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Linear response theory of Josephson junction arrays in a microwave cavity
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Recent experiments on Josephson junction arrays (JJAs) in microwave cavities have opened up a new avenue
for investigating the properties of these devices while minimizing the amount of external noise coming from the
measurement apparatus itself. These experiments have already shown promise for probing many-body quantum
effects in JJAs. In this work, we develop a general theoretical description of such experiments by deriving a
quantum phase model for planar JJAs containing quantized vortices. The dynamical susceptibility of this model
is calculated for some simple circuits, and signatures of the injection of additional vortices are identified. The
effects of decoherence are considered via a Lindblad master equation.
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I. INTRODUCTION

The Josephson junction is one of the most important ele-
ments in turning quantum phenomena into usable technology.
Both in existing devices such as SQUID magnetometers [1],
the Josephson voltage standard [2,3] or superconducting fil-
ters [4], and in emerging technologies such as quantum com-
puters [5,6], quantum information processing devices [7,8],
and Josephson metamaterials [9–11], the Josephson junction
acts as a bridge between quantum mechanics at the microscale
and practical technologies at the meso- and macroscale.

The interest in Josephson junctions is not purely
technological—they are also of interest from a fundamental
perspective. Large arrays of Josephson junctions act approxi-
mately as realizations of well-studied theoretical models such
as the XY, Bose-Hubbard, and sine-Gordon models [12],
which makes them excellent systems for studying quantum
and classical phase transitions [13,14] and topological exci-
tations such as vortices and single charge solitons [15–18].
The fabrication technology for these systems is sufficiently
advanced that the parameters governing the physics of interest
can be selected with a very high degree of precision, and
as such they can serve as model systems for investigating
mesoscopic transport phenomena.

The behavior of Josephson junction devices varies greatly
as one moves through parameter space, which makes their
study challenging. However, we can exploit the so-called “self
duality” of the junction, which maps the weakly-interacting
sector to the strongly-interacting sector and thereby makes the
problem tractable [19,20]. This will serve as an important tool
in the analysis to follow.

Both fundamental investigations and technological appli-
cations of Josephson junction devices are limited by the
ubiquity of charge noise and disorder. It has been shown
that the presence of charge disorder can qualitatively change
the transport properties of Josephson junction arrays [21–23],
and mitigating charge noise is a key design criterion in the
development of a superconducting quantum computer [24,25].
If one wishes to probe a Josephson junction device experi-
mentally, one typically attaches normal-conducting leads and

performs transport experiments. While much has been learned
from this approach, it inevitably adds an additional source
of charge noise and drives the system far from equilibrium.
Experiments that avoid external leads are therefore desirable.

Motivated by the success of the 3D transmon qubit [26],
several experimental groups have begun investigating Joseph-
son junction devices by placing them inside microwave cav-
ities [27–29], as is schematically illustrated in Fig. 1. This
allows the device to be probed via spectroscopy, rather than
transport measurements. The effects of charge noise from
external sources should be minimized in such experiments,
and transport should be close to equilibrium.

Here we develop a theoretical framework for modeling
these spectroscopic experiments on Josephson junction de-
vices. We first establish methods for obtaining Hamiltonian
descriptions of the devices and then use linear response theory
to extract quantities that may be measured experimentally. We
pay particular attention to the admittance and impedance and
note that from these the single-port scattering parameter S11

can be readily obtained.
The dynamics of Josephson junction arrays is largely gov-

erned by two energy scales: the charging energy EC required
to add an additional charge to an island and the Josephson
energy EJ , associated with tunneling of charges across a
junction. Utilizing duality arguments, we will develop equiv-
alent approaches for calculating the impedance of charge-
dominated arrays with EC � EJ and for calculating the admit-
tance of flux-dominated arrays with EC � EJ . The physics of
the flux-dominated JJ arrays is dual to that of superconducting
networks consisting of coherent quantum phase slip elements
[30–33] instead of Josephson junctions, and as such the theory
developed here will also be applicable to those devices.

II. MODEL BUILDING

The passage from circuit diagram to Hamiltonian is usually
undertaken with a node- or edge-flux approach [34,35]. In
the node-flux approach, we obtain a Lagrangian description
in terms of the flux � associated with each node and then
perform a Legendre transformation to arrive at a Hamiltonian
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FIG. 1. Cartoon of a Josephson junction array inside a mi-
crowave cavity. Such setups have been used experimentally to probe
quantum behavior of Josephson junction devices via spectroscopy
measurements.

description in terms of the phase of the superconducting
condensate wave function φ = 2π�/�0 and the number of
Cooper pairs n on each node of the circuit (or, alterna-
tively, differences in phase and Cooper-pair number across
the branches of the circuit). This can readily be quantized
by imposing the canonical commutation relation [φi, n j] =
iδi j , where i and j label different nodes (or, alternatively,
different branches) of the circuit. This process will lead us
to a description in terms of discrete Cooper pairs on a lattice,
which may tunnel from site to site via Josephson junctions.

If our circuit is planar, however, there is an alternative
approach we may take based on loop charges [30]. This
approach is a Lagrangian/Hamiltonian formalization of the
mesh analysis which is commonplace in electrical engineering
[36]. We begin by obtaining a Lagrangian defined in terms
of so-called “loop charges” Q, each one defined within a
plaquette (irreducible loop) of the circuit. These loop charges
are fictitious in that they do not correspond to any physical
observable, but the difference Qi − Qj between two adjacent
loop charges corresponds to the charge polarization across the
branch common to the two loops. As with the node/branch
flux, we can get a quantum description first by taking the
Legendre transformation and then by imposing a canonical
commutation relation. In this case, we demand that [Qi,� j] =
ih̄δi j where � j is the flux threading the jth loop.

The main shortcoming of the loop-charge approach is the
restriction to planar circuits. This makes it difficult to include
a ground plane in the description. However, in 2D devices in
which the ground capacitance is negligible, the loop-charge
approach offers a convenient way to study arrays in the limit
where vortices are the relevant single-particle excitations.

The node/branch-flux approach is appropriate for small-
capacitance junctions, where charging effects dominate, i.e.,
when EC > EJ . For a generic 2D array consisting only of
nodes connected to each other via Josephson junctions with
Josephson energy EJ and capacitance CJ , and to a ground
plane via a capacitance CG, the node-flux approach ultimately
produces a quantum phase model Hamiltonian [12]

H = (2e)2

2

∑
i j

(ni − ñi )C
−1
i j (n j − ñ j ) − EJ

∑
〈i j〉

cos(φi − φ j ),

(1)

CJ

LK

Q′
ij φij

Qi Qj

LK

ESQi Qj

FIG. 2. Illustration of the mixed representation, which allows us
to incorporate Josephson junctions into a loop-charge approach, and
the Born-Oppenheimer approximation which allows us to replace the
capacitively-shunted JJ with an effective QPS element. The branch
with the Josephson junction (colored blue) is initially considered
within the node-flux representation, while all other branches are
incorporated via the loop-charge representation. The fictitious loop
charge Q′

i j will be reduced to an algebraic constraint. When fast-
moving degrees of freedom are integrated out, the Josephson junction
is approximated by an effective quantum phase slip element.

where ñi is the effective charge on the ith island due to external
gate voltages or charge disorder.

In the opposite limit, ground capacitance CG of the su-
perconducting islands is large and single-charge effects can
be neglected due to the smallness of EC = (2e)2/2Cg. Here,
charge ceases to be a good quantum number and instead
the effects of single flux quanta become important. To study
this limit, we employ the loop-charge approach to derive an
equivalent dual circuit.

A. Vortex lattice model

A limitation of the loop-based approach is the inability
to handle nonlinear inductors, which would make it seem
a poor choice for the modeling of an array of Josephson
junctions (which are close to as nonlinear an inductor as one
can find). However, we will show that by beginning in a mixed
representation and integrating out fast-moving variables, we
can transform the model from one of a lattice of nonlinear
inductors (Josephson junctions) to one of nonlinear capacitors
[e.g., coherent quantum phase slip (QPS) elements]. It is
important to note that this transformation is purely one of
description—the physical system remains a Josephson junc-
tion array.

The mixed approach is depicted in Fig. 2, where the branch
with the Josephson junction (in blue) is treated using the
branch variable φi j (thus the nonlinear part of the Joseph-
son junction is not treated in the loop-charge formalism).
Figure 2 shows a single junction represented in the capac-
itively shunted junction model. A realistic junction also in-
cludes a kinetic inductance LK [37], which we have repre-
sented here as running in series with the tunnel junction, as
well as a geometric inductance LG associated with each loop.

An additional limitation of the loop-charge approach is
the restriction to planar circuits [30]. Thus, in the following
derivation, we will not include a ground plane (which would
violate the planarity of the circuit and by extension the validity
of the loop charge approach). This is equivalent to assuming
that charging effects will be small. In a cavity setup this should
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indeed be true: As the array should be quite far from the
walls of the cavity, the capacitance between the circuit and
the ground should be negligible. If, however, we wished to
include a ground plane, this task would be more complicated.
Obtaining a circuit theory Lagrangian may still be possible via
a mixed representation, however it will introduce additional
degrees of freedom.

We will now derive a description of a 2D JJ array in
terms of loop-based degrees of freedom. Each irreducible
loop of the circuit is assigned a loop charge Q. When two
loops share a common branch, then a term appears in the
Lagrangian depending on the circuit element contained in
that branch. A capacitance C between loops 1 and 2 will
contribute a term (Q1 − Q2)2/2C, while an inductance L will
contribute L(Q̇1 − Q̇2)2/2. Furthermore, each loop with have
an associated geometric inductance LG, which contributes
LGQ̇2/2. If there is an external magnetic flux �ext, this will

provide the Lagrangian with an additional term �extQ̇ for
every irreducible loop in the circuit.

There are, however, further complications arising from the
mixed representation. In Fig. 2, we see that the JJs are to
be treated in a node-flux approach, and thus they mark the
boundary between node-flux and loop-charge representations.
Each such boundary contributes a term (Q1 − Q2)(φ̇i − φ̇ j ),
where Q1 and Q2 are the loop charges on either side of this
boundary branch and φ1 and φ2 are node fluxes at either end
of the boundary branch.

Assuming a square lattice geometry where each loop has
geometric inductance LG, each branch has inductance LK

(here assumed to be a kinetic inductance, it may also have
contributions from the Bloch inductance of the JJs) and a JJ
with Josephson energy EJ and capacitance CJ (we assume
self-capacitance to be negligible). The branch flux through a
JJ is given by φi j = φ j − φi. This gives us a Lagrangian

Llattice[Q, Q̇, φ, φ̇, Q′] =
∑
〈i, j〉

[
(Q′

i j − Qi )2

2CJ
+ LK

2
(Q̇i − Q̇ j )

2 + EJ cos

(
2π

�0
φi j

)
− (Qj − Q′

i j )φ̇i j

]
+
∑

i

[
LG

2
Q̇2

i + �extQ̇i

]
.

(2)

Since derivatives of Q′ do not appear in the Lagrangian
(the fictitious loop has no inductance), the Euler-Lagrange
relations for this variable yield only the algebraic constraint

Q′
i j = Qi − CJ φ̇i j . (3)

We can therefore write the Lagrangian

Llattice[Q, Q̇, φ, φ̇] =
∑
〈i j〉

[
1

2
Q̇iLi jQ̇ j + (Qi − Qj )φ̇i j

+ 1

2
CJ φ̇

2
i j + EJ cos

(
2π

�0
φi j

)]

+�ext

∑
i

Q̇i, (4)

where Li j is the inductance matrix,

Li j =

⎧⎪⎨
⎪⎩

ziLK + LG i = j

−LK j ∈ N (i)

0 otherwise

. (5)

Here zi is the co-ordination number of site i (zi = 4 for all
sites on a square lattice) and N (i) is the neighborhood of site
i. It will be convenient at this point to introduce the vector
notation �Q = (Q1, Q2, . . . QN )T.

We move to a Hamiltonian description by obtaining the
conjugate variables

qi j = ∂L
∂φ̇i j

= Qi − Qj + CJ φ̇i j ; �� = ∂L
∂ �̇Q

= L �̇Q + �ext�1,

(6)

where �1 is the vector of length N whose elements are all 1.
For notational convenience, we will write �ext�1 = ��ext.

�� = (�1,�2, . . . , �N )T is a vector of loop flux operators
which are conjugate to the loop charge operators.

Our Hamiltonian is then

H = 1

2
(�� − ��ext )

TL−1(�� − ��ext )

+
∑
〈i, j〉

[
(qi j − Qi + Qj )2

2CJ
− EJ cos

(
2π

�0
φi j

)]
. (7)

The terms inside the sum can be readily recognised as a sum of
single junction Hamiltonians, where Qi − Qj plays the role of
the quasicharge [38]. If we assume that the junction variables
qi j and φi j evolve quickly compared with the loop variables
Qi − Qj , we can employ a Born-Oppenheimer approximation
and diagonalize the single junction Hamiltonians with respect
to a fixed, classical value of Qi − Qj .

So long as the circuit is driven adiabatically, we can take
the lowest energy band of the single junction Hamiltonian
as an effective periodic potential felt by the loop degrees of
freedom. This approximation is identical to the quasicharge
approach that has been used in the study of single junctions
[38] and linear arrays [15,21,39].

The energy bands of a single Josephson junction are given
by the characteristic values of Mathieu’s equation [40], where
the quasicharge Qi − Qj plays the role of the Floquet ex-
ponent. In the limit that EJ/EC � 1, the lowest energy is
approximately a cosine of the quasicharge. Inserting this into
the Hamiltonian, we find

H= 1

2
(�� − ��ext )

TL−1(�� − ��ext ) − ES

∑
〈i, j〉

cos

(
Qi − Qj

2e

)
,

(8)
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where

ES = 32

(
EJEC

π

)1/2( EJ

2EC

)1/4

exp

[
−
(

8
EJ

EC

)1/2]
. (9)

At a glance, it may seem as if capacitance has disappeared
from the problem. However, the self-capacitance was ne-
glected initially as as we consider a system where the walls
of the cavity are far from the array itself. The junction capac-
itance CJ has been absorbed into ES as given in Eq. (9).

The Born-Oppenheimer approximation assumes that the
system is always in the ground state with respect to the
fast-moving degrees of freedom (Cooper pairs). Under this
assumption, the quasicharge becomes a periodic variable with
period 2e, because changing the quasicharge by ±e will
simply cause a Cooper pair to tunnel across a junction so as
to remain in the ground state. Because Q is now compact,
its canonical conjugate � becomes discrete. This can be
understood heuristically by noting that we have effectively
replaced a Josephson junction with a coherent quantum phase
slip (QPS) element [as evidenced by the cos(Q) term in
the Hamiltonian]. If this replacement is taken literally, we
now have an uninterrupted superconducting loop, so that the
flux through it becomes quantized. In two-dimensional arrays
with large EJ , these flux quanta manifest as vortices, and we
will therefore refer to them as vortices here. To make this
approximation explicit, we will draw JJs as QPS elements in
circuit diagrams which we treat under the Born-Oppenheimer
approximation. Expressed in the vortex-number basis, the
second term in the Hamiltonian becomes

−1

2
ES

∑
〈i, j〉

∑
n,m

(|ni + 1, mj − 1〉〈ni, mj | + H.c.), (10)

where ni(mj ) label the number of vortices on site i ( j).
The replacement of a Josephson junction with a QPS

element is a consequence of the so-called self duality of a
Josephson junction and an example of the electromagnetic
duality between charge and flux in electrical circuits. For any
circuit consisting of Josephson junctions, there is a dual circuit
consisting of QPS elements [31]. In particular, the model in
Eq. (8) is an exact dual to the usual quantum phase model
for a Josephson junction array expressed in terms of island
charges and fluxes, given in Eq. (1). Thus for every vortex-
based circuit described by Eq. (8), there is a dual charge-based
circuit described by Eq. (1).

We will present most of this work in the vortex language,
but there is a simple translation between vortex-based circuits
and charge-based circuits. Circuit diagrams for flux-based
circuits will be drawn with QPS elements in place of JJs, with
the understanding that they equivalently represent Josephson
junctions in the quasicharge limit discussed above.

B. Classical limit

In the limit ES → 0, tunneling is suppressed and the system
becomes a classical lattice of fluxes. Finding the ground state
is simply a matter of energy optimization. At zero external
flux this is trivial: The ground state is the state with no fluxes
at all in it.

As the external flux is increased, we will inject more
fluxes into the array. A simple calculation shows that the state

containing a single vortex at site k is lower in energy than the
empty state when the external frustration reaches

f = L−1
kk

2
∑

i L−1
ik

. (11)

For a completely homogeneous system, the exact value
of the index k is completely arbitrary. When a boundary is
included, however, the situation is different as Lkk will vary
across the array. Lkk will be lowest towards the center of the
array, so that is where the first vortex will appear.

In considering the appearance of two vortices at higher
frustrations, we need to be careful where they appear. They
will want to avoid edges of the array much like the single vor-
tex did, but they will also want to avoid each other. So we find
a transition from the state of a single vortex at site k to a state
of two vortices at sites q and q′ will occur at a frustration of

f = L−1
qq + L−1

q′q′ + 2Lqq′ − Lkk

2
∑

i

(
L−1

iq + L−1
iq′ − L−1

ik

) . (12)

Similar arguments apply as we increase the external flux, but
as we do so the particular dimensions of the array become
more and more important, and it is much more convenient
to just calculate this numerically. We eventually arrive at a
completely full array at a frustration of

f = 1 − L−1
kk

2
∑

i L−1
ik

(13)

and therefore the width of the flux injection region is

� f = 1 − L−1
kk∑

i L−1
ik

. (14)

In the experimental data of Ref. [27], we see that � f
approaches 1, meaning that the on-site inductive energy
is not much larger than the inductive interaction between
different sites. In contrast, in the limit of negligible inductive
interactions (so that the on-site interaction is dominant), � f
approaches 0, so instead of a gradual injection of one vortex
after another we get a steep, sharp injection of N vortices at
once (where N is the number of plaquettes).

III. LINEAR RESPONSE THEORY

When we probe a JJA in a microwave cavity with radiation,
we are able to measure the electromagnetic response of the
system via spectroscopy, rather than transport measurements.
To theoretically model this we assume coupling to the mi-
crowave radiation is relatively weak so that it can be treated in
linear response.

The response of the system to a time-dependent perturba-
tion is given by the susceptibility, which may be calculated via
the Kubo formula [41]

χ�(t − t ′) = −i〈[�(t ),�(t ′)]〉θ (t − t ′)

χ�(ω) = F[χ�(t )], (15)

where θ (t ) is the Heaviside step function, which enforces
causality, and F is a Fourier transform. At sufficiently low
temperatures, the average 〈. . . 〉 will simply be the ground state
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expectation value. The time evolution of the � operators is
calculated in the Heisenberg picture �(t ) = e−iHt�eiHt .

The charge susceptibility χQ is given by a formula exactly
analogous to χ�. The ultimate response functions of interest
are the electrical impedance Z and the admittance Y . The
impedance is defined by

〈V (t )〉 = 〈V 〉0

∫ t

−∞
Z (t − t ′)I (t )dt ′

Z (ω) = V (ω)

I (ω)
(16)

and the admittance is analogously defined through

I (t ) =
∫ t

−∞
Y (t − t ′)V (t )dt ′

Y (ω) = I (ω)

V (ω)
(17)

so that, trivially, Z = Y −1.
Using the electromotive force formula 〈V (t )〉 =

−d〈�〉/dt , we see that

〈V (t )〉 =
∫ t

−∞

dχ�(t − t ′)
dt

I (t ′)dt ′

Z (t ) = dχ�

dt
(18)

Z (ω) = iωχ�(ω).

Similar reasoning, using the definition of current as I =
dQ/dt gives us

Y (ω) = iωχQ(ω). (19)

These each give us the impedance/admittance of a single
site in our system. In the absence of dissipation, the zero-
temperature response function is given by

χA(ω) =
∑

n

|〈ψn|A|ψ0〉|22πδ(ω − ωn0), (20)

where ωn0 is the gap between the energy En of the state |ψn〉
and the ground state energy E0.

When considering an open system which may be in a
mixed state, this formula must be modified slightly, as the
correlator 〈A(t )A(t ′)〉 is now a weighted average over several
states rather than a ground state expectation value. The steady
state of the system can be described by a density matrix
ρ = ∑

j w j |ψ j〉〈ψ j |, where w j are the statistical weights of
the mixture. In this case the nondissipative response becomes

χA(ω) =
∑
n,m

wm|〈ψn|A|ψm〉|22πδ(ω − ωnm), (21)

where m runs over the states appearing in the steady state ρ.

IV. TWO-SITE SYSTEM

We initially consider a system consisting of only two loops
connected by a tunnel junction. There are two different sys-
tems we can discuss here: the hard-boundary system depicted
in Fig. 3 and the junction-boundary system depicted in Fig. 4,
which has tunnel junctions on the exterior so that particles can
enter and exit. Each of these circuits has a dual which obeys

LGLG

LC

ES

(a)

(b)

FIG. 3. (a) A two-loop circuit with hard boundaries, so that
vortices cannot enter or exit the circuit. (b) The dynamical response
|χn(ω)| of the circuit depicted in (a). The response consists only
of sharp peaks at the resonance frequencies given in Eq. (24). The
susceptibility has been normalized at each value of f to make peaks
equally visible across the whole spectrum, so that the color axis is
arbitrary and does not represent the actual peak height.

the same dynamical equations, as is discussed in Appendix D.
For clarity, we will initially restrict our attention to flux-based
circuits, but the notion and much of the discussion will be
kept general so as to apply equally well to their charge-based
duals, each of which has a JJ form and an equivalent dual
form in terms of QPS elements. The charge-based circuit,
Fig. 4(a), is known as the double-island Cooper-pair box or
superconducting SET [42–44].

We can describe these circuits in a charge/vortex agnostic
language by defining n̂ j as the number of particles, be they
vortices or charges, on site j. b̂ is the operator that reduces the
number of particles by one, and b̂† increases the number of
particles by one. (Note: these are not identical to the usual
bosonic creation/annihilation operators, since n̂ may have
negative eigenvalues and thus cannot be written as n̂ = b̂†b̂.
This technical point can be circumvented, but here we shall
simply ignore it as it will not affect the physics of this simple
system.)

A. Hard boundary

We can write a charge/vortex-agnostic Hamiltonian

H = 1

2
(n̂1 − f , n̂2 − f )

(
β 1

1 β

)(
n̂1 − f

n̂2 − f

)

− t

2
(b̂†

1b̂2 + b̂1b̂†
2), (22)

where we have written all energies in units where the off-
diagonal inductive interaction strength is 1. t corresponds to
the tunneling amplitude (either ES or EJ ), β is the energy cost
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(a)

(b)

FIG. 4. (a) A two-loop circuit with with junction boundaries,
such that particle number is no longer conserved. (b) The dynamical
response |χn(ω)| of the two-loop circuit depicted in (a). Since particle
number is no longer conserved, the zero-particle and one-particle
ground states are adiabatically connected. Energy levels curve as they
approach the crossover, and additional resonant frequencies appear
when compared with the response in Fig. 3.

of adding a single particle to a site (i.e., the diagonal terms of
the inductance or capacitance matrix), and f is a generalized
frustration. Note that, since the diagonal elements of the
inverse inductance/capacitance matrix are always greater than
the off-diagonal elements, β � 1.

If t � 1, we can restrict ourself to particle numbers of
n = 0 and n = ±1. With this restriction, the Hamiltonian is
reduced to a 9 × 9 matrix which may be diagonalized exactly.
The eigenstates and eigenvalues are given explicitly in Ap-
pendix A. Using the labeling system given in that Appendix,
the ground at zero frustration is |ψ4〉.

The ground state changes character at a frustration of

| fc| = 1 − t +
√

(β − 1)2 + 2t2

2(β + 1)
. (23)

For f > fc, the ground state is |ψ8〉, and for f < − fc, the
ground state is |ψ6〉.

In the absence of dissipation, the zero-temperature linear
response of this circuit is very simple. Equation (20) can be
calculated by noting that the matrix element will only be
nonzero for states with the same number of excitations as the
ground state. In each of the three regimes (| f | < fc, f < − fc,
and f > fc) there is only one nonzero term. We find that the
reactive response of the system consists of a sharp peak at the
resonance frequency χ (ω) ∝ δ(ω − ωr ),

ωr =

⎧⎪⎨
⎪⎩

ω7,6 = t, f < − fc

ω1,4 = 1
2 [β − 1 +

√
(β − 1)2 + 2t2], | f | < fc

ω9,8 = t, f > fc.

(24)

Note that within each region the response it completely inde-
pendent of f .

The resulting response spectrum, calculated using Eq. (15),
can be seen in Fig. 3. Except where stated otherwise, all
calculations are performed with ES = 1 GHz, LG = 10−3 nH,
and LK = 10−2 nH (or, equivalently, for charge-based circuits,
EJ = 1 GHz, CG = 10−3 nF, and CJ = 10−2 nF). The height
of the peaks in χ (ω) differ significantly, so a normalization
has been applied to make the features easier to see.1 For
this reason, the color axis is arbitrary, and this spectrum only
gives information about locations of peaks and their relative
amplitudes at a given value of f . The same normalization is
applied to all other response spectra presented in this work.

B. Junction boundary

The problem becomes more interesting if we place addi-
tional tunnel junctions in the system, as depicted in Fig. 4.
These add a term to our Hamiltonian

V̂ = − tedge

2
(b̂1 + b̂†

1 + b̂2 + b̂†
2) (25)

which breaks conservation of particle number. States can now
exist in superpositions of different numbers of particles, and
rather than having the ground state expectation value 〈N〉 =∑

i〈ni〉 change in sharp jumps at a particular value of f ,
we have a more gradual crossover to states of different total
particle number.

With the edges open, an exact analytic solution is no longer
accessible. However, we can still numerically calculate the
response of the system, obtaining the spectrum presented in
Fig. 4. In that calculation, we take tedge = t .

The smooth crossover region can be clearly seen from
Fig. 4. In this region, the average number of particles in the
ground state is not an integer, as the ground state is not an
eigenstate of the total particle number operator. The width
of this region can be estimated from the eigenspectrum of
the solvable circuit with closed edges. We assume that the
crossover in the open circuit begins when the ground state and
first excited state of the closed system have a different number
of particles, as this is when states of different particle number
in the open circuit will begin to hybridize.

This crossover begins when λ1 = λ6, at

f = 1 − 1
2 (β + t )

1 + β
(26)

and ends when λ4 = λ7, at

f = t + 1 +
√

(β − 1)2 + 2t2

2(β + 1)
, (27)

giving the crossover a width of

� f = β − 2 + 2t +
√

(β − 1)2 + 2t2

2(β + 1)
(28)

1The normalization applied consists of dividing each value of
|χ (ω, f )| by the maximum value of χ (ω) for that particular value
of f , so that the maximum height of the peaks is always unity as f
tuned. Without these features, peaks at some values of f are much
larger than others.
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FIG. 5. Energy gaps for a two-site circuit with closed boundary
(gray) and open boundary (dashed green). Vertical blue lines illus-
trate estimates for width of crossover region given by Eqs. (26) and
(27). The color of the thick green line indicates the magnitude of the
matrix element |〈ψm|n̂|ψn〉|, which gives the magnitude of the linear
response in accordance with Eq. (20).

as illustrated in Fig. 5. [Note that this � f is the width of a
single transition, in contrast to Eq. (14) which is the range of
frustration over which particle vortices enter the array.] This
should be a good approximation so long as all tunneling ener-
gies remain small compared with interaction energies, t � β.

We can also calculate the shift in energy levels perturba-
tively, as the edge tunnelling is gradually increased from zero,
so as to see how the flat bands with sudden transitions for
the closed case map smoothly onto the curved bands with
gradual crossovers seen in the open case. Shifts in the energy
levels are calculated to second order, and the resulting gaps are
plotted along with the corresponding numerical calculations
in Fig. 6. The change in energy is minimal at most values of
the frustration, so we tune the frustration to sit in the middle of
the transition where the number of particles in the ground state
changes [the precise value chosen is given by the average of
Eqs. (26) and (27)]. A full derivation of these results is given
in the Appendix.

As we move to larger systems, analytic calculations be-
come impractical even in the closed case. However, some
features from the two-site system will remain generally true.
Systems with no tunnel junctions on the exterior edges will
always host states of well-defined particle number and give
rise to response functions which are independent of exter-
nal frustration except for sharp sudden transitions when the
ground-state particle number changes. Adding exterior tunnel
junctions will mean that particle number is no longer well
defined in general and will cause all energy gaps and matrix
elements—and by extension, the response functions—to be
frustration dependant. Sharp, sudden transitions will give way
to smooth, continuous crossovers.

V. INCLUDING DISSIPATION

Despite vast advancements in fabrication techniques over
the past decades, dissipation is still present in any experiment

0 0.2 0.4 0.6 0.8 10

5

10

15

tedge/t

δE
(G

H
z)

FIG. 6. Energy gaps of a two-site system as the junctions on the
boundary are turned on with an external frustration of f = 0.24, in
the center of the crossover region described by Eqs. (26) and (27).
Thick green lines indicate the matrix element, as in Fig. 5. Black
dotted lines give the results of second-order perturbation theory,
given in the Appendix. It can be seen that some levels acquire a finite
matrix element as tunneling through the boundary increases. This
occurs as the total number of particles is no longer conserved, and
eigenstates of the Hamiltonian consist of superpositions of states of
different particle number.

on superconducting networks. This offers something of a
paradox—superconductors do not have any intrinsic resis-
tance, yet resistance is frequently observed in experiment. The
precise origin of dissipation in these systems is contentious.
It persists at temperatures T � �/KB, voltages V � �/2e,
and currents far below a junction’s critical current, so that
quasiparticle effects should be negligible. Such dissipation
is also observed in circuits fabricated from low transparency
junctions with negligible subgap leakage [45]. Nevertheless,
the dissipation in arrays of junctions is there [28,45–49]. To
tackle this problem we will need to consider our circuits to be
open quantum systems with some dephasing.

There have been many different approaches to generalizing
the Kubo formula to open quantum systems [50–52]. We shall
adopt the method presented in Ref. [53], which is based upon
considering first the Liouvillian of the open quantum system
L0 and then treating the driving force f (t ) as a perturbation
f (t )L1. To simplify things further, we will assume L1 is of
Hamiltonian type (i.e., nondissipative). This allows us to write
the Kubo formula as

χφ (t ) = iθ (t )Tr{[φ(t ), ρ̃]φ}, (29)

where ρ̃ is the steady-state density matrix and the time
evolution φ(t ) is generated by L0. So the calculation of the
response for an open system involves first calculating the
steady state density matrix ρ̃ defined by L0ρ̃ = 0 and then
calculating the time evolution of the operator φ under the
action of L0 (compare to the closed-system case, where we
used the ground-state density matrix, and the time evolution
of φ was generated by the Hamiltonian).

134502-7



SAMUEL A. WILKINSON AND JARED H. COLE PHYSICAL REVIEW B 99, 134502 (2019)

Due to the present lack of a complete microscopic model
for dissipation in superconducting devices, we treat dissipa-
tion phenomenologically. In the present work we will consider
dephasing due to charge and flux noise, however we note other
channels of decoherence and loss will also play an important
role. To that end, our Liouvillian L0 is given by a Lindblad
equation [54,55]

L0 = − i

h̄
[HS, ρ] +

∑
k

�k

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

, (30)

where Lk are the Lindblad operators Q and � for each site
in the system, �k are dephasing rates, and ρ(t ) is the density
matrix.

We will need to make some assumptions about the coupling
of the environment in order to select appropriate Lindblad op-
erators. Important sources of noise in superconducting circuits
are charge and flux fluctuations in the environment [56–59],
so it is natural to assign L1 = ∑

j Q̂ j/2e, L2 = ∑
j �̂ j/�0,

where by summing over all sites we are implicitly assuming
that the coupling is homogeneous across the device. Another
process to consider would be dissipative quantum tunneling,
which we can include via a Lindblad operator

L3 =
∑

n,m,〈i, j〉
[|ni, mj〉〈ni + 1, mj − 1|

+ |ni, mj〉〈ni − 1, mj + 1|]. (31)

In a circuit with junction boundaries, boundary terms which
change the total number of particles in the system may be
included in the definition of L3.

Since we have no microscopic model for the decoherence
channels, we select our �k phenomenologically. A reasonable
estimate for the minimum dephasing present would come
from the inverse dephasing time 1/T2 of circuits discussed in
the literature. Transmon qubits in 3D cavities (similar to the
cavity systems we consider in the present work) can routinely
achieve T2 ∼ 20 μs [26], which would give us a dephasing
rate of the order of 104 Hz. In practice, most many-site devices
will fare far worse than the 3D transmon qubit, so we will take
104 Hz as a lower bound and examine the response spectrum
as the dephasing rate is increased beyond that.

To solve the Lindblad equation numerically for QPS sys-
tems, we will need to represent the charge operator in the basis
of flux-number operators. This is given by

(Q̂ j )nm =
{

e
π

(
1

2π

)N i(−1)�n−�m

�n−�m
δ�̃n,�̃m

, n = m
0, n = m,

(32)

where N is the number of sites (here we consider N = 2), �n

is the total number of flux quanta in state n, and �̃n is a vector
of the number of flux quanta on every site except j in state n.
A derivation of this result is given in Appendix B.

We present here numerical calculations of the linear dy-
namical susceptibility χn(ω) as a function of the external
frustration f for a two-site system with both hard and junction
boundaries presented in Fig. 7, where we have chosen �1 =
10−4 GHz, �2 = 10−2 GHz, and �3 = 0, corresponding to
charge noise, flux noise, and dissipative tunneling, respec-
tively (note that by setting �3 = 0 we are neglecting dissi-
pative tunneling and assuming on-site noise to be dominant

FIG. 7. The dynamical response χn(ω) for a two-site system
with closed (top) or open (bottom) edges with dephasing, calculated
using Eq. (29), with dynamics given by the Lindblad equation (30).
Compared with the (pure) ground state calculations in Figs. 3 and 4,
respectively, additional lines appear in the spectrum, corresponding
to energy gaps relative to other states appearing in the steady state
mixture. Some of these additional states are listed in Fig. 8.

dephasing pathways). To illustrate more explicitly the effect
of dephasing on the system, we have also calculated the linear
response for a fixed frustration f = 0 as a function of the
dephasing rate �1, while other rates have been fixed to zero,
Fig. 8. The effect of this dephasing is to drive the system into
a mixed state, ρM . The response function for the system in this
state is given by Eq. (21). The presence of additional states in
the mixture leads to the presence of additional peaks in the
response spectrum, while the process of dephasing itself leads
to a broadening of the peaks.

In addition to dephasing, a realistic system may also exhibit
relaxation. We have neglected such effects here, as the precise
rates depend on both the system eigenvalues and the func-
tional form of the noise spectrum for each noise source. More
sophisticated techniques, such as the Bloch-Redfield master
equation [60–62] may be required for such an undertaking.

VI. (3 × 2)-SITE SYSTEM

In a full quantum treatment with exact diagonalization, we
are limited to relatively small systems due to the prohibitively
large Hilbert space of the problem. Even if we are able to
restrict ourselves to a maximum of ±1 excitation per site, the
size of the Hilbert space scales exponentially with the number
of sites.
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FIG. 8. The linear dynamical response χn(ω) for f = 0 as the
charge dephasing rate �1 is adjusted while all other dephasing rates
are fixed at 0. The peaks A, B1, B2, and C labeled in (a) and
(b) correspond to transitions between states listed in (c) (using the
notation introduced in Appendix A). At zero dephasing, the only
peak present is C, corresponding to the transition between the ground
and first excited state (see Fig. 5). Dephasing drives the system from
the ground state into a mixed state, so that other transitions can con-
tribute. As the dephasing rate is increased, the peaks broaden until,
at strong dephasing, important features are washed out completely.

We now consider a 2 × 3 system with circuit diagram
depicted in Fig. (9). The response spectrum for this circuit
is calculated numerically, with the same parameters as the

2 × 1 calculations. Despite the increase in complexity and
computational cost in larger systems, we see many of the
features present in the spectra resemble features present in the
more simple two-site system.

In the spectra for this circuit we see four distinct regions
as we vary f , corresponding to a total of 0, 1, 2, or 3
particles in the ground state. For hard boundary conditions,
tuning f causes sharp transitions between regions of different
ground-state particle number. However, when the boundaries
contain tunnel junctions the total number of particles in the
system is no longer a conserved quantity, and we see smooth,
gradual transitions between the different regions. Within these
transition regions, the ground state consists of a superposition
of different particle numbers.

The spectra presented in Figs. 9(b) and 9(c) can be un-
derstood as arising from Eq. (20). The frequency of each of
the lines is given by the gap between the ground and excited
energy levels, and the height or magnitude of the response is
given by the matrix element |〈ψi|n̂|ψ j〉|2. In Fig. 9(c), we plot
all of the gaps above ground in the junction-boundary system
as dashed green lines. The thick, solid lines appearing in (c)
also follow the gaps, but with a color weighted by the matrix
element, so that this curve gives the same response spectrum
as (d).

We can examine the way in which the sharp transitions in
the hard-boundary system map onto the smooth transitions in
the junction-boundary system by looking at how the energy
levels shift and the boundary tunnel amplitude is gradually
turned on from zero. The result is plotted in Fig. 10, where

(a)

(c)
0 0.1 0.2 0.3 0.4 0.50

5

10

15

f

δE
(G

H
z)

(b)

(d)

FIG. 9. (a) Circuit diagrams for a 2 × 3 loop flux-based circuit. The relevant degrees of freedom for this circuit are vortices in the loops,
which may tunnel across the QPS elements on the branches. In the top circuit, total vortex number is conserved, whereas in the bottom circuit
vortices may enter and exit the array by tunneling across the outer edges. (b),(d) The dynamical response |χn(ω)| for the 2 × 3 grids shown in
Fig. 9 with hard (top) and junction (bottom) boundaries. (c) The energy gaps about the ground state energy plotted as a function of external flux
(dotted lines). Color of thick, solid lines corresponds to the amplitude squared of the matrix element for the vortex number operator between
that state and the ground state, |〈ψn|�̂1|ψ0〉|2, c.f. Eq. (20).
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FIG. 10. Energy gaps above ground Ei − E0 as a function of
the boundary tunneling tedge. The darkness of the solid green lines
indicates the value of the matrix element |〈ψi|n̂|ψ0〉|2. These lines
are not visible where the matrix element vanishes.

gaps in energy levels Ei − E0 are represented as dashed green
lines, and the corresponding matrix elements |〈ψi|n̂|ψ0〉|2 are
represented by the darkness of the thick solid green lines, in
a manner analogous to the two-site calculation presented in
Fig. 6.

The 2 × 3 array differs from the 1 × 2 in that, for each
value of f , there are many excited states with the same
number of particles as the ground state, and therefore many
lines in the response spectrum. This arises simply from
having a greater number of different ways to arrange N
particles on six sites than on two. As the number of sites
increases, more and more lines will appear in the spectrum,
and the gap between them will decrease. As systems approach
a large number of sites, these distinct spectral lines will merge
together in a manner analogous to the formation of energy
bands in solids. Indeed, in experiments on 2D Josephson
junction arrays consisting of 90 loops, the measured response
spectrum forms a single band [27].

VII. CONCLUSION

Spectroscopy experiments in microwave cavities provide
a new and fruitful avenue for studying the dynamics of
superconducting networks while minimizing the additional
noise due to the measurement apparatus itself. Here we have
explored linear response theory as a theoretical tool to connect
circuit theoretic formulations of superconducting networks to
microwave spectroscopy experiments.

Characteristic features of these spectra as the external
frustration f is varied correspond to changes in the number
of particles in the ground state. This can be compared with
a similar situation with a much larger Josephson junction
array system, where features in the experimentally obtained
response spectrum corresponded to changes in the total num-
ber of vortices in the array [27].

Decoherence and dissipation were given only a cursory
treatment here, and further work will investigate this in more
detail. In particular, the present work focused only on de-
phasing via a Lindblad formalism and only for the simple
case of a two-site system. An obvious next step would be a

CG CG

EJ

CJ(a)

(b)

FIG. 11. Active duals of the circuits in Figs. 3 and 4, respectively,
obtained via a duality transformation. These circuits exhibit the same
dynamics as their duals but with different variables.

more thorough and sophisticated treatment of decoherence, in
particular relaxation processes.

We were able to understand the key features of the response
spectrum in terms of the spectral representation Eq. (20).
Analytic results were derived for 2 × 1 circuits, and many of
the features exhibited by these simple cases have counterparts
in the larger 2 × 3 circuits which we studied numerically.

We focused here on small systems which were amenable
to solution via exact diagonalization. This gives us insight
into the effects of the boundary of the system and allows us
to identify signatures of changes in the number of vortices
in the ground state of the system. These results will also
be important for benchmarking the approximation schemes
which will be necessary for treating larger systems.
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APPENDIX A: EIGENSTATES AND
EIGENVALUES OF EQ. (22)

The Hamiltonian in Eq. (22) can be exactly diagonalized,
and we find that the eigenstates are

|ψ1〉 = 1√
2

(|−1, 1〉 − |1,−1〉)

|ψ2〉 = |−1,−1〉
|ψ3〉 = |1, 1〉
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|ψ4,5〉 = N4,5[|−1, 1〉 + |1,−1〉

+ β − 1 ±
√

(1 − β )2 + 2t2

t
|0, 0〉

]

|ψ6,7〉 = 1√
2

(|0,−1〉 ± |−1, 0〉)

|ψ8,9〉 = 1√
2

(|0, 1〉 ± |1, 0〉) (A1)

with eigenvalues

λ1 = (β − 1) + (β + 1) f 2

λ2,3 = (β + 1)( f ∓ 1)2

λ4,5 = 1
2 (β − 1) + (β + 1) f 2 ∓ 1

2

√
(β − 1)2 + 2t2

λ6,7 = f ( f − 1)(β + 1) + 1
2 (β ± t )

λ8,9 = f ( f + 1)(β + 1) + 1
2 (β ± t ), (A2)

where N4,5 are normalization constants.

APPENDIX B: FLUX-BASIS REPRESENTATION OF
CHARGE OPERATOR

For numerical calculations with our vortex-lattice quantum
phase model, it is necessary to represent charge Q in the
vortex-number basis. To do this we note that within the qua-
sicharge approximation, eigenvalues of Q are restricted to the
interval (−e,+e) (otherwise energy can be lowered by tunnel-
ing of a single Cooper pair—remember, the quasicharge ap-
proximation requires that the microscopic degrees of freedom
are in their ground states at any point in time). Thus charge
acts like a phase variable, while flux—which we are so used
to thinking of a phase—acts like a particle number (in units of
e = h̄ = 1, we have �̂ = π N̂ where N̂ is the vortex-number
operator). To express the charge in terms of a more familiar
phase operator (with period 2π instead of 2e) we have Q̂ =
(e/π )Q̂′. The relationship between charge and flux in this
approximation is just like other phase-number relationships
found throughout quantum mechanics. In particular, we have

〈�|Q〉 = 1√
2π

e−i�Q/h̄. (B1)

We can therefore express the matrix elements of the charge operator in the vortex-number basis as(
π

e
Q̂ j

)
nm

= 〈��n|Q̂′
j |��m〉

=
∫ +π

−π

d �Q′〈��n| �Q′〉〈 �Q′|Q̂′
j |��m〉

=
(

1

2π

)N ∫ +π

−π

d �Q′Q′
je

i(��m−��n )· �Q

=
(

1

2π

)N[∫ +π

−π

dQ′
jQ

′
je

i(�m
j −�n

j )Q′
j

][∫ +π

−π

dQ̃′ei(�̃m−�̃n )·Q̃′
]

=
(

1

2π

)N
[

2i sin
[
π
(
�m

j − �n
j

)]− π
(
�m

j − �n
j

)
cos

[
π
(
�m

j − �n
j

)]
(
�m

j − �n
j

)2

]
δ�̃n,�̃m

. (B2)

Here we have introduced the notation that �Q (��) is the vector
of the charge (flux) operator for each site in the lattice, and
Q̃ (�̃) is the vector of charge (flux) operators for every site
except j. In integrating over Q̃ we have used the fact that
�m − �n is always integer, and thus the integral is zero
unless �̃m = �̃n (note that this does not necessarily imply that
�n

j = �m
j ). Defining ϕnm ≡ �m

j − �n
j , we can use the fact that

vortex numbers are always integer to simplify this further:

(
π

e
Q̂ j

)
nm

=
(

1

2π

)N i(−1)ϕnm

ϕnm
δ�̃n,�̃m

(B3)

except when ϕnm = 0, in which case the integral over Q′
j is

zero, so all diagonal elements of Q′
nm are zero.

APPENDIX C: SECOND-ORDER PERTURBATION
THEORY

We wish to find the leading-order corrections to the
eigenvalues in Eq. (A2) due to perturbations in the form

of Eq. (25),

λn = λ(0)
n + λ(1)

n + λ(2)
n + O

(
t3
edge

)
, (C1)

where λ(0)
n are the exact hard-boundary eigenvalues given by

Eq. (A2). We shall proceed using the standard techniques of
time-independent perturbation theory (see, for example, [63]).

The first order term vanishes, because the matrix element
〈ψn|V̂ |ψm〉 is zero when |ψn〉 and |ψm〉 are superpositions of
states with a fixed number of particles N . However, the eigen-
states do shift at first order, attaining contributions from states
of different numbers of particles. This means that the matrix
element 〈ψ (0)

n |V̂ |ψ (1)
m 〉 may be nonzero, and the energy levels

will shift at second order. When levels are nondegenerate, we
can calculate the change in energy via the standard formula
from second-order perturbation theory [63]

λ(2)
n =

∑
m =n

〈
ψ (0)

m

∣∣V̂ ∣∣ψ (0)
n

〉
λ

(0)
n − λ

(0)
m

. (C2)
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Using the eigenstates and eigenvalues given by Eqs. (A1) and
(A2), we obtain

λ
(2)
1 = t2

edge

[
1

λ0
1 − λ0

6

+ 1

λ0
1 − λ0

8

]

λ
(2)
2 = 2t2

edge

λ0
2 − λ0

6

λ
(2)
3 = 2t2

edge

λ
(0)
3 − λ

(0)
8

λ
(2)
4 = 2t2

edge

⎛
⎝ 1 + A4√

2 + A2
4

⎞
⎠

2[
1

λ
(0)
4 − λ

(0)
6

+ 1

λ
(0)
4 − λ

(0)
8

]

λ
(2)
5 = 2t2

edge

⎛
⎝ 1 + A5√

2 + A2
5

⎞
⎠

2[
1

λ
(0)
5 − λ

(0)
6

+ 1

λ
(0)
5 − λ

(0)
8

]

λ
(2)
6 = t2

edge

⎡
⎣ 1

λ
(0)
6 − λ

(0)
2

+
⎛
⎝ 1 + A4√

2 + A2
4

⎞
⎠

2

1

λ
(0)
6 − λ

(0)
4

+
⎛
⎝ 1 + A5√

2 + A2
5

⎞
⎠

2

1

λ
(0)
6 − λ

(0)
5

⎤
⎦

λ
(2)
7 = 2t2

λ
(0)
7 − λ

(0)
1

λ
(2)
8 = t2

edge

⎡
⎣ 1

λ
(0)
8 − λ

(0)
3

+
⎛
⎝ 1 + A4√

2 + A2
4

⎞
⎠

2

1

λ
(0)
8 − λ

(0)
4

+
⎛
⎝ 1 + A5√

2 + A2
5

⎞
⎠

2

1

λ
(0)
8 − λ

(0)
5

⎤
⎦

λ
(2)
9 = 2t2

λ
(0)
9 − λ

(0)
1

, (C3)

where

A4,5 = β − 1 ±
√

(1 − β )2 + 2t2

t
. (C4)

APPENDIX D: DUAL CIRCUITS

In this paper we have discussed JJAs in a limit where each
JJ can be approximated by a QPS element. This is known
as a passive duality—the physical circuit is not changed,
but one element is approximated by its electromagnetic dual.
There also exists an active duality—a different physical circuit
which obeys the same dynamical laws. This kind of duality
transformation is common practice in electrical engineering
[36,64] and proceeds according to a set of well-established
rules. For a planar circuit described by a graph G, the dual
circuit is simply described by the dual graph G∗ [65], and the
circuit elements transform according to L ←→ C, V ←→ I .

Figure 11 show the active duals of the circuits in Figs. 3,
4, and 10. Kinetic inductances LK are replaced with junction
capacitances CJ , geometric inductances LG are replaced with
ground capacitances CG, and the effective QPS elements ES

are replaced with JJs. The response spectra for these circuits
are the same as those given in Figs. 3, 4, and 9, except
that these are now charge susceptibilities χQ, rather than flux
susceptibilities χ�, and the circuit parameters are now EJ = 1
GHz, CG = 10−3 nF, and CJ = 10−2 nF.
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