physics, Indian Institute of Science, Bangalore 560012, India
2Department of Physics, University of Seoul, Seoul 02504, Korea

(Received 4 May 2018; revised manuscript received 29 January 2019; published 19 April 2019)

Unconventional superconductivity often arises from Cooper pairing between neighboring atomic sites,
stipulating a characteristic pairing symmetry in the reciprocal space. The twisted bilayer graphene (TBG)
presents a new setting where superconductivity emerges on the flatbands whose Wannier wave functions spread
over many graphene unit cells, forming the so-called moiré pattern. To unravel how Wannier states form Cooper
pairs, we study the interplay between electronic, structural, and pairing instabilities in TBG. For comparisons,
we also study graphene on boron-nitride (GBN) possessing a different moiré pattern, and single-layer graphene
(SLG) without a moiré pattern. For all cases, we compute the pairing eigenvalues and eigenfunctions by solving a
linearized superconducting gap equation, where the spin-fluctuation mediated pairing potential is evaluated from
materials-specific tight-binding band structures. We find an extended s wave as the leading pairing symmetry
in TBG, in which the nearest-neighbor Wannier sites form Cooper pairs with same phase. In contrast, GBN
assumes a p + ip-wave pairing between nearest-neighbor Wannier states with odd-parity phase, while SLG
has the d + id-wave symmetry for intersublattice pairing with even-parity phase. Moreover, p + ip and d + id
pairings are chiral, and nodeless, but the extended s-wave channel possesses accidental nodes. The nodal pairing
symmetry makes it easily distinguishable via power-law dependencies in thermodynamical entities, in addition
to their direct visualization via spectroscopies.
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I. INTRODUCTION

Strongly correlated quantum phases and superconductivity
have long been predicted in single-layer graphene (SLG) at
the van Hove singularity (VHS) [1]. However, their experi-
mental realization has so far remained elusive. Recently, both
correlated insulating gap [2] and superconductivity [3] have
been observed in a twisted bilayer graphene (TBG) at a narrow
range of twist angles, namely, the “magic” angles ∼1◦. In this
region, the single-particle density of states (DOS) acquires a
sharp peak near the Fermi level, with an effective bandwidth
reducing to ∼5 meV [4,5]. The emergence of this flatband is
intrinsic to the physics of the moiré pattern, formed in TBG as
well as in graphene on hexagonal boron nitride (GBN) [4–6].
The moiré superlattice produces “cloned” Dirac cones at the
moiré zone boundaries, in addition to the primary Dirac cone
at the moiré zone center. The band dispersion between the
primary and cloned Dirac cones pass through saddle points or
VHSs, and hence yields a flatband. It is tempting to assume
that the magic angle creates a similar VHS-like state as in
SLG and/or GBN, and thus the predicted correlated physics of
SLG/GBN are also at play in TBG. However, a closer look at
the electronic instabilities at the VHS and their characteristic
localizations into unique Wannier states in the direct lattice
reveals stark differences between them (see Fig. 1). This
leads to an essential question: How do such Wannier states,
enveloping many graphene unit cells, condensate into Cooper
pairs?
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The relationships between the k-space electronic structure
and direct lattice Wannier states of the SLG, GBN, and
TBG are delineated in Fig. 1. The effective bandwidth of the
VHS/flatband decreases from ∼1 eV in SLG to ∼100 meV in
GBN to ∼3–5 meV in TBG, making the latter more prone to
correlation. The Fermi surfaces (FSs) of SLG, GBN, and TBG
are compared in Fig. 1 at their corresponding VHS position.
The FS of SLG is most flat (producing large nesting), while
that for GBN is most circular (weak nesting), and TBG lies
in between. In addition, we observe a systematic transition
from sixfold to threefold rotational symmetry in going from
SLG to GBN to TBG, rearranging the corresponding Wannier
states accordingly in the direct lattice. The threefold symmetic
FS of TBG is for a given valley band, while the other valley
band has the complementary threefold symmetry so that the
FS becomes sixfold symmetric when both valley bands are
included [7,8]. This threefold symmetric FS makes TBG
distinct from other hexagonal [1] and triangular lattices [9]
with sixfold symmetric FS and plays an important role in
stabilizing a distinct pairing symmetry here.

One of the most striking differences emerges when we
investigate the corresponding Wannier states of an individual
flatband in the direct lattice (see Fig. 1, lower panel). In the
flat region of the VHS in SLG near the K point, the states
are localized on the A sublattices, while the states near the
K′ point are localized on the B sublattice and vice versa.
In GBN and TBG, the situation changes drastically due to
moiré-supercell formation. In the low-energy model of the
GBN moirélattice, the band structure can be described by
that of a SLG under an effective supercell potential due to
BN substrate with the supercell periodicity being much larger
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FIG. 1. (a)–(c) Computed FSs of SLG, GBN, and TBG, respec-
tively, at their corresponding VHS energies (dashed line depicts the
first BZ). (d)–(f) Corresponding positions of the Wannier states of
the VHS/flatband in the direct lattice. For SLG [(a) and (d)], the
VHS’s Wannier states are localized on the A and B sublattices in
the primitive unit cell. In GBN [(b) and (e)], the Wannier states are
localized on the corners of the hexagonal moiré supercell. In TBG
[(c) and (f)], the Wannier states show a fully formed triangular lattice
at the flatband for each valley, where A sublattices of the original two
graphene lattices merge on top of each other (defined as AA site). The
Wannier states in both moiré lattices spread over several graphene
unit cells. a = 2.46 Å is the graphene’s lattice constant, while a′ is
the moiré lattice constant.

than the graphene unit cell. The corresponding Wannier states
are maximally localized only on the corners of the hexag-
onal moirésupercell (enclosing several A and B sublattices
of the original graphene unit cell) [5] [see Fig. 1(e)]. On
the contrary, in TBG the Wannier states of a given valley
band are maximally localized on the AA lattice sites (where
A sublattices of both graphene layers become aligned on top
of each other) at all moiré-supercell corners, as well as at
the center, forming a full triangular symmetry [2,3,10] [see
Fig. 1(f)]. The other valley band is also localized on the same
AA sites, forming a unit cell with two Wannier orbitals per site,
with different orbitals possessing complementary rotational
symmetry [4,5,7,8].

We perform the pairing symmetry calculation using a
materials-specific, multiband Hubbard model. The Hubbard
model has a SC solution arising from the repulsive many-
body pairing interaction which mediates unconventional,
sign-reversal pairing symmetry [11]. Such a mechanism, often
known as spin-fluctuation mediated unconventional supercon-
ductivity, basically depends on strong FS nesting instability at
a preferred wave vector, say Q. The nesting can promote a
superconducting (SC) solution with a momentum-dependent
pairing symmetry �k such that the pairing symmetry changes
sign on the FS as sgn[�k] = −sgn[�k+Q]. This sign reversal
is required to compensate for the positive (repulsive) pair-
ing potential. This theory of spin-fluctuation-driven super-
conductivity consistently links between the observed pairing
symmetry and FS topology in many different unconventional
superconductors [12–15]. A k-dependent pairing symmetry
incipiently requires that pairing occurs between different
atomic sites in the direct lattice. In what follows, the char-
acteristic momentum structure of the pairing symmetry is

intimately related to the underlying pairing mechanism, FS
topology, and its contributing Wannier sites.

For each material, we obtain the noninteracting, low-
energy band structures by tight-binding model in the unit
cell or moiré cell, as appropriate. Next we solve the pairing
eigenvalue (SC coupling constant) and eigenfunction (pairing
symmetry) solution of the linearized Eliashberg equation,
where the pairing potential stems from many-body spin and
charge fluctuations [12–15]. The obtained eigenfunction for
the largest eigenvalue gives the pairing symmetry in the
momentum space. We obtain the real-space mapping of the
pairing symmetry by inverse Fourier transformation. This
illuminates the Cooper pairs between the nearest-neighbor
Wannier orbitals with corresponding phase factor.

In SLG, the computed pairing eigenfunction agrees with
a d + id-wave symmetry, which arises from intersublattice
pairing between the A and B Wannier sites in a hexagonal
primitive lattice. In GBN, the pairing solution changes to
a p + ip symmetry where the intersublattice pairing occurs
between the nearest-neighbor (NN) Wannier orbitals with
odd-parity phases. On the other hand, in TBG, we find an
extended s pairing with even-parity phases between the same
Wannier orbitals in NN sites. Note that the extended s-wave
solution can produce accidental nodes when the FS is large
near the VHS doping.

The rest of the paper is organized as follows. In Sec. II we
discuss the computational details for the electronic structure
calculations and pairing eigenvalue calculations. All results
are presented and discussed in Sec. III. Finally we conclude
in Sec. IV.

II. THEORY

A. Electronic structure and FS nestings

For SLG, we use a typical two-band tight-binding (TB)
model as presented in the literature [16,17]. For the moirélat-
tices in GBN and TBG, we directly use the TB model pre-
sented in Refs. [4,5]. As we are interested in the low-energy
properties, we downfold all the bands into an effective low-
energy six-band model [18]. Details of each band structure
parametrization are given in Appendix A. In Fig. 1 (top
panel), we show the computed FS topology for the three
systems under study with the chemical potential placed at the
VHS/flatband. In the corresponding lower panel of Fig. 1,
we show the Wannier states for the Fermi momenta on the
flatband.

To estimate the FS nesting features, and the corresponding
pairing potential, we compute the multiband Lindhard suscep-
tibility χαβ (q, ω):

χαβ (q, ω) = −
∑

k

Fαβ

νν ′ (k, q)
f
(
εν

k

) − f
(
εν ′

k+q

)
ω + iδ − εν

k + εν ′
k+q

, (1)

where ξν
k is the νth band, and f (ξν

k ) is the correspond-
ing fermion occupation number. α, β give the orbital in-
dices, and q and ω are the momentum and frequency
transfer, respectively. Fk,q as form factor arising from the
eigenvectors as

Fαβ

νν ′ (k, q) = uν†
α (k)uν

β (k)uν ′†
β (k + q)uν

α (k + q), (2)
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FIG. 2. (a)–(c) Spin susceptibility within RPA approximation
for (a) SLG, (b) GBN, and (c) TBG. (d)–(f) Computed pairing
eigenfunctions for the highest eigenvalue of Eq. (7) for (d) SLG,
(e) GBN, and (f) TBG at their VHS dopings are plotted on the FS
in a blue (negative) to white (nodes) to red (positive) colormap.
The pairing structure is consistent with a d + id-wave and p + ip-
wave symmetry in SLG and GBN, respectively. On the other hand,
for TBG in (f) we find a rotationally invariant extended s-wave
symmetry. (g)–(i) The real-space picture of the pairing for (g) SLG,
(h) GBN, and (i) TBG systems. gj denote the pairing strength
between nearest sites which is obtained from Fourier transformation
of corresponding pairing functions [Eq. (8)].

where uν
α represents the eigenvector for the νth band projected

to the αth basis (Wannier orbitals). We evaluated the form
factor numerically [19–23].

We present the two-dimensional (2D) profile of the suscep-
tibility (total χ = ∑

αβ χαβ) for ω → 0 in Fig. 2 (top panel)
for all three systems. We find stark differences in the nesting
features. In SLG, the FS is extremely flat, causing paramount
FS nesting at Q ∼ (2/3, 1/3) r.l.u., and its equivalent points.
The nesting is considerably weak in GBN since here the FS is
quite circular, with some residual nesting occurring at small
wave vectors. For TBG, the nesting is strong at Q ∼ (1/3, 0)
r.l.u. Such a FS nesting drives translation symmetry breaking
into various density-wave orders in the particle-hole channels
and/or unconventional pairing instability. The FS nesting-
driven superconductivity stabilizes a characteristic symmetry
which changes sign on the FS.

B. Pairing symmetry calculations

Next we compute the pairing symmetry and pairing
strength arising from the density-density fluctuations. It
should be noted that although the bandwidth is lower near
the magic angles, the FS becomes large due to VHS. This en-
hances screening, and hence the effective Coulomb interaction
is reduced [24]. The largest insulating gap obtained near half-
filling in TBG is ∼0.3 meV < bandwidth, rendering an effec-
tive weak or intermediate coupling regime for correlation. For

such a correlation strength, the many-body density-density
(spin and charge) correlation functions are computed from
the multiband Hubbard model. Since we restrict our doping
range to only within individual flatbands, the corresponding
intraband Hubbard U dominate the correlation spectrum. The
multiband Hubbard interaction reads as

Hint = 1

�BZ

∑
αα′

Uαβ

∑
q,σσ ′

nασ (q)nβσ ′ (−q), (3)

where nασ (q) is the density operator for the αth band with
σ =↑,↓ spins, and Uαβ is the Hubbard U between the two
bands. Based on this Hubbard model, we compute the pairing
potential from the bubble and ladder diagrams to obtain for
singlet and triplet channels as [12–15]

̃s(q) = 1
2 Re[3Ũsχ̃

s(q)Ũs − Ũ cχ̃ c(q)Ũc + Ũs + Ũc], (4)

̃t (q) = − 1
2 Re[Ũsχ̃

s(q)Ũs + Ũcχ̃
c(q)Ũc − Ũs − Ũc]. (5)

Here we introduce a tilde to symbolize a quantity to be a
matrix of dimension N × N , with N being the total number
of bands. Superscripts “s” and “c” denote the many-body spin
and charge susceptibilities χ̃ s/c(q) matrix whose components
are defined as

χ
s/c
αβ = χαβ

(
1 ∓ U s/c

αβ χαβ

)−1
. (6)

Here χαβ is the bare susceptibility defined in Eq. (1) above.
The many-body susceptibilities are obtained within the ran-
dom phase approximation (RPA). Us/c are the Hubbard U
matrix for spin-flip and non-spin-flip interactions, respectively
[Eq. (3)]. Here U s/c

αβ = U for α = β and U s/c
αβ = V for α 	= β.

U differs in different systems [25]. Clearly, larger U increases
(decreases) spin (charge) susceptibility. Essentially in moder-
ate coupling regime, spin fluctuation dominates while charge
sector acts as a pair breaker for the spin-singlet pairing [s in
Eq. (4)].

A triplet pairing channel t increases when the on-site
interaction dominates over spin and charge fluctuations, as in
the case of GBN (see below). In both singlet and triplet cases,
it is evident that the pairing potentials have strong peaks at
the momenta where the underlying susceptibility itself obtains
peaks, i.e., pairing potentials s/t (q) also diverge at the FS
nesting wave vectors, and hence stabilize a characteristic
pairing symmetry in a given system.

Based on the above pairing potential, we solve the lin-
earized multiband SC gap equation, which is the pairing
eigenvalue equation, as given by (see Appendix B for details)

λνgν (kα ) = − 1

�FS

∑
β,k′

β

ν
αβ (kα − k′

β )gν (k′
β ), (7)

where kα is the Fermi momentum for the αth band. The
eigenvalue calculation is performed over the entire 2D FS
to estimate the dominant eigenvalue λ (which measures the
SC coupling constant), and the corresponding eigenvector
gives the leading pairing symmetry g(k). The same eigenvalue
equation is solved for both singlet (ν ≡ s) and triplet (ν ≡ t)
channels. Since the pairing potentials s/t scale with the Hub-
bard U , SC coupling constant λ also increases with increasing
U . Within the first-order approximation, the pairing symmetry
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g(k) does not scale with U (in the weak to moderate coupling
regime). Therefore, our general conclusions about the pairing
symmetry and the phase diagram are dictated by the nesting
strength, and remain valid for different values of U in this
coupling regime.

For a repulsive interaction ν > 0, according to Eq. (7), a
positive eigenvalue λ can commence with the corresponding
eigenfunction g(k) changing sign as sgn[g(k)] = −sgn[g(k′)]
mediated by strong peak(s) in ν at Q = k − k′. Looking into
the origin of ν in Eqs. (4) and (5), we notice that ν inherits
strong peaks from that in χ s/c, which is directly linked to the
FS nesting feature embedded in χ .

III. RESULTS

Here we discuss our results of the pairing eigenstates for
three systems under consideration at their VHS dopings. The
computed results of g(k) for the largest eigenvalue of Eq. (7)
are shown in the middle panel in Fig. 2. The momentum-space
symmetry of the eigenfunction g(k) is obtained by compar-
ing with the orbital symmetry of the spherical harmonics.
After that we inverse Fourier transform the g(k) to the unit
cell/moiré supercell as

gj = 1

�BZ

∑
k

g(k)e−i(k·δ j−φk ), (8)

where g j gives the pairing amplitude between two Wannier
sites separated by a distance δ j [see Figs. 2(g)–2(i)]. φk =
arg[

∑
j e−ik·δ j ] is an additional phase factor arising in the

hexagonal lattice possessing two Wannier bases per unit cell
[26]. We discuss below each system separately.

A. SLG

For SLG, numerous calculations predicted that an ex-
otic dx2−y2 + idxy (d + id) -wave symmetry is the dominant
pairing channel, constrained by the FS nesting at the VHS
[1]. We also find here that the two highest eigenvalues are
the same with λ = 0.26 with the corresponding degenerate
eigenfunctions being

gdx2−y2 (k) = cos(ky − φk ) + cos

(
ky

2
+ φk

)
cos

(√
3kx

2

)
,

gdxy (k) = sin

(
ky

2
+ φk

)
sin

(√
3kx

2

)
. (9)

These two eigenfunctions, respectively, represent dx2−y2 and
dxy symmetries in the hexagonal Brillouin zone (BZ). Because
of the degeneracy, the E2g irreducible representation allows a
complex mixing between them which is called the d + id-
pairing symmetry in SLG [27]. (We repeat the calculation
with different U ; the absolute value of the eigenvalue changes,
but the eigenfunctions remain the same). In Fig. 2(d) we
show the dx2−y2 eigenfunction, overlaid on the correspond-
ing FS in a color-gradient scale. Using Eq. (8), we obtain
the pairing amplitude between three nearest neighbors to be
g1,2,3 = (2,−1,−1) for the dx2−y2 case, and g1,2,3 =
(0, 1,−1) for the dxy pairing state [as shown in Fig. 2(g)].
The result establishes that the d + id-pairing state in SLG at

the VHS occurs between the NN sublattices with character-
istic phases which accommodate the FS nesting features and
corresponding sign reversal in the gap structure.

B. GBN

In GBN, the circular FS allows small-angle nestings, and
hence triplet pairing channel gains dominance, as in Sr2RuO4

[28] and UPt3 [29]. This renders an odd-parity p + ip-wave
pairing as shown in Fig. 2(e). The symmetry belongs to the E1

representation with two degenerate eigenfunctions [27]:

gpx (k) = sin(ky − φk ) + sin

(
ky

2
+ φk

)
cos

(√
3kx

2

)
,

gpy (k) = cos

(
ky

2
+ φk

)
sin

(√
3kx

2

)
. (10)

Compared to the other two compounds, we find a considerably
lower value of λ = 0.03 in GBN. This is expected since
this system does not have a strong nesting at a single wave
vector, rather small-angle scattering wave vectors with lower
strength. The inverse Fourier transformation of the pairing
state yields g1,2,3 = (2i,−i,−i) for the py state and g1,2,3 =
(0, i,−i) for the px state for the three NN Wannier sites
[as shown in Fig. 2(h)]. Both d + id symmetry in SLG and
p + ip-wave pairing in GBN break time-reversal symmetry,
and are chiral and nodeless in nature.

C. TBG

There have already been several proposals for unconven-
tional pairing symmetries, and pairing mechanisms in TBG,
such as d + id [8,30] as in SLG, odd-parity p + ip [31],
and others [32]. The FS topology is quite different in TBG,
exhibiting a threefold symmetry for each valley. The threefold
symmetric FS is different from other triangular lattices with
sixfold symmetric FS [9]. This FS topological change plays
an important role in governing a distinct pairing symmetry in
TBG. Here we obtain an extended s-wave pairing as shown in
Fig. 2(f), with its functional form given by

gext-s(k) = 2 cos (
√

3kx/2) cos
(
ky/2

) + cos (ky). (11)

The pairing function is rotationally symmetric and changes
sign between the moiré-zone center and corners, governing
a symmetry that is consistent with the A2g group and hence
called extended s-wave pairing. For the large FS at the VHS
doping, the tip of the FS crosses through the nodal lines and
thus gapless SC quasiparticles are obtained in this pairing
state. This is a purely real gap function. In the direct moirélat-
tice, this pairing symmetry stems from a nearest-neighbor
pairing between the Wannier sites in a triangular lattice given
by g1−6 = 1 for all components [see Fig. 2(i)].

We also note that the computed pairing symmetry in TBG
is different from that of the other triangular lattices, such as
NaxCoO2 · yH2O (NCOHO) [9]. This is because the FS of
NCOHO has the sixfold symmetry, while the FS for a given
valley in TBG has threefold symmetry.
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FIG. 3. (a)–(c) Spin susceptibility when (a) only intravalley in-
teraction (U ) is included with V = 0, (b) only intervalley interac-
tion V is included with U = 0, and (c) both intra- and intervalley
interactions are included with U = V . (d)–(i) Computed pairing
eigenfunctions for the highest eigenvalue of Eq. (4) in the main text
for the corresponding cases in the upper panel. TBG at their VHS
dopings are plotted on the FS in a blue (negative) to white (nodes)
to red (positive) colormap. We separately plot the two valley results
in different rows for easy visualization. (d)–(f) for one valley and
(g)–(i) for the other valley.

1. Valley-dependent pairing symmetry in TBG

We repeat the calculation for the pairing eigenvalue and
eigenfunctions by including both valley states for TBG.
The FSs for the two valleys are mutually rotated to each
other by π . This changes the symmetry of the TBG lat-
tice from triangular to hexagonal, as seen from the FS in
Figs. 3(d)–3(f). This opens up two competing nesting wave
vectors—intraband and interband nestings–as captured in the
susceptibility result [see Figs. 3(a)–3(c)]. We analyze the
details of the pairing symmetry in the three limiting cases of
(i) intravalley interaction U = 3.5 meV, intervalley V → 0,
(ii) U → 0, V = 3.5 meV, and (iii) U = V = 3.5 meV. In
the three cases, we obtain extended s-, s±-, and p + ip-wave
pairings, respectively. Below we discuss in detail all three
pairing states.

(i) First we consider the case for only intravalley nesting in
the limit of U � V . Here the results are similar to the single-
valley calculations shown in the main text. Consistently, we
find an extended s-wave symmetry for both valleys, where
we have a sign reversal between the center and corner of the
BZ, with a circular nodal line [Fig. 3(d)]. Inside the circle the
pairing value is positive and outside it is negative. We call
it extended s, because of the full rotational symmetry of the
pairing function over the entire BZ.

(ii) Next we consider the case for only intervalley nesting
alone in the limit of V � U . We obtain a completely different
pairing symmetry. Here we find an on-site, s-wave pairing for
each valley state, but the sign of the pairing is completely

FIG. 4. Maximum pairing eigenvalue (SC coupling constant) λ

as a function of chemical potential shift μ for TBG. Note that the
peaks in pairing eigenvalues occur when a flatband passes through
the Fermi level.

reversed between the two valleys, and hence called s±-pairing
state. The result is shown in Fig. 3(e). It is evident that
the pairing symmetry does not have any k dependence and
arises solely from the on-site pairing of the Wannier orbitals,
with different Wannier orbitals on the same site possessing
opposite phases. This pairing state is quite interesting in that
while on-site pairing is often considered in the context of con-
ventional, electron-phonon coupling cases, here one obtains
an equivalent condition with an unconventional, electron-
electron interaction mechanism. Note that although the pair-
ing interaction is obtained from the many-body electronic
interaction, the strong on-site Coulomb repulsion potential is
also present. Therefore, the on-site repulsion overturns this
on-site pairing strength, and such an on-site s± is disfavored.

(iii) Lastly we study the case of having both intra- and
intervalley nestings. The pairing eigenfunction map, plotted in
Fig. 3(f) shows an approximate p + ip pairing in a hexagonal
lattice. We identify the pairing symmetry by identifying the
corresponding nodal lines [see Fig. 3(d)] and by performing
a reflection operation on any point of the FS. However, un-
like previous cases, this symmetry contains higher harmonics
of the p-wave symmetries as can be anticipated from the
complicated colormap of the pairing function on the FS. The
pairing eigenvalue of this state is, however, much lower than
the extended s-wave pairing symmetry discussed above.

2. Doping-dependent pairing strength for TBG

Finally, we study the doping dependence of the pairing
eigenvalue λ, the SC coupling constant, in TBG, and the
result is shown in Fig. 4. We find that λ attains maxima
at the positions of the maxima of the density of states of
the flatbands (roughly at half-fillings in both electron- and
hole-doped sides). The present calculation does not include a
correlated Mott gap. The Mott gap opposes superconductivity
and this will shift the SC maximum away from the half-filling,
and one will reproduce the experimental phase diagram (work
in progress).

IV. DISCUSSIONS AND CONCLUSIONS

All the complex d + id and p + ip pairing symmetries do
not possess SC gap nodes on the FS and thus their detection
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usually requires phase-sensitive measurements. The extended
s-wave one in TBG possesses accidental nodes on both sides
of the saddle point near the VHS doping, and thus the SC
gap is very anisotropic. The k-space mapping of the pairing
symmetry can be measured via various modern techniques,
such as angle-dependent photoemission spectroscopy, scan-
ning tunneling probes via quasiparticle interference (QPI)
pattern, field-angle dependence study of thermal conductivity,
and so on. The nodal SC quasiparticle also leads to a power-
law temperature dependence in many thermodynamical and
transport properties which makes it easier to distinguish from
conventional pairing. The sign reversal of the pairing symme-
try leads to a magnetic spin resonance at energy <2� (� is SC
gap amplitude) [33], magnetic field dependence of QPI peaks
[34], and impurity resonance [35] which all can be measured
in future experiments for the verification of the underlying
pairing symmetry.

In a typical unconventional superconductor, the Wannier
states of the Fermi momenta are localized on each lattice
site, and hence the correspondence between the reciprocal and
direct lattice pairing is trivial. In the moiré lattice, the location
of the Wannier states corresponding to the flatband in TBG
depends on energy, twist angle, and interlayer coupling. In
GBN, the Wannier states are localized on a hexagonal lattice.
In TBG, they form a triangular lattice for each valley, where
the hexagonal symmetry is restored when both valleys are
included. Because of these materials-specific peculiarities, the
pairing symmetry of these materials turn out to be character-
istically unique. The present paper spares several open ques-
tions for future studies. Superconductivity appears at a consid-
erably low carrier density (∼1012 cm−2), which may require
adjustments in the theory. The competition between supercon-
ductivity and the correlated insulator gap is another interesting
theme of research which will be pursued in the future.
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APPENDIX A: MODEL HAMILTONIANS
FOR DIFFERENT SYSTEMS

1. SLG

We use a TB model for SLG for our calculation taking into
account NN and the nextnearest-neighbor (NNN) hoppings.
We start by describing the graphene lattice in terms of sub-
lattices A and B with three NN translation vectors connecting
sublattice A to three NN sublattices B as δ1 = ( 1

2 ,
√

3
2 )a0, δ2 =

( 1
2 ,−

√
3

2 )a0, δ3 = (− 1
2 , 0)a0 with a0 denoting the carbon-

carbon distance in graphene lattice. Six NNN translation lat-
tice vectors can be written as a1 = ±(δ1 − δ2), a2 = ±(δ2 −

δ3), a3 = ±(δ3 − δ1). We can write the Hamiltonian as

HSLG = Hon-site + HNN + HNNN, (A1)

where

Hon-site =
∑
i,σ

εaa†
i,σ ai,σ +

∑
j,σ

εbb†
j,σ b j,σ , (A2)

HNN = −t
∑

〈i, j〉,σ
(a†

i,σ b j,σ + H.c.), (A3)

HNNN = −t ′ ∑
〈〈i, j〉〉,σ

(a†
i,σ a j,σ + b†

i,σ b j,σ + H.c.) (A4)

where εa and εb are sublattice energies for sublattice A and B,
respectively; t and t ′ are nearest-neighbor and next-nearest-
neighbor hopping amplitude, respectively; and a† and b† are
creation operators on sublattices A and B, respectively. Next
we Fourier transform the creation and annihilation operators
to get the band dispersion as

Hon-site =
∑
k,σ

(εaa†
k,σ ak,σ + εbb†

k,σ bk,σ ), (A5)

HNN =
∑
k,σ

(
εNN

k a†
k,σ bk,σ + H.c.

)
, (A6)

HNNN =
∑
k,σ

(
εNNN

k a†
k,σ ak,σ + H.c.

)
(A7)

with

εNN
k = −t

∑
i=1,2,3

eik·δi , (A8)

εNNN
k = −t

∑
i, j(i 	= j)

eik·(δi−δ j ). (A9)

The model with more tight-binding parameters and their
values is given in Ref. [16].

2. GBN

We construct the low-energy model for graphene on hexag-
onal boron nitride by following Ref. [5]. We write the four-
band model in terms of 2 × 2 blocks given by

HGBN =
[

HBN TBN,SLG

TSLG,BN HSLG

]
, (A10)

where HBN and HSLG are Hamiltonians for boron nitride and
SLG layers, respectively. TSLG,BN, TBN,SLG are corresponding
tunneling matrices in sublattice basis. The effective simpli-
fied model for this case is obtained by integrating out the
boron nitride orbitals as H = HSLG − TSLG,BNH−1

BNTBN,SLG.
Now the sublattice-dependent terms in the Hamiltonian can be
written as

Hss′ = H0
ss′ + HMB

ss′ , (A11)

where H0
ss′ is the Hamiltonian that describes Dirac cones and

HMB
ss′ gives the moiré band modulation as

H0
ss′ = H0

ss′ (k, G = 0)δk,k′ , (A12)

HMB
ss′ =

∑
G 	=0

HMB
ss′ (k, G)δk′−k−G. (A13)
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FIG. 5. Momentum-space formulation of the TBG moiré pattern.
Red and blue BZs of SLG denote the upper and lower layers,
respectively. The upper layer is rotated by an angle θ/2 and the lower
layer by −θ/2 with respect to the kx, ky axis shown in the figure.
Smaller (solid black) hexagons represent the moiré BZ of the TBG
for a given valley state. The dashed black hexagon represents the
moiré BZ for the other valley state.

All the terms of the effective Hamiltonian now can be deter-
mined by the following equations:

H0 = C0eiφ0 , Hz = Cze
iφz , (A14)

HAA = H0 + Hz, HBB = H0 − Hz, (A15)

HAB,G1 = H∗
AB,G4

= CABei(2π/3−φAB ), (A16)

HAB,G3 = H∗
AB,G2

= CABe−iφAB , (A17)

HAB,G5 = H∗
AB,G6

= CABei(−2π/3−φAB ). (A18)

In Ref. [5], it is shown that this effective model can be
completely specified by six numbers C0 = −10.13 meV, φ0 =
86.53◦, Cz = −9.01 meV, φ0 = 8.43◦, CAB = −11.34 meV,
φAB = 19.60◦.

3. TBG

We construct the Hamiltonian for the TBG following the
work of Bistritzer and MacDonald [4]. We write down the
low-energy Hamiltonian by considering two SLGs which
were rotated by an angle θ with respect to each other and
tunneling between the SLG layers (see Fig. 5). A low-energy
continuum model Hamiltonian for SLG can be written in a
2 × 2 matix as

hk(θ ) = −vk

[
0 ei(φk−θ )

ei(φk−θ ) 0

]
, (A19)

where v = 3.2 eV Å−1 is the Dirac velocity, k is the mo-
mentum measured from Dirac point, and φk = tanky/kx , and
θ is the twist angle (see Fig. 5). Next we consider the inter-
layer hopping integrals, which can be accurately described
by three distinct tunnelings with three distinct wave vectors
q j ( j = 1, 2, 3) (see Fig. 5), whose directions are given by

(0,−1) for j = 1, (
√

3/2, 1/2) for j = 2, and (−√
3/2, 1/2)

for j = 3. The magnitude is |q j | = 2kD sin (θ/2) where kD

is the magnitude of the BZ corner wave vector for a SLG.
Corresponding tunneling matrices Tj are given by

T1 = c

[
1 1
1 1

]
, T2 = c

[
e−iζ 1
eiζ e−iζ

]
, T3 = c

[
eiζ 1

e−iζ eiζ

]
,

(A20)

where ζ = 2π/3. If the k cutoff is chosen in the first
moiré pattern BZ given by reciprocal lattice vectors G1 =
|q j |(

√
3, 0) and G2 = |q j |(−

√
3/2, 3/2). c = 0.9 eV is the

interlayer tunneling amplitude. Now the Hamiltonian for TBG
is an 8 × 8 matrix given by

Hk =

⎡
⎢⎢⎢⎣

hk(θ/2) T1 T2 T3

T †
1 hq1 (−θ/2) 0 0

T †
2 0 hq2 (−θ/2) 0

T †
3 0 0 hq3 (−θ/2)

⎤
⎥⎥⎥⎦.

(A21)

We consider k points beyond the first shell approximation
which resulted in a 400 × 400 matrix. After diagonalizing
this matrix, we downfold the eigenvalues to the two (four)
low-energy flatbands for a single valley (both valleys) that are
near the FS, and all the subsequent calculations are performed
considering only these bands.

APPENDIX B: CALCULATION OF PAIRING POTENTIAL

We start with an extended Hubbard model with both the
valleys:

Hint =
∑

αβ,σσ ′,q

Uαβnασ (q)nβσ ′ (−q)

= U
∑

α,k,k′,q

c†
kα↑ck+qα↑c†

k′α↓ck′−qα↓

+V
∑

α 	=β,k,k′,q,σ,σ ′
c†

kασ ck+qασ c†
k′βσ ′ck′−qβσ ′ , (B1)

where α and β are valley indices, taking values of 1 and 2
for two valleys in TBG. c† and c are creation and annihi-
lation operators, respectively. U and V are intravalley and
intervalley coupling strength, respectively. In Eq. (B1) the
first term is the intravalley interaction and the second term is
the intervalley interaction. By expanding Eq. (B1) to include
multiple-interaction channels, we obtain the effective pairing
potential αβ (k − k′) for the singlet and triplet states. The
corresponding pairing Hamiltonian is

Hint ≈
∑

αβ,k,k′,σ,σ ′
αβ (k − k′)c†

kασ c†
−kασ ′c−k′βσ ′ck′βσ . (B2)

The pairing potentials are

̃s
αβ (q) = 1

2 Re
[
3Ũ sχ̃ s

αβ (q)Ũ s − Ũ cχ̃ c
αβ (q)Ũ c + Ũ s + Ũ c

]
,

(B3)

̃t
αβ (q) = − 1

2 Re
[
Ũ sχ̃ s

αβ (q)Ũ s + Ũ cχ̃ c
αβ (q)Ũ c − Ũ s − Ũ c

]
.

(B4)
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Here U s/c = U for α = β and U s/c = V for α 	= β. From the
superconducting Hamiltonian equation (B2) we can construct
the SC gap equation as

�α
n,k = −

∑
β,k′

n
αβ (k − k′)〈c−k′βσ ck′βσ ′ 〉. (B5)

Here n = s, t for singlet and triplet pairing channels
where σ ′ = ∓σ , respectively. In the limit T → 0 we have
〈c−k′βσ ck′βσ ′ 〉 → λn�

β

n,k′ which makes the above equation an
eigenvalue equation

�α
nk = −λ

∑
β,k′

n
αβ (k − k′)�β

n,k′ . (B6)

In our work we solve the eigenvalue problem separately
for the singlet and triplet channels. The following equations
remain the same for both these pairing channels and thus
the index “n” is omitted for simplicity. This is an eigenvalue
equation for the k points in the Fermi surface (�α

kF
). For this

purpose we construct the matrix

(kF − k′
F) =

⎡
⎢⎢⎣

11
kFkF

′ 12
kFkF

′ . . .

21
kFkF

′ 22
kFkF

′ . . .

...
...

. . .

⎤
⎥⎥⎦, (B7)

where 1,2, refer to the band/valley indices, q = kF − k′
F is the

Fermi surface nesting vector, and 
αβ

kFkF
′ refers to the N × N

matrix if N number of points on the Fermi surface is consid-
ered for each valley. Now if we denote �kF = [�1

kF
�2

kF
]T ,

then we can write the matrix equation and solve for its
eigenvalues and eigenvectors as

�kF = −λ
∑
k′

F

�(kF − k′
F)�k′

F
. (B8)

By writing the SC gap function as �k = �0gk, where �0 is
the gap amplitude and gk is the gap anisotropy, we obtain
Eq. (4) in the main text.
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