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Magnetic multipoles in a ruthenate Ca3Ru2O7
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Compulsory Dirac multipoles in the bilayer perovskite Ca3Ru2O7 are absent in published analyses of experi-
mental data. In a first step at correcting knowledge of the magnetic structure, we have analyzed existing Bragg
diffraction patterns gathered on samples held well below the Néel temperature at which A-type antiferromagnetic
order of axial dipoles spontaneously develops. Patterns were gathered with neutrons, and linearly polarized x
rays tuned in energy to a ruthenium atomic resonance. Neutron diffraction data contain solid evidence of Dirac
dipoles (anapoles or toroidal moments). No such conclusion is reached with existing x-ray diffraction data,
which instead is ambiguous on the question. To address this shortcoming by future experiments, we calculated
additional diffraction patterns. Chiral order of Dirac multipoles is allowed by magnetic space-group PCna21,
and it can be exposed in Bragg diffraction using circularly polarized x rays. Likewise, a similar experiment can
expose a chiral order of axial dipoles. A magnetic field applied parallel to the b axis creates a ferrimagnetic
structure in which bulk magnetization arises from field-induced nonequivalent Ru sites (magnetic space-group
Pm′c′21).

DOI: 10.1103/PhysRevB.99.134444

I. INTRODUCTION

The laminar perovskite Ca3Ru2O7 contains one ruthenium-
oxygen bilayer per formula unit and crystallizes in an or-
thorhombic space group with a unit cell containing four
formula units [1,2]. While the ruthenate is structurally similar
to a bilayer cuprate, e.g., YBCO (YBa2Cu3O6+x ), not all the
strange physics of underdoped cuprates is present [3–6]. It is
a low carrier-concentration material on the verge of a metal-
insulator transition, with a colossal magnetoresistance [7,8].
At a Néel temperature TN ≈ 56 K the material is metallic.
On reaching 48 K the resistivity along the c axis abruptly
increases and continues to increase with cooling. Resistivity in
the a-b plane is not changed so dramatically and becomes only
weakly dependent on temperature below 48 K, with evidence
of a quasi-two-dimensional metallic ground state below 30 K
[2,9].

Lattice constants of Ca3Ru2O7 jump at the first-order
metal-to-nonmetal phase transition at 48 K without a change
of the polar space-group symmetry Bb21m illustrated in Fig. 1
[1]. Magnetic reflections present below 48 K in neutron and
resonant x-ray Bragg diffraction patterns are consistent with
A-type antiferromagnetic order of axial dipoles and a propa-
gation vector along the c axis [1,10,11]. The RuO2 bilayers
depicted in Fig. 1 (after Ref. [1]) are ferromagnetically or-
dered in the a-b plane and are antiferromagnetically stacked
normal to the plane.

Dirac multipoles are a compulsory component of a mag-
netic structure when a center of inversion symmetry is absent
in sites occupied by magnetic ions. To date, these multipoles
have been omitted from all experimental studies of Ca3Ru2O7,
e.g., Zhu et al. and Sokolov et al. [12,13]. We address this
shortcoming with an analysis of published neutron and reso-
nant x-ray Bragg diffraction patterns [10,11], taking account
of Dirac multipoles and axial (parity-even) multipoles [14].

For Dirac dipoles, also called anapoles or toroidal dipoles, a
persuasive case can be extracted from a neutron diffraction
pattern at hand [10]. Resonant x-ray Bragg diffraction data
are inconclusive, however.

By way of a potential remedy, we propose additional
experiments in Sec. V that can vastly improve the knowledge
of multipoles in the ruthenate in question. Specifically, we
predict that a handed setting will reveal chiral order among the
primary and secondary axial dipoles. Likewise, chiral order
exists within Dirac multipoles of even rank, e.g., the monopole
and quadrupoles. Circular polarization in the primary x-ray
beam, and collinear Bragg and propagation vectors, furnishes
a suitable handed setting. A magnetic field applied parallel
to the b axis creates a ferrimagnetic structure in which bulk
magnetization arises from field-induced nonequivalent Ru
sites. Chiral order does not survive the field.

The magnetic structure of Ca3Ru2O7 precludes a direct
observation of Dirac multipoles by neutron diffraction ac-
complished for SmAl2 that presents a diamond-type structure
[15]. Set against controversial evidence for Dirac multipoles
in the pseudogap phase of YBCO—the very existence of
magnetic Bragg spots in neutron diffraction patterns is an
ongoing debate [16–19]—our evidence in favor of anapoles
in Ca3Ru2O7 is compelling.

II. CRYSTAL AND MAGNETIC STRUCTURES

The parent structure of Ca3Ru2O7 is orthorhombic Bb21m
(No. 36, polar crystal-class mm2 (C2v), cell lengths a ≈
5.3677 Å, b ≈ 5.5356 Å, c ≈ 19.5219 Å at 8 K [1]) that is a
B-face centered cell with glide symmetry along the b axis,
and the structure is more distorted than the companion double-
layer ruthenate Sr3Ru2O7 (Bbcb, No. 68). Below 48 K, ruthe-
nium axial dipoles align principally along the b axis derived
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FIG. 1. Crystal and magnetic structures of Ca3Ru2O7 (cell
lengths a ≈ 5.3677 Å, b ≈ 5.5356 Å, c ≈ 19.5219 Å at 8 K).
Anapoles parallel to the crystal a axis are depicted together with
principal axial dipoles parallel to the crystal b axis. Axes (ξ, η, ζ ) ≡
(a, c, −b) for the magnetic structure PCna21 are displayed.

from magnetic space-group PCna21 (No. 33.154 [20], crystal
class mm21′). Crystal and magnetic structures are displayed in
Fig. 1. Ruthenium ions occupy sites 8b with no symmetry and
coordinates (1/4, 0.4008, 1/4). Note that general coordinates
(x, y, z) are not fixed by symmetry in a polar crystal, and our
use of x = z = 1/4 is an approximation, albeit an excellent
approximation [1]. A basis (1, 0, 0), (0, 0, 1), (0, −1, 0)
with respect to the Bb21m paramagnetic space group defines
orthonormal principal axes (ξ, η, ζ ), with Miller indices
h = Ho, k = Lo, l = −Ko. Magnetic Bragg spots are indexed
by Miller indices (h + k) = (Ho + Lo) odd, a consequence
of antitranslation in the space group, and (Ho + Ko) even.
Looking ahead, Appendix B is devoted to the influence of a
magnetic field that creates ferrimagnetic order. With the field
applied along the b axis, purely magnetic reflections occur for
Ho = 0, Ko odd, and all Lo.

Electronic degrees of freedom present in the ground state
of a Ru ion are encapsulated in multipoles 〈U K

Q 〉 with
rank K and projections Q that obey −K � Q � K . Angu-
lar brackets 〈. . .〉 denote the expectation value of the en-
closed spherical tensor operator, defined for neutron and x-
ray diffraction in Refs. [21,22]. The operator U K

Q is time
odd, of course, and its parity is labeled σπ = +1 (−1) ax-
ial (polar). Hermitian operators yield multipoles that obey
〈U K

Q 〉∗ = (−1)Q〈U K
−Q〉, and 〈U K

Q 〉 = 〈U K
Q 〉′ + i〈U K

Q 〉′′ is our
convention for real and imaginary parts. Multipoles are
evaluated in principal axes, e.g., the dipole 〈U 1

η 〉 is paral-
lel to the crystal c axis � propagation vector [Cartesian
and spherical components of a vector R are related by
Rξ = (R−1−R+1)/

√
2, Rη = i(R−1+R+1)/

√
2, and Rζ = R0].

Multipoles that are both parity odd (σπ = −1) and time
odd are referred to as Dirac multipoles. Dirac dipoles
(anapoles) observed in magnetic neutron diffraction are sim-
ple products of spin S or orbital angular momentum L with
the electronic position operator n [21,22]. For these anapoles
we use 〈�〉S = 〈S × n〉 and 〈�〉L = 〈L × n − n × L〉, and it
is noted that operators S and n commute, whereas L and n do
not commute. A monopole 〈S · n〉 is allowed in resonant x-ray

diffraction [23] but it is forbidden in neutron diffraction [22],
while 〈L · n〉 = 0.

Unit-cell structure factors for Bragg diffraction are derived
from �K

Q = {∑ exp(id · k)〈U K
Q 〉d}, where k is the Bragg wave

vector. Sites 8b, with positions d in a cell, used by Ru4+ ions
are asymmetric. Symmetry operations in PCna21 lead to the
central result,

�K
Q = exp[iπ (h + l )/2][exp(iϕ) + (−1)h+l+Qexp(−iϕ)]

× [〈
U K

Q

〉 − σπ (−1)h+l+K
〈
U K

−Q

〉]
, (1)

with a spatial phase angle ϕ = (2πyLo) and y ≈ 0.4008 [1].
Site symmetry adds nothing to symmetry displayed by �K

Q ,
in contrast to many materials where site symmetry is hugely
influential [24]. The leading phase factor in (1) for �K

Q can
be set aside in the calculation of Bragg intensities, for they
depend on the absolute value of the unit-cell structure factor
derived from �K

Q .
The energy levels the free Ru4+ 4d4 ion in intermediate

coupling are determined by the 4d-4d Coulomb interac-
tion (with atomic Slater integrals F2 = 9.214 eV and F4 =
6.095 eV) and spin-orbit interaction (with parameter ζd =
160 meV = 1290 cm−1). The ground state is 5D (S = 2 and
L = 2 with cancelling opposite moments) which has a pu-
rity of 96%. The remaining 4% is made up of other SL
terms which are mixed in the ground state by the spin-orbit
interaction. According to the third Hund’s rule the lowest
energy level has total angular momentum J = 0, for which
all magnetic multipoles are zero. To this atomic scenario we
add the effect of the spin-orbit interaction and a spatially
symmetric ligand field, which is a useful, albeit approximate,
rendition of Ru sites that have no symmetry.

In pure octahedral symmetry, the 5D splits into 5Eg + 5T1g

states. In weak ligand field the lowest energy state is the
high-spin t3

2ge1
g (5Eg) (see, e.g., [25]). Under spin-orbit interac-

tion, the 5E splits into 	1, 	2, 	3, 	4, 	5 levels (in Koster
notation, or A1, A2, E , T1, T2 in Schönflies notation), where the
	1 level has the lowest energy. A strong ligand field (typical
cubic crystal-field parameter 10Dq ≈ 3 eV, appropriate for
ions in the palladium group) results in a t4

2g (3T1g) ground state,
which is low spin (S = 1). Under spin-orbit interaction, the
3T1 splits into 	1, 	4, 	3, 	5 levels with multiplicities of 1, 3,
2, 3, respectively. These levels have an energy separation in
the order of ζd . Thus in all cases the total angular momentum
in the ground state has the total symmetric representation 	1.

However, the magnetic exchange interaction Hex mixes
higher J levels into the ground state if Hex is in the order of the
spin-orbit interaction. This effect is clearly seen for Cr d4 5D0

(with ζd ≈ 30 meV), which has no dichroism in the absence
of J mixing [26]. For Ru d4, where the spin-orbit interaction
is much larger, the J mixing due to Hex is much smaller but
still observable. J mixing does also occur due to hybridization
with the neighboring ligands, because the 4d bandwidth of
several eV is much larger than ζd .

III. NEUTRON DIFFRACTION

Bao et al. [10] report Bragg intensities for a sample tem-
perature 3.5 K indexed by Miller indices h and l even. In
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consequence, the spatial phase factor in �K
Q is {i sin(ϕ)} for

Q odd or cos(ϕ) for Q even.
Dipoles (K = 1) possess either Q = 0 or Q = ±1. Thus,

axial dipoles are aligned with the ζ axis (Q = 0) or the η axis,
according to the structure factor (1). Magnetic moments μζ =
〈2Sζ + Lζ 〉 aligned with the ζ axis form a primary dipole
order. Secondary dipole order arises from μξ and μη. Use of
general coordinates x = z = 1/4 for Ru sites 8b eliminates the
axial ξ dipole from the structure factor. Axial dipoles along
η and ζ axes are 90◦ out-of-phase in the structure factor. In
consequence, μη can only add intensity to Bragg spots with
h and l different from zero, while there is no contribution to
(0, k, 0) Bragg spots from μη. The unit-cell structure factor
confronted with Bragg spots contains quadrupoles (K = 2)
and octupoles (K = 3) with even projections and a spatial
phase cos(ϕ). Values for the axial multipoles are inferred from
experimental data [10].

Anapoles allowed in neutron diffraction include t =
[3〈
ξ 〉S (h1) − 〈
ξ 〉L( j0)] accompanied by a spatial phase
sin(ϕ). Radial integrals (h1) and ( j0) in t are displayed in
Fig. 2(a) using a dimensionless variable w = 12πa0s, where
a0 is the Bohr radius and s = sin(θ )/λ (atomic code due
to Cowan [27]). Values of t are inferred from fitting our
analytic expressions for intensities to observed intensities;
expressions in question are (2) and (3) that follow. An anapole
t ′ = {〈nξ 〉(g1)} is also accompanied by a spatial phase sin(ϕ)
and its contribution to the unit-cell structure factor is 90◦
out-of-phase with t . We have tested our analytic expressions
against experimental data for both t 
= 0, t ′ = 0, and, also,
t = 0, t ′ 
= 0. In the latter case, inferred values of t ′ are
unrelated to the radial integral (g1) displayed in Fig. 2(a). We
achieve better success with t versus a linear combination of
(h1) and ( j0) shown in Fig. 3.

Bragg spot intensities confronted with data are calculated
from

�(t ) = [{Q · Q∗} − |κ · Q|2], (2)

with the following amplitude Q derived from (1) and expres-
sions recorded in Ref. [22],

Qξ ≈ κξκζ cos(ϕ)〈 j2〉[−q − p + p′],

Qη ≈ κηκζ cos(ϕ)〈 j2〉[q − p − p′] − sin(ϕ)tkζ ,

Qζ ≈ cos(ϕ)[〈 j0〉μζ + 〈 j2〉{〈Lζ 〉 + (
κξ

2 − κη
2)(q + p′/2)

+ (
3κζ

2 − 1
)
(p/2)}] + sin(ϕ)tκη,

κ · Q ≈ κζ cos(ϕ)
[〈 j0〉μζ + 〈 j2〉

{〈Lζ 〉 + (
κξ

2 − κη
2
)
(3p′/2)

+ (
5κζ

2 − 3
)
(p/2)

}]
. (3)

A standard dipole approximation to the neutron scatter-
ing amplitude is obtained from (3) on setting t = p = q =
p′ = 0. Evidently, this approximation depends on {〈 j0〉μζ }
and {〈 j2〉〈Lζ 〉} arising from Qζ , with Qξ = Qη = 0. We
go beyond this simple expression for the scattering ampli-
tude through addition of some other multipoles allowed by
magnetic symmetry. Amplitudes (3) include anapoles t and
parity-even quadrupoles and octupoles q = 2

√
3〈J 2

+2〉′′, p =
(3/2)

√
7〈J 3

0 〉, and p′ = (3/2)
√

(70/3)〈J 3
+2〉′. Multipoles in

question are actually denoted 〈T K
Q 〉 in Refs. [21,22] but here

we choose to reserve this particular notation for parity-even

FIG. 2. (a) Radial integrals for Dirac multipoles that appear in
the anapole t = [3〈
ξ 〉S (h1) − 〈
ξ 〉L ( j0)] using a dimensionless
variable w = 12πa0s, where a0 is the Bohr radius and s = sin(θ )/λ.
Atomic wave functions 4d4-5p1 (see text). Legend: green line (h1),
blue line [w × ( j0)], and red line [w × (g1)/10]. Note that ( j0 ) and
(g1) are proportional to 1/w as the wave vector approaches zero,
and t ′ = {〈nξ 〉 (g1)}. Radial integrals 〈 j0〉 (black), 〈 j2〉 (orange), 〈 j4〉
(brown), and 〈 j6〉 (black) for axial multipoles using Ru4+ (4d4). (b)
〈 j0〉, 〈 j2〉, and 〈 j4〉 using black continuous curves for the configura-
tion 4d4, and red continuous for 4d7. Green dashed line are results
for 4d7 obtained from a standard tabulation (see text).

multipoles in x-ray diffraction encountered in Sec. IV. More-
over, a departure in notation is warranted on the grounds
that we make explicit radial integrals 〈 jn〉 which in previ-
ous work are factors in multipoles. Observe that parity-even
quadrupoles and anapoles do not contribute to (κ · Q).

Radial integrals 〈 jn〉 with n = 0, 2, 4, and 6 calculated
for Ru4+ are shown in Fig. 2(a) (atomic code due to Cowan
[27]). Evidently, 〈 j4〉 and 〈 j6〉 provide small corrections to an
amplitude based on 〈 j0〉 and 〈 j2〉 with w < 6, and they are
omitted from our analysis. This simplification directly affects
octupoles, which are proportional to a linear combination of
〈 j2〉 and 〈 j4〉. Figure 2(b) compares 〈 j0〉, 〈 j2〉, and 〈 j4〉 for
atomic configurations 4d4 and 4d7. There are significant dif-
ferences for the two configurations, particularly with 〈 j0〉, that
influence data analysis. Also included in Fig. 2(b) are results
for Ru1+ (4d7) derived from standard tabulations prepared by
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FIG. 3. Values of the anapole t listed in Table I are displayed as
a function of w using black squares and red dots. For most Bragg
spots there are two values of t , one black and one red, while no value
can be assigned to t at Bragg spots (Ho, Ko, Lo) with Lo = 5. The
solid curve is a fit to a linear combination of radial integrals for spin
and orbital anapoles reported in Fig. 2(a) to 12 values of t denoted
by black squares.

Brown [28] that are satisfyingly almost indistinguishable from
our results for the same atomic configuration.

In fits of (2) and (3) to observed intensities we used 〈Lζ 〉 =
+0.11, and μζ = 1.8 μB. These results are consistent with
an independent observation |〈Lζ 〉|/〈Sζ 〉 ≈ 0.13 [29]. Spin and
orbital magnetic moments are parallel in the configuration
(t2g)4 appropriate for Ru4+ in a strong octahedral ligand field
[25]. As regard to the magnetic moment, Crawford et al. [30]
quote μ = 1.8(3) μB for Ru4+ in Sr4Ru3O6, while Yoshida
et al. [1] and Bao et al. [10] quote μζ = 1.59 ± .07 μB and
μζ = 1.8(2) μB, respectively, for Ru4+ in Ca3Ru2O7. Fits of
�(t ) to observed intensities imply q ≈ 1.31, p ≈ 3.10, and
p′ ≈ −3.85, and these values are used in calculated values
reported in Table I. Two values of t are obtained for most
Bragg spots, because intensity (2) is a product of amplitudes
that contain t . Table I lists experimental data [10], �(t ), t , and
�(0) in ascending order of w. A goodness-of-fit RF = 1.2%
with inclusion of anapoles slumps to 10 times this value when
anapoles are omitted from calculated intensities.

Our results for t in Table I versus w are displayed in Fig. 3.
In light of the excellent agreement between the observed cross
sections and �(t ) we attribute the evident scatter to limitations
in the data that might be reduced on revisiting the experiment.
A linear combination of radial integrals associated with spin
(h1) and orbital ( j0) anapoles is fitted to 12 selected values of
t . The fit reported in Fig. 3 yields an estimate 〈
ξ 〉S/〈
ξ 〉L ≈
−(1/12).

The quality of our fit of �(t ) to intensities of Bragg spots
RF = 1.2% is also achieved using oppositely aligned spin and
orbital magnetic moments. Specifically, 〈Lζ 〉 = −0.125
and μζ = 1.8 μB imply q ≈ 1.17, p ≈ 2.90, and p′ ≈ −3.50,
and these multipoles yield an identical RF with changes to t
that are entirely negligible.

TABLE I. Observed neutron cross-sections σobs listed against
increasing w. Sample temperature = 3.5 K. Bragg spots are here
labelled by orthorhombic Miller indices (Ho, Ko, Lo). Inferred val-
ues of anapoles t using 〈Lζ 〉 = +0.11 and μζ = 〈2Sζ + Lζ 〉 = 1.80.
Calculated values of the cross-section �(t ) derived from (2) and
(3) in the fourth column possess a goodness-of-fit RF = 1.2%, with
RF defined in standard manner RF = {∑ |σobs − �(t )|/∑

σobs} with
both sums over all 15 Bragg spots. Omission of anapoles in �(0)
yields a vastly inferior RF = 13.6%. For Lo = 5 no realistic value
can be assigned to t because the corresponding structural phase factor
sin(ϕ) ≈ 0.0.

(Ho, Ko, Lo) w σobs �(t ) t �(0)

(0, 0, 1) 0.51 9.64(3) 9.64 −0.01 9.57
(0, 0, 3) 1.53 1.10(2) 1.09 +0.035, −0.98 0.95
(0, 0, 5) 2.56 5.91(6) 5.91 –
(0. 0, 7) 3.58 0.43(2) 0.43 +0.56, −0.09 0.23
(0, 2, 1) 3.65 0.070(7) 0.070 +0.39, −0.04 0.05
(2, 0, 1) 3.75 2.39(1) 2.41 +0.50 2.69
(0, 2, 3) 3.92 0.051(7) 0.047 +0.01, −0.20 0.038
(2, 0, 3) 4.02 0.216(5) 0.217 −0.05 0.26
(0, 2, 5) 4.43 0.44(2) 0.44 –
(2, 0, 5) 4.51 1.66(1) 1.43 –
(0, 0, 9) 4.60 1.34(5) 1.33 +0.60, −1.13 0.14
(0, 2, 7) 5.09 0.05(1) 0.05 +0.175,−0.05 0.017
(0, 0, 11) 5.63 0.63(4) 0.63 +0.47, −0.88 0.055
(0, 2, 9) 5.85 0.39(3) 0.38 +0.48, −0.44 0.0
(0, 2, 11) 6.69 0.27(3) 0.27 +0.14, −0.75 0.12

IV. RESONANT X-RAY DIFFRACTION

Bragg diffraction of x rays tuned to a ruthenium atomic
resonance is considered in this section [21,31]. First, a study
of published data [11], followed by feasibility studies for
future experiments suggested by results from the foregoing
analysis of neutron diffraction data. Unit-cell structure factors
are derived from the electronic structure factor (1) that re-
spects all elements of symmetry in the magnetic space-group
PCna21. Results in Appendix B incorporate a magnetic field
applied along the b axis with ferrimagnetic order described
by the space-group Pm′c′21. Throughout we use universal
expressions for unit-cell structure factors applicable to an
azimuthal-angle scan, in which the crystal is rotated about the
Bragg wave vector [23,32]. States of polarization are defined
in Fig. 4, and definitions of parity-even 〈T K

Q 〉 and Dirac 〈GK
Q〉

multipoles comply with Refs. [21,23,32,33].
An azimuthal-angle scan of intensity at the (Ho, Ho, 0)

Bragg spot with Ho = 1 and sample temperature 17 K is
reported by Bohnenbuck et al. [11]. There is no intensity in
the unrotated channel of polarization σ ′σ with enhancement
by an electric dipole-electric dipole (E1-E1) absorption event,
because Bragg reflections of interest forbid chargelike (time-
even) contributions. Magnetic contributions occur in both π ′π
and the two rotated channels. Data displayed in Fig. 5 are for
the rotated channel of polarization σ ′π .

With Miller indices (h + l ) = 0 and phase angle ϕ = 0, the
electronic structure factor (1) reduces to

�K
Q = [1 + (−1)Q]

[〈
U K

Q

〉 − σπ (−1)K
〈
U K

−Q

〉]
. (4)
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FIG. 4. Primary (σ, π ) and secondary (σ ′, π ′) states of polar-
ization. Corresponding wave vectors q and q′ subtend an angle 2θ ,
and k = q − q′. Principal axes (ξ, η, ζ ) for a magnetic structure
and depicted Cartesian coordinates (x, y, z) coincide in the nominal
setting, and k for a particular Bragg spot is aligned with − x.

Evidently, �K
Q can be different from zero for projections

Q even. Magnetic Bragg spots are indexed by (h + k) odd.
Recall that we use general coordinates x = z = 1/4, which is
an approximation albeit a very good one [1]. In the subsequent
calculation we add the further assumption that the Bragg
wave vector (1, 1, 0) subtends 45◦ with the a axis and the
b axis, which neglects a small difference between the cell
lengths a and b [the angle between the a axis and (1, 1, 0) is
≈ 44.12◦]. The two approximations mentioned do not modify
our principal findings that rely on magnetic symmetry.

Magnetic diffraction enhanced by an E1-E1 event
(σπ,= +1) is determined by a dipole 〈T 1

Q 〉 and only Q = 0
is allowed by the electronic structure factor (4). The corre-
sponding unit-cell structure factor for diffraction by Ru ions
is found to be

F (+)
σ ′π (1, 1) = −(

i
〈
T 1

ζ

〉/
2
)
[cos(θ ) cos(ψ ) + sin(θ )]. (5)

We note in passing that F (+)
π ′π (1, 1) = {(i〈T 1

ζ 〉/2) sin(2θ )
sin(ψ )}.

The origin of the azimuthal angle (ψ = 0) in (3) is such
that a- and b-crystal axes span the plane of scattering [11].
The Bragg angle θ ≈ 32.8◦ for (1, 1, 0) and an x-ray energy
2.965 keV for the L2 absorption edge of Ru4+ [sin(θ ) ≈
0.130(λHo) Å

−1
with λ ≈ 12.40/E and photon wavelength λ

and primary energy E in units of Å and keV, respectively].
Note that the dipole 〈T 1

ζ 〉 is purely real while F (+)
σ ′π (1, 1) is

purely imaginary. Intensity in the σ ′π channel is proportional
to I (1, 1) = |F (+)

σ ′π (1, 1)|2, and it is confronted with available
experimental data in Fig. 5(a). The proportionality factor
for I (1, 1) contains a dipole radial integrals 〈2p|r|4d〉 or
〈3p|r|4d〉 about which we say more later in the context of
relative strengths of E1-E1, electric dipole-magnetic dipole
(E1-M1), and electric dipole-electric quadrupole (E1-E2)
diffraction amplitudes.

In the E1-E2 parity-odd event, Dirac multipoles 〈GK
Q〉 have

ranks K = 1, 2, and 3. Anapoles (K = 1) are forbidden by
(4), however, and three multipoles contribute to the diffraction
pattern. The unit-cell structure factor can be neatly expressed
in terms of two functions of θ and ψ , namely,

ν = [sin2(θ ) − {cos(θ )cos(ψ )}2] and χ = [2 sin(2θ )cos(ψ )],

(6)

FIG. 5. Green triangles: Measured intensity of the (1, 1, 0) Bragg
spot in the σ ′π channel of polarization as a function of azimuthal
angle ψ . (a) Symmetric and antisymmetric components of the data
are displayed as red and blue spots, respectively. (b) Continuous red
curve is intensity I (1, 1) derived from (5) with an ψ origin offset by
9.54◦. (c) Continuous red curve is intensity I (1, 2) derived from (7)
for an E1-E2 event. The ψ origin is offset by 12.39◦ and allowed
Dirac octupoles are set equal to zero in the calculation.

and we find

F (−)
σ ′π (1, 2) = (1/4

√
5)�(1, 2)

[〈
G2

0

〉{ν + χ}
+

√
(2/3)

〈
G2

+2

〉′{3ν − χ}
+ (2/

√
3)

〈
G3

+2

〉′′
χ{3 cos2(ψ ) − 2}]. (7)
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Here 〈G2
+2〉′ and 〈G3

+2〉′′ are real and imaginary parts of a
quadrupole and an octupole, respectively. The parity-even
and parity-odd structure factors (5) and (7) are seen to dif-
fer by a 90◦ phase. While the azimuthal-angle dependence
of F (+)

σ ′π (1, 1) is simply one harmonic cos(ψ ), F (−)
σ ′π (1, 2)

also includes harmonics cos(2ψ ) and cos(3ψ ) as a conse-
quence of quadrupoles and an octupole. Intensities I (1, 1)
and I (1, 2) = |F (−)

σ ′π (1, 2)|2 are symmetric around ψ = 180◦.
Data in Fig. 5(a) [11] are in conflict with our structure

factors because they are not symmetric about ψ = 180◦.
However, intensities I (1, 1) and I (1, 2), derived from (5)
and (7), respectively, fit the data very well if the origin of the
azimuthal-angle scan is offset, which is reported in Figs. 5(b)
and 5(c). For the moment, offsets in the azimuthal angle that
create an accord between data and calculated intensities are
attributed to experimental conditions (we thank Schierle for
clarification [11]). Revisiting resonant x-ray Bragg diffraction
might add insight to the problem of asymmetry in diffraction
at (Ho, Ho, 0). Feasibility studies of different Bragg spots are
reported in Appendices A and B with this problem in mind.
The octupole in I (1, 2) is a mismatch to experimental data
and only the allowed Dirac quadrupoles are used in the fit
shown in Fig. 5(c).

To be meaningful, structure factors (5) and (7) should
include strengths of E1-E1 and E1-E2 events, in particular
radial integrals of the position variable taken between the
core state and valence states. In our case, the ratio of E1-E2
to E1-E1 strengths is expressed by a dimensionless factor
included in the result (7) for F (−)

σ ′π (1, 2). With the photon
energy E tuned to an L-edge 2p,

�(1, 2) = [(αE )/(2a0R∞)](〈2p|r2|5p〉/〈2p|r|4d〉), (8)

where α, a0, and R∞ are the fine structure constant, Bohr
radius, and the Rydberg unit of energy, respectively. A
relativistic atomic code provides the estimates (〈2p|r2|5p〉/
〈2p|r|4d〉) = −0.047 a0 while (〈2p|r2|4 f 〉/〈2p|r|4d〉) =
−0.031 a0 [27].

V. FUTURE EXPERIMENTS

Looking beyond a repetition of the type of x-ray diffrac-
tion experiment analyzed in the previous section we study
advantages offered by different sample environments. In one
case, the sample setting is made chiral and akin to that used to
measure the optical activity of nonmagnetic materials. An ap-
plied magnetic field, studied thereafter, is a more conventional
type of sample environment. Corresponding calculations are
reported in Appendices A and B.

Chirality is found in all biological systems: left-handed
amino acids, right-handed glucose, DNA strands, and pro-
teins [34]. Sayers and Eustace exploit the fact that synthetic
muscarine, if made from simple nonchiral starting materials,
would be a racemic mixture and achiral, whereas muscarine
derived from organic tissue is optically active [35,36]. A pair
of enantiomers are physically and chemically indistinguish-
able in achiral settings [34].

Likewise, chiral (handed) magnetic order is revealed by
diffraction of circularly polarized x rays. An analog for time-
even properties of electrons is diffraction by chiral electric-
polarization structures [37]. Results in Appendix A show that

both axial and Dirac multipoles in Ca3Ru2O7 present Bragg
spot intensities in resonant x-ray diffraction, with singular
intensities (A2) and (A5) proportional to the degree and sign
of circular polarization in the primary beam. Intensities in
question arise from interference between phase-shifted rotated
and unrotated diffraction amplitudes, whereas a single ampli-
tude is all that is necessary for the analysis in Sec. IV.

Changes to a magnetic crystal caused by an applied mag-
netic field can be revealing, and it has proved to be the
case for the ruthenate of interest [10,12,13]. With future x-
ray diffraction in mind, we have calculated structure factors
for axial and Dirac multipoles and results are gathered in
Appendix B. Bulk magnetization parallel to the applied field
(b axis) comes from two nonequivalent Ru sites that are
allowed to have different axial magnetic dipoles moments
in the zero-field A-type antiferromagnetic order described
by PCna21. Notably, chiral order of magnetic multipoles is
not preserved following the application of a magnetic field.
Previous studies of the field-induced ferrimagnetic order have
not been fully informed by the magnetic symmetry.

VI. CONCLUSIONS

In our study of magnetic Ca3Ru2O7 we have presented:
(i) The magnetic space-group PCna21 (crystal class

mm21′) that is appropriate for A-type antiferromagnetic order.
(ii) Compelling evidence derived from a neutron diffrac-

tion pattern [10] for the existence of Dirac dipoles (anapoles).
(iii) Radial integrals in neutron diffraction amplitudes for

Ru4+ (4d4).
(iv) Inconclusive evidence for Dirac multipoles derived

from published diffraction pattern obtained with x rays tuned
to a ruthenium atomic resonance [11].

(v) Chiral order of both axial dipoles, created by primary
and secondary dipoles, and Dirac multipoles that can be
exposed in the resonant diffraction of circularly polarized x
rays.

(vi) The magnetic space-group Pm′c′21 (crystal class
m′m′2) that is appropriate for ferrimagnetic order induced by
a magnetic field applied parallel to the crystal b axis, together
with feasibility studies of pertinent resonant x-ray diffraction
experiments.

Our evidence for anapoles in the low-temperature magnetic
configuration is bolstered by their appearance in a simulation
of the electronic structure [38].
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APPENDIX A: CHIRAL ORDER

We report unit-cell structure factors for magnetic (0, 0, Lo)
Bragg spots, with odd Lo. Our analysis of the corresponding
Bragg spots in neutron diffraction patterns, Sec. III, indicates
that anapoles are significant, and it is reasonable to conjecture
that higher-order Dirac multipoles are likewise significant.
The conjecture is supported by results from the simulation
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of electronic structure performed by Thöle and Spaldin [38].
These authors include the monopole in their study and it
contributes to diffraction enhanced by an E1-M1 absorption
event, and witnessed in the structure factor (A4). We continue
with calculations of structure factors for E1-E1, E1-M1, and
E1-E2 events.

The unit-cell structure factor for E1-E1 and (0, 0, Lo) is

F (+)
σ ′π (1, 1) = (1/

√
2)

[
i
〈
T 1

ζ

〉
cos(ϕ) cos(θ ) sin(ψ )

− 〈
T 1

η

〉
sin(ϕ) sin(θ )

]
, (A1)

with F (+)
π ′σ (1, 1) = {F (+)

σ ′π (1, 1)}∗. Recall that ϕ = (2πyLo)
with sin(ϕ) ≈ 0 for Lo = 5, to a good approximation. The b
axis is normal to the plane of scattering for ψ = 0. Note in
(A1) that the contribution using the secondary dipole 〈T 1

η 〉 =
〈T 1

c 〉 is independent of the azimuthal angle, as it should be
when the Bragg and propagation (c-axis) vectors are collinear.
Intensity derived from (A1) has a sin2(ψ ) dependence. The
Bragg angle satisfies sin(θ ) ≈ 0.316 (Lo/E ) with E in units
of keV. Thus, only Lo = 1 is accessible at M edges (3p) and
E ≈ 0.47 keV, while Lo = 1, 3, 5, 7 are accessible at L edges
and E ≈ 3.0 keV.

The 90◦ phase difference between the two axial dipoles
in (A1) indicates a chiral (handed) order that manifests it-
self with intensity that depends on circular polarization in
the primary x-ray beam. Intensity in the handed setting is
proportional to the imaginary part of interference between
rotated and unrotated channels of polarization [39]. Since
F (+)

σ ′σ (1, 1) = 0 for magnetic reflections (0, 0, Lo) the E1-E1
intensity of interest reduces to

�(+) = P2Im{[F (+)
π ′π (1, 1)]∗F (+)

π ′σ (1, 1)}
= −(P2/2) sin(2ϕ)sin2(θ ) cos(θ ) cos(ψ )

〈
T 1

ζ

〉〈
T 1

η

〉
. (A2)

Here P2 is the Stokes parameter for primary circular polariza-
tion [21,39]. Evidently, intensity in the proposed experiment
is an interference between the primary and secondary axial
dipoles.

Our first parity-odd event is E1-M1. Dipoles M1 and
E1 in �(1, 1), the analog of (8), have magnitudes μB and
(e a0), respectively, where μB is the Bohr magneton. Using
μB/(e a0) = α/2 leads to

�(1, 1) = (α a0〈λ|λ′〉)/〈2p|r|4d〉. (A3)

In this expression, 〈λ |λ′〉 is the overlap of orbitals in the M1
event that possess the same angular momentum, because the
magnetic moment operator is diagonal in this basis [40]. We
go on to find

F (−)
π ′σ (1, 1) = −(i/

√
2)�(1, 1)

〈
G1

ξ

〉
sin(ϕ) sin(2θ ) sin(ψ )

− (2/
√

3)�(1, 1) cos(ϕ)
[〈

G0
0

〉
sin2(θ )

+ (1/2
√

2)
〈
G2

0

〉{1 + cos2(θ )[2 − 3 sin2(ψ )]}
+ (

√
3/2)

〈
G2

+2

〉′{1 + [cos(θ ) sin(ψ )]2}], (A4)

and F (−)
π ′σ (1, 1) = {F (−)

σ ′π (1, 1)}∗. The anapole 〈G1
ξ 〉 is depicted

in Fig. 1, and its contribution in (A4) is out-of-phase with
the contribution from even-rank multipoles. The magnetic
monopole 〈G0

0〉 carries no dependence on the azimuthal angle,

of course [41]. Comparing (A1) and (A4) we see that dipoles
〈T 1

ζ 〉 and 〈G1
ξ 〉 are accompanied by sin(ψ ), with the anapole

contribution in (A4) very small for Lo = 5.
Dirac multipoles possess a chiral configuration. It is ex-

posed in a handed setting provided by circular polarization in
the primary beam of x rays, and parallel Bragg and propaga-
tion vectors. Structure factors for all four channels of polar-
ization contribute to the E1-M1 intensity in question, unlike
the corresponding calculation for E1-E1 that is significantly
simplified by the result F (+)

σ ′σ (1, 1) = 0. In the present case,
E1-M1 intensity is given by [39]

�(−) = −(4P2/
√

3)�2(1, 1) sin(2ϕ) cos (θ ) cos(ψ )
〈
G2

+1

〉′′

× [〈
G0

0

〉
sin2(θ ) + (1/2

√
2)

〈
G2

0

〉

×{1 + cos2(θ )[2 − 3 sin2(ψ )]}
+ (

√
3/2)

〈
G2

+2

〉′{1 + [cos(θ ) sin(ψ )]2}]. (A5)

Notably, intensity does not depend on the anapole, whereas
corresponding intensity �(+) created in an E1-E1 event arises
from dipoles alone. However, (A2) and (A5) are both propor-
tional to sin(2ϕ) cos(ψ ).

Octupoles in the E1-E2 structure factor are omitted in sub-
sequent calculations, principally on the grounds that they are
at odds with data for (1, 1, 0) but also because the dominant
contribution to the diffraction amplitude is likely given by an
anapole 〈G1

ξ 〉. Including all dipoles and quadrupoles allowed
in (0, 0, Lo) reflections we find

F (−)
π ′σ (1, 2) ≈ �(1, 2)

{
(2i/5)

√
3
[{〈

G1
ξ

〉 − (2/3)
√

10
〈
G2

+1

〉′′}

× sin(ϕ) sin(2θ ) sin(ψ )
]− (1/2)

√
(1/5) cos(ϕ)

× [〈
G2

0

〉
ν +

√
(2/3)

〈
G2

+2

〉′{6 sin2(θ ) − ν − 2}]},
(A6)

with ν defined in (6), and F (−)
π ′σ (1, 2) = {F (−)

σ ′π (1, 2)}∗. The
two components of (A6), which differ by a 90◦ phase, can be
separated in an experiment by comparing data for different
Miller indices using sin(ϕ) ≈ 0 for Lo = 5.

APPENDIX B: APPLIED MAGNETIC FIELD

A magnetic field applied to Ca3Ru2O7 induces a (first-
order) metamagnetic transition to a canted antiferromagnetic
structure in which axial dipoles are partially polarized in the
direction of the field. In the low temperature phase T < 48 K,
a canted structure occurs in a field that exceeds ≈ 5.5 T
parallel to the b axis [10,13]. In such a magnetic field, a
small magnetoresistive effect occurs in the transition [10].
The metamagnetic transition no longer occurs at temperatures
above the metal-to-nonmetal transition at T = 48 K.

The precursor to the transition is a ferrimagnetic order
described by the space group Pm′c′21 (No. 26.70) [20]. The
crystal class m′m′2 is asymmetric, polar, and compatible with
ferromagnetism. Bulk magnetization parallel to the applied
field (b axis) comes from two nonequivalent Ru sites that
are allowed to have different axial magnetic dipoles moments
in the zero-field A-type antiferromagnetic order described by
PCna21.
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A basis (0, 0, 1), (1, 0, 0), (0, 1, 0) with respect to
the Bb21m paramagnetic space group defines principal axes
(ξ, η, ζ ) ≡ (c, a, b) not shown in Fig. 1, with Miller indices
h = Lo, k = Ho, l = Ko. The applied field is parallel to the ζ

axis. The electronic structure factor for Pm′c′21 is

�K
Q = exp(i2πzl )

{〈
U K

Q

〉
[exp(iϕ) + (−1)l+Qexp(−iϕ)]

+ σθσπ (−1)l+K+Q
〈
U K

−Q

〉
[exp(iϕ′)

+ (−1)l+Qexp(−iϕ′)]
}
, (B1)

with ϕ = 2π (xh + yk) and ϕ′ = 2π (xh − yk), and general
coordinates (x, y, z). Bulk magnetization is revealed by a
nonzero value of �K

Q (Pm′c′21) evaluated for h = k = l = 0,
K = 1, and σθσπ = −1 (axial magnetism). For these condi-
tions, the structure factor (B1) is nonzero for Q = 0, i.e., a
bulk ferromagnetic moment parallel to the b axis.

Restrictions for purely magnetic Bragg spots are identified
in (B1) evaluated with Q = 0, K even, and σθσπ = +1 appro-
priate to charge or nuclear scattering. With said conditions,
�K

0 = 0 for (h, 0, l), l odd and no restrictions on h. [In
the absence of a magnetic field, using space group PCna21,
the corresponding restrictions are (h + l ) = (Ho + Ko) even
with (h + k) = (Ho + Lo) odd arising from antitranslation.]
Unit-cell structure factors for purely magnetic diffraction are
derived from

�K
Q = exp(i2πzl )[exp(iϕ) − (−1)Qexp(−iϕ)]

× [〈
U K

Q

〉 − σθσπ (−1)K+Q
〈
U K

−Q

〉]
, (B2)

which is obtained by setting k = 0 and l odd in (B1). Spatial
phases are reduced to ϕ = ϕ′ = (2πxh) = (2πxLo), while
(h, 0, l ) ≡ (0, Ko, Lo) with Ko odd and all Lo. The leading
phase factor in (B2) can be set aside in the calculation of
Bragg intensities.

Ruthenium ions occupy nonequivalent sites 4c that pos-
sess no symmetry. The two sites have general coordinates
(x, y, z) ≈ (0.4008, 1/4, 3/4) and (0.4008 − 1/2, 3/4, 3/4).
For purely magnetic Bragg spots ϕ = (2πxLo) with x ≈
0.4008 [1], and ϕ is identical to the spatial angle used in all
foregoing calculations; phase factors for the two Ru sites are
exp(iϕ) and (−1)Lo exp(iϕ).

With a photon energy E ≈ 3.0 keV for Ru L edges
and Ko = 1 the Bragg condition can be met with Lo =
0, 1, 2, . . . , 7, while Ko > 1 is not achievable with the speci-

fied energy. The E1-E1 unit-cell structure factor in the rotated
channel of polarization is

F (+)
σ ′π (1, 1) = −(

i
〈
T 1

η

〉/
2
)

cos(ϕ) cos(θ ) sin(ψ ), (B3)

while F (+)
σ ′σ (1, 1) = 0. The axial dipole 〈T 1

η 〉 = 〈T 1
a 〉 is normal

to the plane of scattering when the azimuthal angle ψ = 0.
It is notable that F (+)

σ ′π (1, 1), as well as F (+)
π ′π (1, 1), does not

specifically depend on the orientation of magnetic field, which
is along the b axis. Also, there is no chiral order in axial
dipoles to be exposed by circular polarization and �(+) = 0.

Parity-odd diffraction enhanced by an E1-M1 event does
not contain a monopole. Instead, diffraction engages anapoles
parallel (〈G1

ζ 〉) and perpendicular (〈G1
ξ 〉) to the magnetic field,

and two quadrupoles. For the rotated channel of polarization,

F (−)
σ ′π (1, 1) = 2�(1, 1) cos(θ ) sin(ψ )

{
cos(ϕ)

× [−(1/
√

2)
〈
G1

ξ

〉
sin(α) sin(θ ) + A

〈
G2

+1

〉′′]

− i sin(ϕ)
[
(1/

√
2)

〈
G1

ζ

〉
cos(α) sin(θ ) + B

〈
G2

+2

〉′′]}
,

(B4)

with factors A = [cos(α) cos(θ ) cos(ψ )] and B = [sin(α)
cos(θ ) cos(ψ )]. The angle α arises from the orientation of the
b axis (field direction) within the plane of scattering at ψ = 0,
and it finds no place in E1-E1 structure factors. Specifically,

cos(α) = −Lo/

√
[(cKo/b)2 + (Lo)2], (B5)

with α = π/2 for Lo = 0, which also means ϕ = 0. The
Bragg wave vector (0, Ko, 0) is parallel to the magnetic field
and F (−)

σ ′π (1, 1) ∝ [〈G1
ξ 〉 sin(2θ ) sin(ψ )], because sin(ϕ) = 0

and A = 0. In the general case, F (−)
σ ′π (1, 1) contains two har-

monics of the azimuthal angle, namely sin(ψ ) and sin(2ψ ).
Diffraction in the rotated channel of polarization en-

hanced by an E1-E2 absorption event is described by a
structure factor similar to (B4) when octupoles are ne-
glected as they are in (A6). In this approximation, F (−)

σ ′π (1, 1)
and F (−)

σ ′π (1, 2) have identical factors from the azimuthal
angle. Indeed, F (−)

σ ′π (1, 2) can be derived from (B4) with
the substitutions A → (1/3)

√
5[A − 2 sin(α) sin(θ )], B →

(1/3)
√

5[B + 2 cos(α) sin(θ )] and �(1, 1) → �(1, 2), apart
from unimportant numerical factors. The change to A means
that F (−)

σ ′π (1, 2) depends on two multipoles, 〈G1
ξ 〉 and 〈G2

+1〉′′,
for (0, Ko, 0).
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