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Bound states in a superfluid vortex: A detailed study along the BCS-BEC crossover
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The bound states that can occur in a superfluid vortex have recently called for attention owing to the capability
of detecting them experimentally. However, a detailed theoretical account for the presence of these vortex bound
states is still lacking for all temperatures in the superfluid phase and couplings along the BCS-BEC crossover.
Here, we fill this gap and present a systematic theoretical study based on the Bogoliubov–de Gennes equations
for the bound states that occur over the two characteristic (inner and outer) spatial ranges in which the extension
of a superfluid vortex can be partitioned. It is found that the total number of bound states decreases from the
BCS (weak-coupling) side of the crossover toward the intermediate-coupling region where they are still present,
whereas the bound states disappear upon entering the BEC (strong-coupling) side. A scaling relation is also
obtained that connects the number of bound states in the inner spatial range of the vortex to the depth and width
of the vortex itself. A criterion is finally provided in terms of the local density of states, to distinguish where a
given fermionic superfluid is located in the coupling-temperature phase diagram of the BCS-BEC crossover.
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I. INTRODUCTION

Recently, interest has arisen in the internal structure of
vortices in type-II superconductors, owing to the presence of
bound states in the vortex core region of a Y123 superconduc-
tor that were detected experimentally [1]. The relevance of
this finding has been highlighted [2], as an indication that the
superconducting state of high-temperature superconducting
materials should be well described by the conventional BCS
pairing theory [3], in spite of the fact that the normal state of
these materials is highly unconventional.

In Ref. [1] the experimental findings were supported by
theoretical calculations, based on the approach to the solution
of the Bogoliubov–de Gennes (BdG) equations [4] developed
in Ref. [5], to come up with the local density of states as
the relevant quantity to be compared with the experimental
data. Although these calculations considered the effects of a
realistic band structure as well as the influence of disorder and
nearby vortices on a given vortex, they were limited to zero
temperature and to a single value of the interparticle coupling.
To understand in a more complete fashion the properties of
bound states in superconducting vortices, it would then be de-
sirable to characterize them also as a function of temperature
and interparticle coupling, at least for the simplest case of an
isolated vortex. The purpose of this paper is to address this
aspect of the problem, thereby complementing to some extent
the theoretical information provided in Ref. [1].

The occurrence of bound states in a superconducting vortex
was originally proposed in Ref. [6] by solving the BdG equa-
tions. That calculation was restricted to zero temperature and
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to the case of weak coupling for which �0 � EF , where �0

is the bulk value of the gap parameter away from the center of
the vortex and EF the Fermi energy. In more modern language,
this would correspond to the BCS (weak-coupling) limit of
the BCS-BEC crossover [7]. Later works, that considered the
self-consistent solution of the BdG equations for a vortex
line, have either relaxed the restriction to zero temperature
but still at weak coupling [8], or spanned the whole BCS-BEC
crossover but still at zero temperature [9,10]. To obtain a more
complete information on the properties of bound states in a
superconducting vortex, however, it would be worthwhile to
address both their coupling and temperature dependencies at
the same time.

From a technical point of view, in Refs. [8–10] the study of
a single vortex was performed in terms of the BdG equations
by constraining the vortex into a cylinder of radius Rc with
infinite walls, such that all single-particle wave functions were
to vanish at Rc. In this way, however, all single-particle ener-
gies turn out to be discrete, in such a way that no sharp distinc-
tion there exists between truly bound states with finite spatial
extension and unbound continuum states past a well-defined
threshold. This limitation was later removed in Ref. [11],
where the BdG equations were solved by introducing suitable
free boundary conditions through which the vortex profile is
matched to its asymptotic behavior at a large distance from the
center. In this way, a clear distinction can be marked between
bound (localized) states and unbound states extending to
infinity. By this approach, the temperature dependence of the
healing length ξ associated with the size of the vortex could
be determined even for temperatures quite close to the critical
temperature Tc at which ξ diverges. In Ref. [11] this analysis
was carried out from weak to strong coupling across the whole
BCS-BEC crossover, to determine not only the profile of the
gap parameter, but also those of the local number density and
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current. In addition, in Ref. [11] an advanced regularization
procedure was developed for the self-consistent gap equation,
which permits to increase considerably the accuracy of the
numerical calculations.

In this paper, we take advantage of the above procedures
developed in Ref. [11] and concentrate our analysis on the
bound-state part of the spectrum for an isolated vortex em-
bedded in an otherwise homogeneous fermionic superfluid of
infinite extent. In this context, we will determine the local
density of states as a function of energy and of the spatial
position from the vortex core, for varying temperature in the
superfluid phase from T = 0 to T = Tc and for couplings
along the BCS-BEC crossover. We will thus also be able
to study how the total number of bound states evolves as
a function of temperature and coupling, paying additional
attention to how the bound states are distributed over the two
characteristic spatial ranges in which the vortex (including its
tail) can be partitioned.

The main results obtained in this paper are as follows:
(i) By relying on the numerical procedure to solve the

BdG equations for a fermionic superfluid vortex developed
in Ref. [11], an energy threshold is identified that clearly
separates truly bound states from continuum states. In this
way, the counting of bound states for given coupling and
temperature becomes a meaningful process.

(ii) In addition, by partitioning the spatial extent of the
vortex into an inner and an outer region (to be identified
below), the number of bound states that hinge on each region
is determined as a function of energy below threshold. It is
found that the number of bound states in the inner region
scales in a universal way on the depth and width of the vortex
itself.

(iii) The number of bound states is found to be non-
negligible even in the intermediate-coupling region of the
crossover, where the Cooper pair size becomes comparable
with the interparticle distance. To the extent that this small
size is compatible with the occurrence of high-temperature
superconductivity [12], there is thus no a priori reason to
associate the occurrence of bound states in a vortex with
the superconductivity being of the conventional BCS type as
recently asserted [2].

(iv) Finally, it is proposed that the shape of the local
density of states vs energy, taken about the center of the
vortex, can serve as a guide to distinguish where a given
fermionic superfluid stands in the coupling-temperature phase
diagram of the BCS-BEC crossover. In this context, one
should recall that the local density of states has accurately
been measured with a scanning tunneling microscope also in
high-temperature superconductors [13], as well as in more
complex SNS structures made with conventional supercon-
ductors [14].

The plan of the paper is as follows. Section II recalls the
main features of the solution of the BdG equations drawn from
Ref. [11] for an isolated vortex embedded in an infinite super-
fluid. Emphasis is there given to the occurrence of an inner
and outer region with different spatial behaviors of the vortex
profile where the bound states can reside. Section III presents
the numerical results for the number of bound states and the
local density of states, from which the scaling relation and the
criterion for spotting the position along the BCS-BEC phase

diagram mentioned above are derived. Section IV gives our
conclusions. The Appendix discusses the asymptotic profile
of an isolated vortex in the context of the Gross-Pitaevskii
equation, which holds for the composite bosons that form in
the BEC limit of the crossover.

II. FORMAL ASPECTS

We begin by briefly recalling the method used in Ref. [11]
to solve the BdG equations in the presence of an isolated
vortex embedded in an otherwise infinite homogeneous su-
perfluid, as a function of both coupling across the BCS-BEC
crossover and temperature.

The BdG equations read as [4]

(
H(r) �(r)
�(r)∗ −H(r)

)(
uν (r)
vν (r)

)
= εν

(
uν (r)
vν (r)

)
. (1)

Here, H(r) = −∇2/2m − μ where m is the fermion mass
and μ the chemical potential (we set h̄ = 1 throughout). The
local gap parameter �(r) in Eq. (1) is determined via the
self-consistent condition

�(r) = −v0

∑
ν

uν (r)vν (r)∗[1 − 2 fF (εν )], (2)

where fF (ε) = (eε/(kBT ) + 1)−1 is the Fermi function at tem-
perature T (kB being Boltzmann constant) and v0 is the
bare coupling constant of the contact interaction. A suitable
regularization of the inhomogeneous gap equation (2) was
implemented in Appendix B of Ref. [11], by drawing elements
from the derivation of the Gross-Pitaevskii equation [15] for
composite bosons that form in the BEC limit, which was
obtained in Ref. [16] starting from the BdG equations. In the
process, the bare coupling constant v0 that enters Eq. (2) gets
replaced by the (dimensionless) coupling parameter (kF aF )−1,
where kF = (3π2n0)1/3 is the Fermi wave vector associated
with the (bulk) number density n0 and aF is the scattering
length of the two-fermion problem. This coupling parameter
enables one to span the whole BCS-BEC crossover [7]. In
practice, the crossover between the BCS and BEC regimes is
exhausted within the range −1 � (kF aF )−1 � +1 about the
unitary limit (UL) where (kF aF )−1 = 0.

When looking for bound states inside a vortex like in the
present context, coupling values on the BCS side of unitarity
should primarily be considered since it will turn out that
the number of bound states rapidly vanishes upon entering
the BEC side of unitarity. In addition, on the BEC side
of the crossover at finite temperature it would be necessary
to include pairing fluctuations beyond mean field [7], a task
which is beyond the purposes of this paper. On the other
hand, on the BCS side of the crossover we shall find it
necessary to extend the calculations down to the (numerically
rather demanding) coupling value (kF aF )−1 = −4.0, in order
to recover what would be expected on the basis of the standard
BCS approach.

For an isolated vortex with unit circulation and directed
along the z axis, the spatially dependent gap parameter is
written in cylindrical coordinates as �(r) = �(ρ, ϕ, z) =
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�(ρ)eiϕ with �(ρ) real. Correspondingly, the eigenfunctions
of the BdG equations (1) take the form

uν (r) = uνr,
,kz (ρ)
ei
ϕ

√
2π

eikzz

√
2π

, (3)

vν (r) = vνr,
,kz (ρ)
ei(
−1)ϕ

√
2π

eikzz

√
2π

, (4)

where νr is the radial quantum number, 
 is an integer (both
positive and negative), and {uνr,
,kz (ρ), vνr,
,kz (ρ)} are real
functions for the bound states of primary interest here. Within
this approach, for given values of 
 and kz the BdG equa-
tions are numerically integrated outward, starting from ρ = 0
with suitable indicial conditions, up to a maximum value
Rout [values ranging from kF Rout = 60 for (kF aF )−1 = 0 up
to kF Rout = 1500 for (kF aF )−1 = −4.0 proves sufficient for
practical purposes]. At that point, “free” boundary conditions
are enforced at ρ = Rout by using suitable linear combinations
of Bessel, Neumann, and Hankel functions, in terms of which
the solutions of the BdG equations can be expressed for
ρ � Rout. This procedure offers a definite advantage, in that
it avoids the common practice of constraining the vortex in a
cylinder with infinite walls at ρ = Rout. For this reason, this
procedure allows one to clearly distinguish truly bound states
(which decay exponentially for ρ � Rout) from continuum
states (with oscillating behavior extending up to infinity). In
practice, we have considered values of 
 not smaller than 200
and values of |kz| up to 3kF .

In this way, for given kz and irrespective of the value of 
,
a first energy threshold between bound and continuum states
occurs at the (temperature-dependent) value �0 recovered by
�(ρ) deep in the bulk region when μ̃ > 0 (where μ̃ = μ −
k2

z /2m), while a second threshold occurs at
√
�2

0 + μ̃2 when
μ̃ < 0. Accordingly, for 0 < ε < �0 only bound states can be
found, for �0 < ε <

√
�2

0 + μ̃2 bound states embedded in the
continuum (with different values of kz) can also be found, and
for

√
�2

0 + μ̃2
<ε only continuum states occur.

Once the eigenfunctions {uνr,
,kz (ρ), vνr,
,kz (ρ)} have been
determined together with the corresponding eigenvalues
{ενr,
,kz } according to the above procedure, one can obtain the
local density of states given by

N (ρ; E ) =
∫ +∞

−∞

dkz

(2π )2

∑
νr,


[∣∣uνr,
,kz (ρ)
∣∣2

δ
(
E − ενr,
,kz

)

+ ∣∣vνr,
,kz (ρ)
∣∣2

δ
(
E + ενr,
,kz

)]
(5)

which has dimensions of [volume×energy] −1. This quantity,
which is of primary experimental interest [13,14], contains
contributions from both bound and continuum states [17]. We
are now in a position to calculate N (ρ; E ) as a function of
coupling along the BCS-BEC crossover and of temperature in
the superfluid phase. In addition, by our approach, we can also
distinguish the separate contributions to N (ρ; E ) from bound
and continuum states.

It is further relevant to point out that, contrary to a common
assumption that the radial vortex profile approaches asymp-
totically the bulk value �0 in an exponential way [5,18], the
gap parameter �(ρ) has instead a long tail with a power-law
dependence of the type �0(1 − ζ 2

2ρ2 ). This property, which

went apparently unnoticed in the literature, was found to be
valid for all couplings throughout the BCS-BEC crossover by
the detailed numerical analysis carried out in Ref. [11]. As
shown in the Appendix, this property can be also captured
analytically in terms of the Gross-Pitaevskii equation [15],
to which the BdG equations have been shown to reduce in
the BEC (strong-coupling) limit [16]. It is actually in the
more limited radial range k−1

F � ρ � 5Rv only that the vortex
profile has an exponential dependence, from which a char-
acteristic (temperature- and coupling-dependent) coherence
length ξ can be determined, where Rv marks the position of
the maximum value of the radial current [11]. As is turns out
from the numerical analysis of Ref. [11] (and confirmed by
from the present one), the two length scales ζ and ξ coincide
with each other within numerical error for all couplings and
temperatures.

Accordingly, in the following we shall find it conve-
nient to partition the vortex profile into an “inner” region
(where the exponential decay applies) and an “outer” region
(where the power-law behavior takes over), the boundary be-
tween the two regions being (approximately) taken at ρ ≈ ξ .
The counting of the number of bound states will similarly be
partitioned. We are then going to distinguish whether a given
bound state with quantum numbers (νr, 
, kz) belongs to the
inner or to the outer region, by looking at the (dimensionless)
partial normalization condition

Pνr,
,kz (ξ ) =
∫ ξ

0
dρ ρ

[
uνr,
,kz (ρ)2 + vνr,
,kz (ρ)2

]
. (6)

We then attribute the location of the bound state to the inner
(outer) region when Pνr,
,kz (ξ ) exceeds (falls behind), say, 0.5
as compared to the value 1.0 of the complete normalization
when the upper limit of the integral in Eq. (6) extends to infin-
ity. Owing to the (ρ−2) power-law tail of the gap parameter, it
turns out that the vortices residing in the outer region by far
exceed in number those residing in the inner region, although
most of them lie far away from the vortex center.

In practice, the bound states in the inner region (and there-
fore their number) are numerically much more under control
than those in the outer region, especially when the latter
ones hinge mostly close to the boundary at Rout where the
connection with decaying exponentials is enforced through
the boundary conditions. In addition, when several vortices
would be packed up together to form a vortex lattice, the
nature of the bound states in the remote external part of the
outer region of what would have been a vortex in isolation
is expected to be strongly modified by the presence of the
surrounding vortices. For this reason, it may anyway not be
worth to insist in extending the size of the outer region beyond
those values of Rout that we have considered in practice for the
numerical calculations.

III. NUMERICAL RESULTS

We pass to characterize the presence of bound states in
an isolated vortex, for all temperatures in the superfluid
phase and couplings along the BCS-BEC crossover, by taking
advantage of our accurate numerical calculations in terms of
the BdG equations following the methodologies developed
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FIG. 1. The local density of states N (ρ; E )ib, contributed by the inner bound states, is shown for three couplings (kF aF )−1 =
(−3.0, −1.5, 0.0) (from left to right) and two temperatures T = (0, 0.9)Tc (from bottom to top). Here, N (ρ; E )ib is in units of k3

F /EF , ρ

in units of k−1
F , and E in units of EF (where EF = k2

F /2m is the Fermi energy). In the left-bottom panel, the arrows pointing toward the energy
scale mark the values ±�0 of the continuum threshold at the corresponding coupling and temperature (cf. Table I below).

in Ref. [11]. We shall find that the number of bound states
rapidly decreases on the BEC side of unitarity, so that, in
practice, only the coupling region from the BCS regime up to
unitarity will be relevant to our purposes. Several features will
be highlighted by looking at the details of the local density
of states, or simply by counting the number of bound states
that can be identified for given coupling and temperature. Our
main findings are summarized by the following features.

A. Contribution from bound and scattering states
to the local density of states

One of the main questions to be asked at the outset is where
the various contributions, in which the local density of states
N (ρ; E ) of Eq. (5) can be partitioned, are spatially located
over the extension of an isolated vortex. These contributions
can be identified as those corresponding to the bound states
residing essentially in the inner and outer regions of the
vortex, and as that corresponding to the scattering states. Here,
the partial normalization criterion (6) is used to assign a given
bound state either to the inner or outer regions of the vortex
(see also Sec. III B below).

Accordingly, we express the local density of states N (ρ; E )
of Eq. (5) as the sum of three contributions, namely,
N (ρ; E )ib, N (ρ; E )ob, and N (ρ; E )sc, where “ib” stands for
inner bound, “ob” for outer bound, and “sc” for scattering.
These three contributions are reported in Figs. 1, 2, and 3,
respectively, as a function of both ρ and E , in each case for
three characteristic couplings (kF aF )−1 = (−3.0,−1.5, 0.0)
and two significant temperatures T = (0, 0.9)Tc. (One should,
however, be aware that, due to the progressive importance of

pairing fluctuations beyond mean field at finite temperature
for increasing coupling, the data at unitarity and finite temper-
ature are expected to be quantitatively less reliable than those
at weaker couplings.)

From Figs. 1–3 one notices that the contribution N (ρ; E )ib

is mostly spatially concentrated over the inner portion of
the vortex, while the contribution N (ρ; E )ob is spread over
a much wider spatial region. On the other hand, N (ρ; E )sc

at low energies above (the temperature-dependent) threshold
is depressed in the central region of the vortex owing to
the orthogonality requirement of quantum mechanical states
with different energies, while at high energies above threshold
N (ρ; E )sc is almost uniformly spread over all space owing
to the occurrence of spatial oscillations with small wave-
length. The situation remains qualitatively the same also
for increasing temperature from T = 0 to T = 0.9Tc. More
marked differences appear instead for increasing coupling,
from (kF aF )−1 = −3.0 deep in the weak-coupling (BCS)
region to unitarity where (kF aF )−1 = 0, along which one no-
tices a progressively enhanced asymmetry between negative
and positive energies. We shall return below to a more detailed
discussion of this asymmetry.

From Figs. 1–3 one also notices that, for each coupling and
temperature, a sharp threshold for the continuum states occurs
at E = �0(T ) (cf. Fig. 3), and that bound states “embedded”
in the continuum are also found when E > �0 (cf. Figs. 1 and
2), although they give a small overall contribution to N (ρ; E ).
This can be seen, in particular, in the left-bottom panel of
Fig. 1, where the two arrows mark the values ±�0 of the
continuum threshold beyond which bound states embedded in
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FIG. 2. The local density of states N (ρ; E )ob, contributed by the outer bound states, is shown for three couplings (kF aF )−1 =
(−3.0, −1.5, 0.0) (from left to right) and two temperatures T = (0, 0.9)Tc (from bottom to top). Like in Fig. 1, N (ρ; E )ob is in units of
k3

F /EF , ρ in units of k−1
F , and E in units of EF .

the continuum appear. For convenience, the numerical values
of �0(T ) relevant to Figs. 1–3 are reported in Table I.

We have further verified that, past unitarity upon approach-
ing the BEC regime, there occurs a progressive depletion of

N (ρ; E )ib in the central region of the vortex, implying that
bound states tend to disappear in this coupling regime. In
addition, for given coupling this depletion is essentially com-
plete for T = 0, while it becomes only partial upon increasing

FIG. 3. The local density of states N (ρ; E )sc, contributed by the scattering states, is shown for three couplings (kF aF )−1 =
(−3.0, −1.5, 0.0) (from left to right) and two temperatures T = (0, 0.9)Tc (from bottom to top). Like in Figs. 1 and 2, N (ρ; E )sc is in units of
k3

F /EF , ρ in units of k−1
F , and E in units of EF . The white stripe around E = 0 corresponds to the gap region where no scattering states can

occur and the associated local density of states identically vanishes.
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TABLE I. Values of �0(T ) (in units of EF ) for the couplings
and temperatures T = (0, 0.9)Tc considered in the panels of Figs. 1–
3. The last column gives the corresponding values of the critical
temperature Tc (in units of EF ).

(kF aF )−1 T = 0 T = 0.9 Tc Tc/EF

0.0 0.6864 0.3445 0.4965
− 1.5 0.1001 0.0523 0.0579
− 3.0 0.0097 0.0051 0.0055

the temperature. We shall return below to a more detailed
discussion of this feature.

B. Counting the number of bound states
in the inner and outer regions

Another relevant piece of information can be obtained by
a simple count of the number of bound states, separately in
the inner and outer regions as defined above. To this end,
we recall that the bound-state wave functions are localized in
the x-y plane orthogonal to the z axis of the vortex, so that
a whole branch spanned by the wave vector kz is associated
with each bound state with given angular momentum 
 and
radial quantum number νr. Accordingly, in the following the
numbers of bound states will be given per unit length along
the direction of the vortex axis since they will be summed
(integrated) over the wave vector kz [as it is also done in
Eq. (5)]. With this procedure, the line density of bound states
Ninner and Nouter, that reside, respectively, in the inner and outer
regions of an isolated vortex, can be obtained as a function of
coupling and temperature.

Figure 4 shows both Ninner (lower panel) and Nouter

(upper panel) for three characteristic temperatures T =
(0, 0.5, 0.9)Tc, with the coupling (kF aF )−1 ranging from −4.0
deep in the BCS regime up to unitarity. In addition, for T = 0
the calculation has been extended to (kF aF )−1 = 1.0 on the
BEC side of unitarity.

A few general features can be evidenced from these plots:
(i) Both Ninner and Nouter rapidly decrease from the BCS
regime to the UL and quickly vanish once the BEC side
past unitarity is reached, thus implying that the bound states
have no relevance for the composite bosons that form out
of fermion pairs in the BEC regime. (ii) For given coupling,
Ninner increases upon increasing the temperature, whereby the
depth �0 of the vortex decreases but at the same time its width
ξ increases. (iii) For given coupling and temperature, Nouter

by far exceeds Ninner, although Nouter appears to be essentially
independent of temperature.

It should be remarked that the values of Nouter we have
obtained are numerically less reliable that those of Ninner

because they depend on the value of the radius Rout where
the boundary conditions are enforced on the solutions of
the BdG equations (cf. Sec. II). In this context, we found
it numerically too demanding to make this radius exceed
kF Rout = 1500 for the smaller coupling we could reach deep
in the BCS regime. For these reasons, in the following we
shall limit ourselves to further examine the dependence of
Ninner on �0 and ξ , leaving aside similar considerations
for Nouter.

FIG. 4. The line density of bound states Ninner in the inner region
(lower panel) and Nouter in the outer region (upper panel) of the
vortex vs the coupling (kF aF )−1 for three temperatures: T = 0 (filled
circles), T = 0.5Tc (open boxes), and T = 0.9Tc (stars). Both Ninner

and Nouter have been divided by kF to make them dimensionless.

C. Symmetry vs asymmetry of the local density
of states about the vortex center

A characteristic feature, that distinguishes whether a ho-
mogeneous attractive Fermi gas lies in the weak-coupling
(BCS) or the unitary regime, is the degree of asymmetry of
the single-particle spectral function, with the two peaks of this
spectral function being much more symmetric about zero fre-
quency in the BCS regime than at the UL [19]. The occurrence
of particle-hole asymmetry is a characteristic feature of the
BCS-BEC crossover, whereby the underlying Fermi surface
gets progressively modified when passing from the BCS to
the BEC limits across UL, as the ratio �0/EF increases. Our
interest here is to verify to what extent this characteristic
feature is maintained also for the present inhomogeneous
problem, such that a measurement of the local density of states
about the vortex center would be able to detect whether or not
the superfluid properties of the Fermi gas deviate from those
of an ordinary BCS superconductor.

As we have already noted while commenting Figs. 1–3,
all three contributions to the local density of states N (ρ; E )
that we have considered become progressively more asym-
metric when passing from the BCS to the unitary regime. A
more quantitative characterization of this asymmetry can be
obtained as follows. Let us consider a spatial region in the
inner part of the vortex, say, of linear extension ξ/2 around
the vortex center at ρ = 0 (in such a way to concentrate our
attention close to the center of the vortex). We then look for

134506-6



BOUND STATES IN A SUPERFLUID VORTEX: A … PHYSICAL REVIEW B 99, 134506 (2019)

FIG. 5. The quantity D(E ) of Eq. (7) (in units of kF /EF ) is
shown vs E [in units of the bulk gap �0(T ) at temperature T ],
for the couplings (kF aF )−1 = −4.0 (upper panel), (kF aF )−1 = −2.0
(middle panel), and (kF aF )−1 = 0.0 (lower panel), and for the tem-
peratures T = 0 (full line), T = 0.5Tc (dashed line), and T = 0.9Tc

(dotted line).

the behavior of the integrated quantity

D(E ) = 2π

∫ ξ/2

0
dρ ρ N (ρ; E ), (7)

where N (ρ; E ) is the local density of states (5). The quan-
tity (7) has dimensions of [length × energy]−1 and contains,
in principle, contributions from both bound and continuum
states, depending on the value of E . In the following, we
shall be interested in the energy interval −�0(T ) � E �
�0(T ) where �0(T ) is the bulk value of the gap parameter
at temperature T , such that only bound states contribute to
D(E ) in this energy interval.

Plots of D(E ) vs E are shown in Fig. 5 for three char-
acteristic couplings (kF aF )−1 = (−4.0,−2.0, 0.0) and three
characteristic temperatures T = (0, 0.5, 0.9)Tc for each cou-
pling [with the exception of the coupling (kF aF )−1 = −4.0
for which T = 0.9Tc is lacking]. Irrespective of temperature,
drastic changes are seen to occur in the shape of D(E ), which
becomes progressively more asymmetric when passing from
(kF aF )−1 = −4.0 (upper panel) to (kF aF )−1 = 0.0 (lower
panel).

An even sharper characterization, about the development of
this asymmetry when approaching the UL from the BCS side,

FIG. 6. Asymmetry parameter, defined in terms of the quantities
(8) and (9), as a function of the coupling (kF aF )−1 for three different
temperatures: T = 0 (filled circles), T = 0.5Tc (open boxes), and
T = 0.9Tc (stars).

can be obtained by integrating D(E ) over either the positive
or negative portions of the gap region, thereby defining

N+ =
∫ �0(T )

0
dE D(E ), (8)

N− =
∫ 0

−�0(T )
dE D(E ), (9)

which have dimensions of [length]−1. In this way, a suitable
asymmetry parameter (N+ − N−)/(N+ + N−) can then be
introduced, which can be analyzed as a function of coupling
and temperature. The results are reported in Fig. 6. One sees
that, essentially for all temperatures, there occurs a steep
increase of this asymmetry parameter, from the value zero in
the BCS regime to almost unity at UL, which at T = 0 has
reached half the way at about the coupling (kF aF )−1 = −1.5.
This quantity thus provides one with a quick clue for the
closeness of the superfluid Fermi gas to the UL, by looking
at the distribution of the bound states about the vortex center.

From the experimental results available from Ref. [1], no
clear evidence for the occurrence of particle-hole asymmetry
can apparently be extracted. One has to consider, however,
that in Ref. [1] the presence of bound states in vortices was
evidenced in a high-Tc cuprate superconductor for the first
time, through a delicate subtraction procedure of a significant
background. Additional detailed measurements of density-of-
states spectra would then be required to evidence a particle-
hole asymmetry over and above this subtraction.

D. A scaling relation

In Fig. 4, Ninner was found to depend separately on coupling
and temperature. However, both the depth �0 (or bulk value of
the gap parameter) and the width ξ of the vortex also depend
on coupling and temperature. It will then be interesting to
eliminate this double dependence and express Ninner directly
as a function of a single variable obtained by combining �0

and ξ , irrespective of the corresponding values of coupling
and temperature. Through this attempt, we have found that
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FIG. 7. Scaling plot showing the values of the line density of
bound states Ninner (in units of kF ), obtained for given coupling and
temperature, reported as a function of the variable �0ξ

2, where the
values of �0 and ξ are obtained at given coupling and temperature.
For each coupling value listed in the figure, the values of Ninner

correspond to the three temperatures T = (0, 0.5, 0.9)Tc [with the
exception of the coupling (kF aF )−1 = −2.0 for which the value for
T = 0.95 Tc is also added, and of the coupling (kF aF )−1 = −4.0 for
which the value for T = 0.9 Tc is missing].

the product �0ξ
2 is the appropriate scaling variable on which

the line density of bound states Ninner effectively depends.
Accordingly, we have organized the numerical values Ninner

from Fig. 4 into the single plot shown in Fig. 7, where Ninner is
reported vs �0ξ

2 over a double-log scale so as to put on equal
footing quite different sets of data (spanning four decades,
from 10−2 to 102). Here, ξ is is units of the inverse of the
Fermi wave vector kF and �0 in units of the Fermi energy EF ,
such that the variable �0ξ

2 of Fig. 7 is dimensionless.
The resulting linear scaling dependence of Ninner vs

�0ξ
2 (which is evidenced in the figure by the straight line

Ninner/kF = 0.263 �0ξ
2) appears quite remarkable, to the ex-

tent that essentially all data with individually quite different
values of �0 and ξ fall on this straight line. We have further
verified that this scaling relation between Ninner and �0ξ

2

holds also when the counting of bound states residing in the
inner region is enlarged, by shifting ξ , e.g., to 2ξ in Eq. (6),
provided that the same replacement ξ → 2ξ is also made in
the variable �0ξ

2 on which Ninner depends.

IV. CONCLUDING REMARKS

In this paper, we have given a detailed account about
the number, energy location, spatial location, and shape of
the large number of bound states that are present within
an isolated vortex embedded in an otherwise homogeneous
superfluid. We have done this by an accurate solution of the
BdG equations based on the methods developed in Ref. [11],
for a dilute Fermi gas spanning the BCS-BEC crossover with
the temperature ranging from zero to the superfluid critical

temperature. In this way, we have been able to provide a
criterion for locating where a given Fermi gas lies along this
crossover, in terms of the asymmetry between positive and
negative energies of the local density of states. From our
numerical calculations we were also able to extract a universal
scaling relation, that relates the number of bound states in the
inner region of the vortex with the depth and width of the
vortex itself.

We have further verified that bound states occur in the
interior of a vortex for couplings on the BCS side of unitary,
and rapidly disappear when entering the BEC regime past
unitarity. Consistently with this theoretical finding, a clear
experimental finding for the occurrence of bound states in a
vortex in a superconducting material [1] can indeed be greeted
as a signature that the superfluid phase of that material may
be described by the conventional BCS theory [2]. Yet, it is
also known from the analysis of Ref. [11] that it is rather the
continuum part of the spectrum of a vortex (as obtained by
solving the BdG equations) that exhausts, in practice, most
part of the contribution to physical quantities, such as the
profile of the gap parameter and the local number density.

In this paper, the analysis has been limited to considering
an s-wave order parameter, and the question may arise about
the role of the symmetry of the order parameter on our results.
In this context, we may refer to the results of Ref. [20], where
a BdG calculation for an isolated vortex with a d-wave order
parameter was reported, with the conclusion that the spatial
dependence of the quasiparticle density of states is similar to
the one with an s-wave order parameter, except possibly for
the contribution from the extended states.

A further comment is in order on the existence of bound
states in the continuum (usually referred to as BICs) that
we have found in an isolated vortex for symmetry reasons,
owing to the different values of the quantum kz between
these bound states and the continuum states in which they
are embedded. As a consequence, a slight geometric pertur-
bation of the vortex line along the z direction could turn
BIC states into decaying resonances [21]. In this context,
it is interesting to mention that BIC states have recently
gained considerably experimental and technological interest
as a generic wave phenomenon which can occur in supercavity
lasing [22].

On physical grounds, the Caroli–de Gennes–Matricon
bound states that are present in the interior of a vortex have
a similar origin as the Andreev–Saint-James states that show
up as subgap states in the context of the Josephson effect
[23–25] (for a more recent review dealing also with cuprate
superconductors, see Ref. [26]). Also for the Andreev–Saint-
James states, a systematic theoretical study of their occur-
rence has been performed throughout the BCS-BEC crossover
by solving the BdG equations at zero temperature [27].
It would then be interesting to address experimentally the
occurrence of these subgap states also along the way of
the BCS-BEC crossover, in terms of suitable spectroscopic
measurements [28].
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APPENDIX: INTERNAL STRUCTURE OF A VORTEX

As mentioned in Sec. II, the accurate numerical solution
of the BdG equations performed in Ref. [11] has evidenced
the feature that the radial profile of the gap parameter has a
(ρ−2) power-law tail for all couplings throughout the BCS-
BEC crossover (as well as for all temperatures in the su-
perfluid phase). In this Appendix we show that, in the BEC
(strong-coupling) limit of the BCS-BEC crossover, whereby
the fermionic BdG equations reduce to the bosonic Gross-
Pitaevskii (GP) equation for the composite bosons that form
in this limit [16], the (ρ−2) long-range behavior of the con-

densate wave function (r) =
√

m2aF
8π

�(r) can be determined
by simple analytic considerations. Although this result has
already been reported for a vortex filament in an almost ideal
Bose gas described at low temperature by the GP equation
[29], the reason to briefly discuss it here is that its relevance
for a vortex in a fermionic superfluid described by the BdG
equations has passed essentially unnoticed in the literature
[1,5,18].

The (time-independent) GP equation reads as [15]

[
− 1

2mB
∇2 + Vext (r) + 4πaB

mB
|(r)|2 − μB

]
(r) = 0,

(A1)

where mB, aB, and μB are the bosonic mass, scattering
length, and chemical potential, respectively. [For composite
bosons built up in terms of superfluid fermions described by
the BdG equations, mB = 2m, aB = 2aF , and μB = 2μ + ε0

where ε0 = (ma2
F )−1 is the binding energy of the composite

bosons [16].]
For an isolated vortex filament directed along the z axis,

one sets Vext (r) = 0 and writes generically the vortex solution
in cylindrical coordinates in the form (r) = √

n0 eisϕ f (ρ),
where s is an integer referred to as the topological charge
of the flow (we will set s = 1 at the end of the calculation).
Far away from the vortex axis, one expects the local bosonic
density n(r) = |(r)|2 to reach its bulk value n0, such that
μB = U0n0 where U0 = 4πaB

mB
. Introducing at this point the

bosonic healing length ξB = (2mBU0n0)−1/2 and the rescaled
radial variable η = ρ/ξB, the GP equation (A1) acquires
the form

1

η

d

dη

(
η

df (η)

dη

)
+

(
1 − s2

η2

)
f (η) − f (η)3 = 0 . (A2)

To determine the asymptotic behavior of f (η) for η � 1,
one sets

f (η) = 1 + Cηγ + · · · (A3)

with γ < 0, and obtains the constants C and γ by entering
the approximate form (A3) into Eq. (A2). At the order here
considered, one gets from Eq. (A2) the algebraic condition

−s2η−2 − 2Cηγ + C(γ 2 − s2)ηγ−2 − 3C2η2γ − C3η3γ = 0

(A4)

which to the leading order yields C = −s2/2 and γ = −2. For
s = 1 it results that f (η) tends to unity as f (η) = 1 − 1

2η2 , as
reported in Ref. [29]. Note that, physically, this long-range
behavior is dominated by the angular kinetic energy of the
vortex.
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