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We study the spin- 1
2 antiferromagnetic Heisenberg model on an ∞ × N square lattice for even N’s up to

14. Previously, the nonlinear sigma model perturbatively predicted that its spin-rotational symmetry breaks
asymptotically with N → ∞, i.e., when it becomes two dimensional (2D). However, we identify a critical width
Nc = 10 for which this symmetry breaks spontaneously. It shows the signature of a dimensional transition from
one dimensional (1D) including quasi-1D to 2D. The finite-size effect differs from that of the N × N lattice. The
ground-state (GS) energy per site approaches the thermodynamic limit value, in agreement with the previously
accepted value, by one order of 1/N faster than when using N × N lattices in the literature. Methodwise, we
build and variationally solve a matrix product state (MPS) on a chain, converting the N sites in each rung into an
effective site. We show that the area law of entanglement entropy does not apply when N increases in our method
and the reduced density matrix of each effective site has a saturating number of dominant diagonal elements with
increasing N . These two characteristics make the MPS rank needed to obtain a desired energy accuracy quickly
saturate when N is large, making our algorithm efficient for large N’s. Furthermore, the latter enables space
reduction in MPS. Within the framework of MPS, we prove a theorem that the spin-spin correlation at infinite
separation is the square of staggered magnetization and demonstrate that the eigenvalue structure of a building
MPS unit of 〈g|g〉, |g〉 being the GS is responsible for order, disorder, and quasi-long-range order.
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I. INTRODUCTION

With the advancements of experimental probes on the
quantum spin system in both one dimension (1D) [1] and
two dimensions (2D) [2], rich ground-state (GS) phases such
as the disordered Tomonaga-Luttinger spin liquid and the
ordered noncollinear antiferromagnetic state are revealed. An
ideal model describing them is the antiferromagnetic spin- 1

2
Heisenberg model. Such a model on an infinite 1D lattice is
not ordered with power-law-decaying spin-spin correlations
[3]. But, “more is different” [4]. When a collection of infinite
1D lattices are isotropically coupled to form an ∞ × N square
lattice called spin ladder, the GS differs. It is predicted to be
not ordered with exponentially decaying correlations in a few
quasi-1D lattices [5] but ordered in 2D [6]. (Hereafter, we
assume an infinity-by-infinity square lattice in our reference
to a 2D lattice and confine the discussion within even N’s.) It
implies that there is at least one-dimensional transition from
1D to 2D either asymptotically at N = ∞ or critically at
some finite width Nc. Notice that this change of dimensional
characteristics occurs purely due to a critical change of lattice
topology, different from those caused by the variation of
temperature or spin-spin coupling anisotropy [7–10]. To the
best of our knowledge, there is no report in the literature of
a finite Nc at which the dimensional transition takes place.
Namely, the continuous spin-rotational symmetry may break
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spontaneously at Nc. Existing qualitative theories of spon-
taneous continuous symmetry breaking have not explicitly
considered such a delicate case.

On one hand, the Mermin-Wagner theorem [11,12] states
that the Heisenberg model cannot have spontaneous ordering
at any finite temperature in both 1D and 2D. For GS, despite
the possible failure [13], the quantum-classical mapping is
used to show that the Heisenberg model supports spontaneous
ordering in 2D. It is stated [14] that the GS in a 1D quantum
spin system is a critical point for Mermin-Wagner theorem.
So far, no spontaneous magnetic order is found for a purely
1D spin- 1

2 antiferromagnetic chain. However, the spontaneous
long-range order exists in a 1D chain which is not so pure
as to include unequal spins [14,15]. On the other hand, the
long-range order is considered via a variety of inequalities.
The early significant representative of this kind is the work
of Dyson, Lieb, and Simon (DLS) [16]. Later, there emerged
the usage of Duhamel two-point function in the inequality
theory [17]. The inequality theory is used to investigate higher
dimensions first, i.e., from three dimensions [17–19] to mul-
tilayer [20] and from high spin [21] to low spin, etc. There
is no rigorous result for the GS of a 2D spin- 1

2 square lattice
yet. It is worth noting the inequality theory showed [22] that
a spin chain with power-law decaying long-range coupling
may or may not have spontaneous ordering depending on
the decaying rate. Nonetheless, neither the Mermin-Wagner
theorem nor the inequality theory has considered the gen-
eral case of an ∞ × N lattice. This prompts some natural
questions: When an ∞ × N square lattice is viewed as an
effective 1D lattice whose element is a ladder rung, does its
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FIG. 1. Spin- 1
2 antiferromagnetic Heisenberg model on an ∞ ×

N ladder (N = 4 for example). The circle represents lattice sites,
and the lines and curves connecting the nearest-neighboring sites
represent the spin-spin interactions. Periodic boundary conditions
are assumed. (a) The original lattice. (b) The effective lattice whose
single site is indicated by the dashed rectangle enclosing the N lattice
sites in each rung of original lattice.

GS support the spontaneous ordering? Does the value of N
matter?

The nonlinear sigma model (NLSM) has its own answer
to those questions, in a semiquantitative way [23,24] which
we found arguable. It predicts [25,26] that the physics of a
spin ladder can only qualitatively change at N = ∞ and the
energy gap of a ladder closes up exponentially with its width
N . But the perturbative nature of mapping the spin- 1

2 ladder
to NLSM necessarily indicates a threshold value of the gap
beyond which the perturbation would be inapplicable. In fact,
its prediction of the gap was numerically checked only for
M × N lattices with M � N and N up to 6 [27,28]. And, the
latest size scaling of N × N or M × N lattices in the literature
did not handle larger N yet and hence did not capture any
dimensional transition [29,30] though the possibility is not
excluded [31]. Therefore, it is worth numerically exploring the
possibility of such a quantum dimensional transition at finite
N for a true ∞ × N lattice of larger N’s, by monitoring the
emerging order parameters such as the stagger magnetization
and the spin-spin correlation at infinite separation. The model
Hamiltonian is

H = J
∑

�(i, j),(i′, j′ )	

S(i, j) · 
S(i′, j′ ), (1)

where 
S(i, j) is the spin vector operator on the (i, j)th lattice
site with i running from −∞ to ∞ in the longitudinal direction
(LD) and j running from 1 to N in the rung. �. . . 	 sums over
the nearest-neighboring sites. J is the spin-spin coupling inte-
gral and is normalized to 1 hereafter. The periodic boundary
condition (PBC) is assumed in both directions. See Fig. 1(a)
for the schematic of the lattice geometry and interaction
configurations.

There are some other analytic methods for this model.
None of them have clarified the spontaneous symmetry break-
ing in the model studied here. Bethe ansatz [3] only works
for N = 1. Bosonization [32,33] predicts a power-law decay
of the spin-spin correlation C(r) ≡ 〈Sz

(i,1)S
z
(i+r,1)〉 ∝ r−1 for

N = 1, r being the spin-spin separation. Conformal field
theory (CFT) [34,35] further predicts a logarithmic correction
multiplying with the power function, which was confirmed
[36] to be asymptotically effective after 1000 lattice separa-
tions. CFT [37] also gives a solution in limiting cases for

FIG. 2. Various designs for the lattice wave function using
tensor/matrix product. ξ denotes a tensor. The solid line refers to
the bonding index while the dashed line refers to the space index.
(a) Tensor network state (TNS). Each tensor has four bonding indices
which resemble the same lattice architecture shown in Fig. 1 and
one space index which accounts for a lattice site. TNS is employed
in iPEPS, etc. (b) Matrix product state (MPS) built on a winding
lattice chain. Each tensor has two bonding indices that differ from
the lattice-linking architecture and one space index for a site. DMRG
wave function after projections are reduced to this form of MPS.
(c) MPS built on a lattice chain of a translational symmetry. The
two bonding indices resemble the architecture of an effective lattice
shown in Fig. 1(b); the combination of dashed lines, each of which
corresponds to a physical site of each ξ , is treated as a single space
index running from 1 to 2N for spin- 1

2 .

N > 1 such as the 2D Ornstein-Zernike form of spin-spin
correlations for weakly coupled spin ladders. The spin-wave
theory (SWT) [38,39] essentially provides an approximation
in the continuum limit and assumes the magnon excitation,
excluding the spinon excitation, hence making no decisive
claim on the quantum dimensional transition.

On the numerical side, it is not feasible for stochastic
methods such as Monte Carlo method [40] which otherwise is
powerful in searching energy of a finite system. Finite M × N
lattices, with M � N , were simulated [5], trying to scale
away the finite-size effect. A similar finite lattice was also
simulated [30] by the density matrix renormalization group
method (DMRG) [41,42]. But, sweeping an ∞ × N lattice to
establish long-range spin-spin correlations for large N is not
yet practical. Variants of DMRG such as infinite time evolving
block decimation (iTEBD) method were applied to the case
of N = 2 [43], yielding results conflicting with that by the
infinite quasi-1D entanglement perturbation theory (iqEPT)
[44], and so on [45], but not for larger N because of the rapid
increase of the number of density matrix elements needed
for a sufficient accuracy. Tensor network state (TNS) [46,47]
based methods such as the infinite projected entangled pair
state (iPEPS) [48,49], illustrated in Fig. 2(a) and natively
designed for an infinite 2D system still do not show sufficient
efficiency to tackle the tensor’s bond index size greater than a
few dozen [49,50]. This hinders its application to investigate
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the very fine structure of the spin-spin correlation covering
large separations within large systems [51]. Nevertheless, un-
derstanding the dimensional transition is important in taking
the right numerical strategy to deal with strong correlation
in a low-dimensional quantum system. For instance, DMRG
works extremely well in 1D but not in 2D. When dealing
with a 2D lattice, the wave function obtained in DMRG has
a matrix product state (MPS) [36,52–60] form that is built on
a wound 1D lattice which resembles the 2D lattice [29,50].
See Fig. 2(b) for an illustration. According to the area law
[61], the required MPS rank (bond index size) characterizing
the entanglement in the wave function increases too rapidly
in this way [62]. Rather than treating the ∞ × N lattice as
a wound 1D lattice, it can also be treated as a 1D lattice
by converting N physical sites in each rung into an effective
site [44] [Fig. 1(b)]. We take the latter approach in this
study and use the ∞ × N lattice to investigate if the system
wave function, no matter which dimensional characteristics
its GS turns out to have, can be universally represented by
the MPS whose bonding topology is the same as the lattice
linking architecture [compare the effective lattice structure
in Fig. 1(b) and the MPS structure in Fig. 2(c)]. Hence, we
suppress the increase of MPS rank with N to a manageable
rate.

We organize the remainder of the discussion as follows. We
first discuss our numerical method in Sec. II. Section II A is
dedicated to the parametrized matrix product operator (MPO)
[36,44,56,57,59,62–64] for an ∞ × N spin- 1

2 antiferromag-
netic Heisenberg model; Sec. II B to the variation of MPS in
the presence of MPO; Secs. II C and II D to entanglement per-
turbation of MPO and of Hilbert space, respectively; Sec. II E
to implementation of the antiferromagnetic checkerboard
symmetry; Sec. II F to integration of the Davidson eigenvalue
solver with MPS and MPO; Sec. II G to the space reduction in
MPS; Sec. II H to a useful relationship between the spin-spin
correlations and the staggered magnetization. There, we also
demonstrate that ln(ln Cr − ln Cr+1), Cr being the spin-spin
correlation at separation r, can be used to interpret order and
disorder. Next, benchmarks on decoupled ladders and ladders
with open boundary condition in the rung are given in Sec. III.
It is followed by Sec. IV for the GS properties of the target
model, i.e., the ladder with periodic boundary condition in the
rung, including the signature of a dimensional transition at
Nc = 10. The conclusion is stated in Sec. V and an outlook is
given in Sec. VI.

II. METHOD: INFINITE QUASI-1D ENTANGLEMENT
PERTURBATION THEORY

We developed a numerical method called infinite quasi-1D
entanglement perturbation theory (iqEPT). We divide an ∞ ×
N square lattice into an infinite chain of effective sites, each of
which is converted from the N sites in the rung. See Fig. 1(b)
for illustration. The wave function is written in a MPS that is
built on the effective sites. Meanwhile, the Hamiltonian H is
transformed to a MPO via the density operator e−βH with β

being a small positive constant [36,44,55,56]. Varying 〈e−βH 〉
with respect to the MPS tensor yields a generalized eigenvalue
equation (GEE). The GEE is formed using the trial MPS wave
function at the very beginning and then is updated by the

solved eigenvector corresponding to the largest eigenvalue
at each iteration. Eventually, the eigenvector approaches the
fixed state for a given rank P. Adding small elements to the
obtained MPS matrix ranked at P to form a trial MPS matrix
ranked slightly larger at P + �P, we carry on the previous
process until convergence is reached. Thus, those obtained
quantities will converge with P. The final largest eigenvalue,
i.e., e−βε0 , gives the GS energy ε0.

The essential concept that distinguishes iqEPT from other
MPS methods is that it expresses the Hamiltonian as a
parametrized MPO [36,55,56] and this parameter was used
to reduce the linking complexity between the building units
of MPO [44]. In this work, we further point out that it is
equivalent to treat the entanglement in MPO in perturbation,
as will be explained in Sec. II C. The rank (bond index size)
of a MPO tensor is reduced to 3N + 1 from the original
scale of 4N . We also integrate the Jacobi-Davidson method
for GEE [65] with both MPO and MPS, without explicitly
forming GEE. The details are given in Sec. II F. As a result,
we were able to handle the unprecedented GEE rank as large
as 214 × 3502 = 2.0 × 109 with P = 350 for N = 14.

A. Parametrized matrix product operator for an ∞ × N
square lattice

In what follows, the Einstein summation convention is
implied for repeating indices in a formula except stated oth-
erwise. (x ↔ y) denotes pairing between two physical sites
x and y. �α1, . . . , αm� combines m individual indices α1 =
1, . . . k1, . . . , αm = 1, . . . , km into a single flattened index
α = 1, . . . ,

∏m
i ki.

After the physical sites in each rung are converted as a
single effective site, the Hamiltonian is further rewritten as

H =
∑
{a,b}

(Ha + Hb), (2)

where the summation runs over the two sets of bonds, {a}
and {b}, between nearest-neighboring physical sites. If the two
physical sites of a bond reside on different effective sites, it
is collected in the inter-effective-site set {a}, and otherwise
in the intra-effective-site set {b}. Figure 3 illustrates various
bonds in the case of N = 4. In this case, each effective site,
say the ith site, has four intra-effective-site bonds bi

1, bi
2, bi

3,
and bi

4. It also participates in eight inter-effective-site bonds.
The first four are labeled with index i − 1: ai−1

1 , ai−1
2 , ai−1

3 ,
and ai−1

4 . They bond physical sites residing on the (i − 1)th
and ith effective sites. The last four are labeled with index i;
they are ai

1, ai
2, ai

3, and ai
4 bonding physical sites residing on

the ith and (i + 1)th effective sites. These sets of bonds are
used to rewrite the Hamiltonian as

e−βH ≈
∏

i

(∏
k

e
−βHai

k

∏
l

e
−βHbi

l

)
+ O(β2), (3)

where i = 1, . . . ,∞ and k, l = 1, . . . , N . Although the se-
quence of the bonds grouped as the single exponent in the
left-hand side of Eq. (2) does not matter, it matters in the
right-hand side in that the ordering of i, k, l is equivalent
to permuting the Hamiltonian matrix. The permutation does
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FIG. 3. Illustration of MPO for N = 4. (a) The construction. The
local quantum space is represented by rectangles enclosing four
physical sites (circle in gray color). Directed out of the page is the
conjugate of those spaces. The building units of MPO, symbolized
by �1 and �2 in (b), are enclosed within the tilted rectangles in-
between the spaces. Going from the space to its conjugate, the first
four pairs of green-red solid circles are stacked shell by shell in
sequence. They account for the on-effective-site interaction, with the
green/red circle denoting f /g operator mentioned in the context. The
dashed line denotes the contraction of bond index running from 1 to
4. The solid line denotes the inner product between the operators
operating sequentially on the same physical lattice site. Following
the on-effective-site operators are one shell of f /g operators bonding
the (i − 1)th/ith effective sites, and another shell of g/ f operators
bonding the (i − 2)th/(i − 1)th effective sites and the ith/(i + 1)th
effective sites, respectively. They are stacked layer by layer from
bottom to top, forming inter-effective-site interactions and hence
giving the rise of entanglement in MPO represented schematically
by the horizontal dashed lines in (b). The individual space indices
ri=1,4/si=1,4 are combined into single indices of vertical solid lines in
(b), while the individual bond indices mi=1,4/ni=1,4 being combined
into horizontal dashed lines in (b).

not affect the physical property but requires the corresponding
linear manipulation of the representation basis. We choose to

operate
∏

k e
−βHai

k on
∏

l e
−βHbi

l for given i. A physical site
of the ith effective site is denoted as xi, x = 1, . . . , N , from
bottom to top in the rung. For the set {bi

l}, it is ordered such
that l = 1 : (1i ↔ 2i ), 2 : (2i ↔ 3i ), . . . , N : (Ni ↔ 1i ). For
the set {ai

k}, it is ordered such that k = 1 : (1i ↔ 1i+1),
2 : (2i ↔ 2i+1), . . . , N : (Ni ↔ Ni+1). It is clear that the
successive product of e

−βHbi
l involves only one effective site.

The N operations are stacked in a shell-by-shell manner in
and out of the page. It is followed by the successive product

of e
−βHai

k which operates on the physical sites across two
effective sites. They are stacked from bottom to top in a
layer-by-layer manner. See Fig. 3 for details. Each individual
density operator for a general bond (i ↔ j) in the right-
hand side of Eq. (3) is Taylor expanded as, utilizing small
positive β,

e−β(Sx
i Sx

j +Sy
i Sy

j +Sz
i Sz

j ) ≈ I − β
(
Sx

i Sx
j + Sy

i Sy
j + Sz

i Sz
j

) ≡ fα ⊗ gα.

(4)

fα=1,4 operating on the first physical site of a bond are 2 × 2
matrices (identity,

√
βSx,

√
βS̄y, and

√
βSz); gα=1,4 operating

on the second physical site are 2 × 2 matrices (identity,
−√

βSx,
√

βS̄y, and −√
βSz). Note that g’s differ from f ’s in

that the former has the minus sign; S̄y
i ⊗ S̄y

j = −Sy
i ⊗ Sy

j with

S̄y = (0 −1
1 0 ) being a real version of Sy to avoid any complex

element in the matrix.
Now consider the product of two individual density oper-

ators of two bonds c and c′. There follow two rules applied
in different cases. Rule A: e−βHc e−βHc′ = fα ⊗ gα ⊗ fγ ⊗ gγ

if there is no shared physical site. Rule B: e−βHc e−βHc′ =
fα ⊗ (gα · fγ ) ⊗ gγ if there is a shared physical site.

Rule A is transparent. The formula shown in Rule B applies
to the case where the shared site is the first site of bond c′ and
the second site of bond c. Nevertheless, the combination of
shared site positions respectively in c and c′ is diverse, such
as first vs first, second vs second, etc. They all appear in Fig. 3.
The formula in Rule B will be slightly adjusted accordingly.

After applying these rules, the density operator involving
the ith effective site is

(
fn1 · gm1 · gl4 · fl1

)⊗ (
fn2 · gm2 · fl2 · gl1

)
⊗ (

fn3 · gm3 · fl3 · gl2

)
⊗ (

fn4 · gm4 · fl4 · gl3

)
. (5)

Each of the indices of bond set {bi}, l1, l2, l3, and l4, appears
twice in expression (5), implying self-contraction of intra-
effective-bonds. The uncontracted indices m1, m2, m3, and m4

entangle the ith effective site with the (i − 1)th effective site
through the bond set {ai−1}; the other uncontracted indices
n1, n2, n3, and n4 entangle the ith effective site with the
(i + 1)th effective site through the bond set {ai}. In fact, fixing
indices m’s and n’s to {m}0 and {n}0, each resultant quantity
in every set of parentheses of (5) is a local density matrix
(ρru,su ). u = 1, . . . , 4 refer to the four sets of parentheses.
Each of r’s or s’s runs from 1 to 2 accounting for spin- 1

2 .
The combinations ri ≡ �r1, r2, r3, r4� and si ≡ �s1, s2, s3, s4�
run from 1 to 2N . The direct product between the four local
density matrices spans a resultant density matrix �risi,{m}0{n}0

of rank of 2N for the ith effective site. Allowing m’s and
n’s to vary, � becomes a four-legged tensor �risi,mn. The
combinations m ≡ �m1, m2, m3, m4� and n ≡ �n1, n2, n3, n4�
are the bond indices and run from 1 to 4N . Considering the
bipartite structure due to the antiferromagnetic nature, Eq. (3)
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is transformed to a parametrized MPO as follows:

e−βH =
∑

. . . ri−1ri . . .

. . . si−1si . . .

tr
(
. . . �1

ri−1si−1,mn(β )�2
risi,no(β ) . . .

)

× . . .
∣∣φi−1

ri−1

〉∣∣φi
ri

〉
. . .

〈
φi−1

si−1

∣∣〈φi
si

∣∣ . . . . (6)

Note that in Eqs. (3) and (6), the small parameter β is used
to express e−βH as a successive product of operators accord-
ing to Baker-Campbell-Hausdorff (BCH) formula, implying
that parts of high-order terms in β are already neglected
controllably. Nevertheless, many other high-order terms in β

still remain in the operator, which is a consistency check of
formula (5). We will show in Sec. II C that the remaining
high-order terms in β could be treated perturbatively to reduce
the last two (bond) indices of �1,2 from 4N to 3N + 1. But, for
the moment, we first discuss how to variationally optimize the
MPS wave function in the presence of MPO.

B. Variational optimization of MPS in the presence of MPO

The system wave function is expressed as a MPS

|�〉 =
∑

...ri−1ri ...

tr
(
. . . ξ 1

ri−1 · ξ 2
ri . . .

)
. . .

∣∣φi−1
ri−1

〉∣∣φi
ri

〉
. . ., (7)

which has the ξ 1,2 repetition structure, similar to that for
MPO, due to the antiferromagnetic condition. Note that ξ 1,2

are three-legged tensors. For example, ξ 2
ri for the ith effective

site is explicitly denoted with the index of the first leg, ri =
1, 2, . . . , 2N , which refers to the local quantum state |φi

ri〉.
Explicitly writing the other two legs m and n in ξ 2

ri,mn are
the left and right indices of a matrix, fixing ri. Therefore,
each of ξ 1,2 has 2N P2 variables when the matrix rank is P.
Given a configuration (Fock vector) of the local state of all
effective sites, a specific P × P matrix is then assigned to
each effective site; the left and right indices of that matrix
contract in a closed form with the right and left indices of the
matrix of the front and rear effective sites to yield a trace-out.
The resultant scalar value is the superposition coefficient of
the configuration in the wave function. Optimization of the
wave function by pinpointing the superposition coefficient is
equivalent to optimization of those P × P matrices, 2 × 2N

matrix elements in total, in the MPS with the bipartition
structure.

The MPS matrices can be optimized in various ways. One
way used in DMRG is to start with an exact solution of a small
part of system and then to renormalize the representation
basis every time the new parts interacting with the processed
part are added. The MPS matrix is a fixed point after many
projections of the DMRG solution [62]. The other way is to
vary the energy observation with respect to the MPS matrices,
hence, to optimize them simultaneously. Illustrated in Fig. 4,
the energy observation is expressed as

〈ψ |e−βH |ψ〉 =
[ ∑

...si−1si ...

tr
(
. . . ξ 1

si−1,α1γ1
ξ 2

si,γ1η1
. . .

)
. . .

〈
φi−1

si−1

∣∣〈φi
si

∣∣ . . .
][ ∑

...ri−1ri ...

tr
(
. . . ξ 1

ri−1,α3γ3
ξ 2

ri,γ3η3
. . .

)
. . .

∣∣φi−1
ri−1

〉∣∣φi
ri

〉
. . .

]

×

⎡
⎢⎢⎢⎣

∑
. . . zi−1zi . . .

. . .wi−1wi . . .

tr
(
. . . �1

zi−1wi−1,α2γ2
�2

ziwi,γ2η2
. . .

)
. . .

∣∣φi−1
zi−1

〉∣∣φi
zi

〉
. . .

〈
φi−1

wi−1

∣∣〈φi
wi

∣∣ . . .
⎤
⎥⎥⎥⎦

= tr(. . . Aαγ Bγ η . . . ), (8)

where the Kronecker delta function 〈φi
si |φi

zi〉 = δsi,zi , etc., is used to reduce the summations. And, we have

Aα≡�α1α2α3�,γ≡�γ1γ2γ3� ≡ ξ 1
si−1,α1γ1

�1
si−1ri−1,α2γ2

ξ 1
ri−1,α3γ3

, Bγ≡�γ1γ2γ3�,η≡�η1η2η3� ≡ ξ 2
si,γ1η1

�2
siri,γ2η2

ξ 2
ri,γ3η3

. (9)

α ≡ �α1α2α3� denotes the combination of indices α1, α3 = 1, 2, . . . , P (P is a given MPS rank) and α2 = 1, 2, . . . , 4N , giving
rise to a single index α = 1, 2, . . . , 4N P2, etc. Meanwhile, the normalization factor is

〈ψ |ψ〉 =
[ ∑

...si−1si ...

tr
(
. . . ξ 1

si−1,α1γ1
ξ 2

si,γ1η1
. . .

)
. . .

〈
φi−1

si−1

∣∣〈φi
si

∣∣ . . .
][ ∑

...ri−1ri ...

tr
(
. . . ξ 1

ri−1,α3γ3
ξ 2

ri,γ3η3
. . .

)
. . .

∣∣φi−1
ri−1

〉∣∣φi
ri

〉
. . .

]

= tr
(
. . .Cαγ Dγ η . . .

)
. (10)

Matrices C and D are formed as

Cα≡�α1α3�,γ≡�γ1γ3� ≡ ξ 1
ri−1,α1γ1

ξ 1
ri−1,α3γ3

,

(11)
Dγ≡�γ1γ3�,η≡�η1η3� ≡ ξ 2

ri,γ1η1
ξ 2

ri,γ3η3
,

where the combination of indices α1, α3 = 1, 2, . . . , P gives
rise to a single index α = 1, 2, . . . , P2, etc. Equation (8) is

rewritten as

〈e−βH 〉 = 〈ψ |e−βH |ψ〉
〈ψ |ψ〉 = lim

M→∞
tr(AB)M

tr(CD)M . (12)

Then, the first derivative of 〈e−βH 〉 with respect to ξ 1,2, say
ξ 1, leads to

∂〈ψ |e−βH |ψ〉
∂ξ 1

= 〈e−βH 〉∂〈ψ |ψ〉
∂ξ 1

. (13)
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FIG. 4. (a) Energy observation in the presence of MPS and MPO.
The quantities enclosed in each ellipse are combined into new tensors
A and B, each of which has a larger rank of P2Q with P and Q being
the MPS and MPO ranks, respectively. (b) Normalization of MPS
wave function. The quantities enclosed in each ellipse are combined
into new tensors C and D, each of which has a rank of P2.

Substituting the numerator and denominator in the right-hand
side of Eq. (12) into both sides of Eq. (13), respectively, we
arrive at

tr

[
(AB)M−1 ∂A

∂ξ 1
B

]
= 〈e−βH 〉tr

[
(CD)M−1 ∂C

∂ξ 1
D

]
. (14)

By singular-value decomposition (SVD) of the building units
in Eq. (12), we have

AB = u�v,
(15)

CD = u′�v′.

Substituting Eq. (15) into (14) derives that

v
∂A

∂ξ 1
Bu = 〈e−βH 〉

(
�1

�1

)M−1

v′ ∂C

∂ξ 1
Du′. (16)

In the above, only the largest eigenvalues �1 (�1) and the
corresponding right (left) eigenvectors v/u (v/u′) survive
when M → ∞. On the other hand, substituting Eq. (15) into
(12) leads to

〈e−βH 〉 1
M = �1

�1
. (17)

Substituting Eq. (17) into (16), we arrive at

v
∂A

∂ξ 1
Bu = 〈e−βH 〉 1

M v′ ∂C

∂ξ 1
Du′. (18)

In fact, Eq. (18) is a generalized eigenvalue equation (GEE).
To confirm it, it is instructive to explicitly rewrite both sides
as

v
∂A

∂ξ 1
Bu = X�ri−1,α1,γ1�,�si−1,α3,γ3�χ

1
�si−1,α3,γ3� = Xχ1,

(19)

v′ ∂C

∂ξ 1
Du′ = Y�ri−1,α1,γ1�,�si−1,α3,γ3�χ

1
�si−1,α3,γ3� = Y χ1,

where χ1
�si−1,α3,γ3� is the vector version of three-leg tensor

ξ 1
si−1,α3γ3

. In addition,

X�ri−1,α1,γ1�,�si−1,α3,γ3�

= vα1α2α3�
1
ri−1si−1,α2γ2

ξ 2
ri,γ1η1

�2
risi,γ2η2

ξ 2
si,γ3η3

uη1η2η3 ,

Y�ri−1,α1,γ1�,�si−1,α3,γ3�

= v′
α1α3δri−1,si−1ξ 2

ri,γ1η1
ξ 2

ri,γ3η3
u′

η1η3 (20)

are matrices. Thus, we have

Xχ1 = 〈e−βH 〉 1
M Y χ1,

(21)
X ′χ2 = 〈e−βH 〉 1

M Y ′χ2,

where another generalized eigenvalue equation is generated
for χ2, the vector version of the three-leg tensor ξ 2. It is
straightforward that X/X ′ and Y/Y ′ are functionals of χ2/χ1.
If we start to generate the GEEs with the trial vectors χ1,2

0,P0
, the

rank of each being as small as 2N P2
0 , a new set of vectors χ1,2

1,P0

are obtained by solving those GEEs and are used to update the
GEEs. Iterations are carried on until the norm of ‖χ1,2

m+1,P0
−

χ1,2
m,P0

‖ is less than a threshold value. The converged vectors
for P0 are used to generate the trial vectors for a slightly
larger rank P0 + �P by adding small new elements to the
enlarged vectors. A second type of convergence with respect
to P should eventually bring the identical largest eigenvalue
λ = �1

�1
for Eq. (21). We have

〈e−βH 〉 = λM . (22)

The GS energy of an ∞ × N lattice is

ε0 = −β−1ln〈e−βH 〉 = −Mβ−1lnλ. (23)

The GS energy per spin is

ε̄0 = ε0

2MN
= −(2Nβ )−1lnλ. (24)

C. Entanglement perturbation in Hamiltonian space

There are two kinds of eigenvalue equations to be solved
in this method. The first kind is the SVDs in Eq. (15) for the
left and right eigenvectors of two asymmetric matrices. The
first matrix has rank R1 = 4N P2 while the second has rank
R′

1 = P2; the second kind is the GEEs in Eq. (21) of rank R2 =
2N P2. It is obvious that R1 dominates R2 when N > 1. The
largest simulation scale in our study is for N = 14 and P =
350. It corresponds to R1 = 3.3 × 1013 and demands 30 TB
memory to store even a single eigenvector, not to mention that
solving an eigenvalue equation requires much more memory
allocation than that merely to store a single eigenvector. This
data scale is apparently not practical for modern computers.

Fortunately, there is a simple way to overcome this diffi-
culty. Examining fα=1,...,4 and gα=1,...,4, the α = 1 terms are
the identity matrix, zeroth order in β; the terms of α = 2, 3, 4
are all in the order of

√
β. But, whenever there is a term of

order
√

β, there should be a counterpart in the same order
at the other end of a bond. They actually generate terms in
the first order of β. On the other hand, according to formula
(5), the bond index of �1,2, say, m ≡ �m1, . . . , mN�, is a
combination of m1, . . . , mN , each of which is the index of f or
g running from 1 to 4. Because β � 10−7, it is safe to discard
the terms in the order of β2 and beyond. Therefore, it amounts
to keeping, among 4N combinations of �m1, . . . , mN�, those
terms with at most one of m’s not being 1. The new bond index
of �1,2, after reduction, now runs from 1 to 3N + 1 instead
from 1 to 4N . In the case of N = 4, they are 1 for 1111, 2 for
1112, 3 for 1113, 4 for 1114, 5 for 1121, 6 for 1131, etc.
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At this point, we reduced the rank of MPO tensor by
rewriting it in terms of a perturbative expansion in the small
positive parameter β. Now, we show that the reduction of
rank corresponds to the entanglement reduction in MPO. The
MPO is an entangled quantity in that it cannot be expressed
as the product of individual multiplicative quantities that is
associated with local quanta, namely, the local state of the
effective site in this study.

Like the Hilbert space for the wave function of a quantum
lattice · · · ⊗ {|φi〉} ⊗ {|φi+1〉} ⊗ · · · , we define a space H,
· · · ⊗ {|φi〉〈φ′

i |} ⊗ {|φi+1〉〈φ′
i+1|} ⊗ · · · , for the Hamiltonian.

It is not hard to show that it is indeed a vector space after
defining an inner product, i.e., vector-vector multiplication as


h1 · 
h2

= . . . (〈ϕ′
i |φi〉〈φ′

i |ϕi〉)(〈ϕ′
i+1|φi+1〉〈φ′

i+1|ϕi+1〉) . . .

∀ 
h1, 
h2 ∈ H


h1 = · · · ⊗ {|φi〉〈φ′
i |} ⊗ {|φi+1〉〈φ′

i+1|} ⊗ · · · ,


h2 = · · · ⊗ {|ϕi〉〈ϕ′
i |} ⊗ {|ϕi+1〉〈ϕ′

i+1|} ⊗ · · · . (25)

A MPO is exactly a vector in the form of MPS in H.
Analogously, the entanglement in this vector is characterized
by matrix rank [62]. Without treating the MPO perturba-
tively in β, this entanglement is explicitly determined by the
lattice topology and the types of interactions. Nevertheless,
the entanglement in the MPO is reduced in a simple yet
systematic way in this method. It is called the entanglement
perturbation theory for a quantum Hamiltonian. The benefit of
entanglement reduction in MPO is immediate in that it reduces
an eigenvalue problem of rank of 4N P2, which dominates over
the GEEs of rank of 2N P2 in terms of computational burden,
to that of rank of (3N + 1)P2. It is clear that the bottleneck
of simulation of an ∞ × N Heisenberg lattice becomes how
to efficiently solve GEEs. When N = 14 and P = 350 (the
parameters causing the most computational burden in this
work), their rank is more than 2 × 109 . Solving such a large
GEE is not feasible with any existing numerical tool. Thus, we
integrate the Jacobi-Davidson method with MPS and MPO to
solve the GEEs without explicitly forming them. The details
are explained in Sec. II F.

D. Entanglement entropy and area law in Hilbert space

It is the entanglement in Hilbert space between an isolated
quantum lattice set I and the surrounding environment E that
is of special interest in the design of a many-body method that
uses MPS since the area law [61] states that

s(I ) ∝ |∂I| (26)

and

s(I ) � 2 log2(P), (27)

where |∂I| is the area of boundary ∂I and P is the MPS rank.
The von Neumann entanglement entropy s(I ) is defined as

s(I ) ≡ −
∑

i

ρilog2ρi. (28)

Now that the local Hilbert space HI ≡ {|φi〉} is embedded in
the complete Hilbert space H to write a system wave function

FIG. 5. Schematic of applicable and inapplicable scenarios of the
area law. Applicable: (a) isolations embedded in a large 2D lattice
whose sites (circles) interact along both dimensions (solid lines). The
boundaries in dashed lines are enclosed; (b) the boundary of isolation
embedded in a decoupled lattice shows no difference with or without
the horizontal dotted lines to enclose them. Inapplicable: from (c) to
(d), the width N of the ladder is increasing. They are described by two
distinct Hamiltonians. For N = ∞ in both (a) and (d), the boundaries
are topologically different. The former is single connected while the
latter is disconnected.

|�〉, the reduced density matrix is

ρi j = TrE 〈φi|�〉〈�|φ j〉. (29)

In the case where |�〉 is expressed as a MPS, the reduced
density matrix is evaluated as shown in Eq. (59). See Sec. II G
for details. After diagonalizing the reduced density matrix,
the entanglement entropy can be readily computed using the
diagonal density matrix elements.

Figure 5(a) shows the applicable scenario of the area law.
An isolated partition increases from A1 to A2, embedded
in a given large 2D quantum lattice whose sites (shown
as circles) interact both horizontally and vertically (shown
as solid lines). Note that the boundaries ∂A1 and ∂A2 are
composed of both vertical and horizontal dashed lines. When
the isolated partition is enlarged, its boundary increases nearly
linearly. According to Eq. (27), the MPS rank P which is
required to obtain a certain precision for the nearly linearly
increasing entanglement entropy should almost exponentially
increase. Since all the existing many-body methods such as
DMRG, density matrix embedding theory (DMET) [66], and
dynamic mean field theory (DMFT) [67] start from or focus
on an isolated quantum lattice set surrounded by a large
environment as shown in Fig. 5(a), they encounter the same
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difficulty originating from the area law of entanglement en-
tropy.

In our method of converting the N lattice sites in the rung
into an effective site and then building a MPS on the effective
chain, there are two major differences from the scenario
shown in Fig. 5(a). First, two lattices of N1 shown in Fig. 5(c)
and N2 in Fig. 5(d) actually have two different Hamiltonians.
Second, imagining N = ∞ in both Figs. 5(a) and 5(d) such
that their Hamiltonians are identical, their boundaries ∂A∞
and ∂D∞ are topologically different because the former is
connected and the latter is disconnected. Therefore, the en-
tanglement of isolations A in Fig. 5(a) and D in Fig. 5(d) is
different. That is to say, the area law of entanglement entropy
is not applicable in our method.

However, Figs. 7 and 8(c) in Sec. III confirm that the area
law coincidentally applies when we solve the decoupled spin
ladder [Fig. 5(b)] using our method. There are two reasons.
First, Hamiltonian H (n) of a decoupled spin ladder of N = n
now has the perfect extensivity property, i.e., H (n) = nH (1)
where H (1) is the spin chain Hamiltonian. Second, there is
no difference whether or not the boundary is enclosed by the
dotted horizontal lines because there is no vertical interaction.

In fact, the entanglement entropy is crucially controlled by
the density matrix of an effective site when our method is used
to study a quantum ladder. Let us consider the following two
ideal cases.

Case 1. The Hamiltonian is perfectly extensive, i.e.,
H (n) = nH (1) with n being an integer. The decoupled ladder
clearly qualifies for this category. In this case, the diagonal-
ized density matrix (ρ(nI )) of the isolated partition nI is the
direct product of (ρ(I )) = (x 0

0 y) for n times. Then, the di-

agonal element of (ρ(nI )) forms a set {xkyn−k ; k = 0, . . . , n}
with (n

k)-fold degeneracy. We have

s(nI ) = −
n∑

k=0

(
n

k

)
xn−kyklog2(xn−kyk )

= n

[
n−1∑
k=0

(
n − 1

k

)
xn−1−kyk

]
(−x log2x − y log2y)

= n(x + y)n−1s(I ). (30)

Since x + y = 1 holds, we have

s(nI ) = ns(I ). (31)

The area law evidently applies.
If x is equal to y, i.e., if the diagonalized density matrix is

always equally weighted regardless of the size of nI , there
is no dominant element. The MPS rank P that reveals the
physical properties such as GS energy to a certain precision
should be equal to what reveals the entanglement (i.e., the
Fock vector configuration) in a wave function. Equation (27)
determines that P strictly exponentially increases with N
for a desired energy accuracy. Meanwhile, the diagonalized
density matrix of a decoupled ladder of width N always has
dominant elements because x �= y for a single chain. In turn,
our result in Sec. III shows that the increase of P will be
slower than an exponential function of N for smaller N’s but

FIG. 6. (a) Owing to the antiferromagnetic nature, the tensors of
MPO and MPS have a bipartite checkerboard symmetry in the origi-
nal spin basis. (b) After applying the checkerboard transformation on
any sublattice, for instance the blank lattice as shown, those tensors
need not be distinguished anymore in the new spin basis.

will asymptotically tend to an exponential function 2N for
N → ∞.

Case 2. There are a limited number of dominant diagonal
elements. We discuss an extreme example:

ρ1 = 1 − 2−n,

R(HnI )∑
i=2

ρi = 2−n. (32)

Here, R(HnI ) is the Hilbert space rank of nI , and ρi=2,...,R(HnI )

are equally weighted. In this case, it is easy to show that
s(nI ) < ns(I ) and that the entanglement entropy saturates
when n is large. The area law does not apply.

In a realistic strongly coupled ∞ × N spin lattice, our
results in Secs. III and IV confirm that the area law of
entanglement entropy does not apply and the density matrix
of an effective site has few, not single, dominant diagonal
elements whose number saturates with increasing N .

Letting an effective site have a large local space, our
method takes the dominant basis vectors into account so as to
simulate the physical quantities efficiently with a smaller MPS
rank. Packing the entanglement contributed by the dominant
basis vectors in a smaller MPS by coarse graining N quantum
lattices in the rung is an implicit entanglement perturbation
in the Hilbert space. It is also possible to truncate the local
(i.e., at an effective site) Hilbert space by removing the
diagonalized density matrix elements whose contributions are
negligible. It amounts to a space reduction in MPS. We present
the details in Sec. II G. For the moment, we discuss in the
following two subsections other specific properties of the
model in this study.

E. Implementation of checkerboard symmetry

So far, we have assumed a bipartite structure for both MPO
and MPS according to the antiferromagnetic nature of the
studied model. All the formulations can be straightforwardly
extended for even more complicated structures. In an opposite
limit, we specifically simplify both MPO and MPS to employ
a single tensor � and ξ by a checkerboard transformation
applied to a sublattice shown in Fig. 6(a) as

|↑′〉 ≡ |↓〉, |↓′〉 ≡ |↑〉. (33)
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Assuming the second site within a bond is on the transformed
sublattice, we rewrite Hbond as

Hbond = 
Si · 
S j = Sz
i · Sz

j + 1
2 (S+

i · S−
j + S−

i · S+
j ), (34)

where S+ and S− are the operators to flip the spin up or down,
respectively. They operate on the transformed site as

Sz|↑′〉 = − 1
2 |↑′〉; Sz|↓′〉 = 1

2 |↓′〉
S+|↑′〉 = |↓′〉; S+|↓′〉 = 0

S−|↑′〉 = 0; S−|↓′〉 = |↑′〉. (35)

Equation (35) is used to rewrite Hbond in the checkerboard-
transformed basis as

Hbond = −Sz
i · Sz

j + 1
2 (S+

i · S′+
j + S−

i · S′−
j ), (36)

where S′+ (S′−) has the same matrix representation of S+
(S−) but flips up (down) the newly defined down (up) spins
in Eq. (33). After the transformation, we simplify the MPS to
have just one tensor ξ in Eq. (7) and the MPO to have just
one tensor � in Eq. (6). The other related formulation will be
simplified accordingly, and we only present the simplified for-
mulations when they are specifically needed in the remainder
of the discussion in this paper. Note that an appropriate sign is
needed when a physical quantity is being calculated with the
solved wave function in the checkerboard-transformed basis.
Also, note that compared with Eq. (24) before the checker-
board transformation, the GS energy per spin now becomes

ε̄0 = −(Nβ )−1lnλ, (37)

where λ is the largest eigenvalue of the only remaining GEE.

F. Integration of Jacobi-Davidson eigenvalue solver for GEE
with MPO and MPS

We discuss how to obtain the largest eigenvalue and the
corresponding eigenvector by iteratively solving a GEE given
by

Xx = λY x, (38)

where X and Y are n × n square matrices, x is an eigenvector,
and λ is the corresponding eigenvalue. When only a few
eigenvectors are needed (only the largest eigenvalue is needed
in this study) and when n is very large, an iterative approach
such as the Jacobi-Davidson method [65] is more desirable
than the typical method of factorization. It starts with an
initial n × m matrix W0 whose columns are n-element vectors
wi, i = 1, . . . , m � n. It is used to transform X and Y to
those of rank of m as

Z0 ≡ W T
0 XW0,

(39)
F0 ≡ W T

0 YW0.

The following new GEE

Z0y0 = τ 0F0y0 (40)

is much easier to solve for all its eigenvalues {τ 0
i } and the

corresponding eigenvectors {y0
i }. {τ 0

i } are ordered such that
τ 0

1 > τ 0
2 > · · · . Then, a new vector is constructed as

Q0 = (
XW0 − τ 0

1 YW0
)
y0

1. (41)

To accelerate convergence, the vector Q0 is processed to
obtain a new vector wm+1 as

wm+1(i) = Q0(i)

τ 0
1 Y (i, i) − X (i, i)

, i = 1, . . . , n. (42)

wm+1 is attached as a new column to W0 forming an n ×
(m + 1) matrix W1. In this procedure, the Gram-Schmidt
method is used to make wm+1 orthonormal to the existing
column vectors. The approximated eigenvector corresponding
to the largest eigenvalue is

x0 = W0y0
1. (43)

The precision of this approximation is checked by whether
Xx0 and Y x0 are parallel. If so, the iteration stops with the
solution of the largest eigenvalue τ 0

1 and the corresponding
eigenvector x0. If not, we carry on the process with

Z1 ≡ W T
1 XW1,

(44)
F1 ≡ W T

1 YW1

until Xxj and Y x j are parallel at the jth step. Satisfactory
convergence is obtained after about 100 steps in this study
even for GEE of rank of billions.

So far, we introduced the basic steps of the Jacobi-
Davidson method for the GEE. The steps are merely formal
because matrices X and Y in fact never appear in the explicit
form as shown in Eqs. (39), (41), and (44). They even cannot
be generated and stored when their rank is greater than 105,
which turns out to be still much below the requirement to in-
vestigate the long-range spin-spin correlation in this study. As
a workaround, we integrate the aforementioned Jacobi-David
method with MPS and MPO, without explicitly forming the
left and right matrices of GEE.

After the checkerboard transformation, we only need one
MPO tensor � that is still formulated as in (5). � is extremely
sparse. We only store its nonzero elements in {� j : |� j | >

0} and the set {(r j, s j, α j, γ j )}, each of whose elements is an
array of the indices of the jth nonzero element � j ≡ �r j s j ,α jγ j .
Now, we simplify X and Y in Eq. (20) as

X�r,α1,γ1�,�s,α3,γ3� = vα1α2α3�rs,α2γ2 uγ1γ2γ3 ,
(45)

Y�r,α1,γ1�,�s,α3,γ3� = v′
α1α3δr,su

′
γ1γ3 .

These are dense matrices. The notion of the effective site’s
label is no longer needed since the lattice is translationally
symmetric after the checkerboard transformation.

Except for explicitly evaluating Eq. (45) for the diagonal
element of X and Y that is needed in Eq. (42), the matrix-
vector multiplication only in which X and Y explicitly par-
ticipate in an operation [Eqs. (39), (41), and (44)] can be
evaluated as

z�r,α1,γ1� =
∑

j

vα1α jα3�r j s j ,α jγ j uγ1γ jγ3w�s j ,α3γ3�, (46)

where r is dynamically updated by r j during the summation
over j. We further rewrite Eq. (46) as

z�r,α1,γ1� =
∑

j

�r j s j ,α jγ j (π
α j · � s j · ργ j )α1γ1 . (47)
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In the parentheses, three new matrices are defined using the
tensors appearing in (46) as

(π k )i j ≡ vik j ; (� k )i j ≡ w�ki j�; (ρk )i j ≡ u jki. (48)

Note the difference in the right-hand side of the first and
third equations in (48), which reflects the sandwich structure
constructed by the MPS wave function, its conjugate, and the
MPO. The newly defined matrices participate in a chain of
multiplication to yield a resultant matrix that has two indices
α1 and γ1 contracting with the MPO tensor �. Equation (47) is
equivalent to update z with the resultant matrix L times, where
L is the number of nonzero elements of � and these elements
are the updating coefficients.

The transformation from expression of matrix-vector mul-
tiplication in Eq. (46) to that in (47) is crucial because the
summations are broken into a successive matrix product of
matrices, which reduces the computational cost by a few or-
ders in the MPS rank P. Again, the mathematical idea of MPS
to associate many loops of index summation by a successive
matrix product helps reduce the computational burden when
solving a GEE without even explicitly forming it.

Meanwhile, the SVDs in Eq. (15) are simplified after the
checkerboard transformation as

A = u�v,
(49)

C = u′�v′,

where

Aα≡�α1α2α3�,γ≡�γ1γ2γ3� ≡ ξr,α1γ1�rs,α2γ2ξs,α3γ3 ,
(50)

Cα≡�α1α3�,γ≡�γ1γ3� ≡ ξr,α1γ1ξr,α3γ3

have the rank of T = (3N + 1)P2 and O = P2, respectively.
Both of them will be very large in some cases. For instance,
the largest T value encountered in this study is 1.0 × 108

when P = 2000 for N = 8. It is not accessible by ordinary
SVD solvers. In this study, SVDs are solved by the power
method without forming A and C. The matrix-vector multipli-
cation is transformed into a successive matrix product similar
to Eq. (47).

The composite matrices A, B defined in Eq. (9) have
rank (3N + 1)P2; C and D defined in Eq. (11) have rank
P2. The composite-matrix-vector multiplication is the time-
controlling factor in the Davidson method. It is decomposed
to a chain of lower-ranked matrix-vector products after de-
composing the composite matrix as in Eq. (47). The lower
rank is P. Thus, the time consumption in iqEPT is bilinear
with both P2.5 (if using a Lapack routine) and 2N (which
determines the number of nonzero elements in �). In the
largest simulation scale of this work, it took 2 × 104 s to solve
the GEE in a series of iterations for N = 10 and P = 1400,
using 6 Dual-Intel-Xeon nodes each of which has 20 cores
and 256 GB memory installed. It took 50 iterations to obtain
the converged data for that set of N and P.

G. Space reduction in matrix product state

The use of density matrix is crucial in simulating quantum
lattice models in that it guides reduction of Hilbert space
(subspace) which exponentially increases with respect to the

system (subsystem) size. Given a bipartite structure A and E
of a system, the system wave function |�〉 is an entangled
quantity composed of basis vectors from subspaces {|φi〉} for
A and {|ψi〉} for E ,

|�〉 =
∑
i, j

Xi j |φi〉|ψ j〉, (51)

where X is a tensor entangling A and E . The density operator
for a subspace, say {|φi〉}, is defined as ρ̂ ≡ TrE |�〉〈�|, where
TrE means that the degree of freedom in subsystem E is traced
out. Its matrix representation is

(ρi j ) ≡ 〈φi|ρ̂|φ j〉 = XikX ∗
jk . (52)

Note that normalization of |�〉 implies trρ = 1.
The system wave function can be reconstructed as |� ′〉

using a reduced space {|θi〉} consisted of M basis vectors for
A along with the unaltered space {|ψi〉} for E . The density
matrix built in {|φi〉} is used to make the residual vector |R〉 ≡
|�〉 − |� ′〉 have a minimum norm [41,42,62]. Explicitly,
the density matrix is diagonalized and only M eigenvectors
{vi; i = 1, . . . , M} need to be retained. They correspond to the
most significant M diagonal elements {ηi}. New basis vectors
are constructed as

|θi〉 = vi(k)|φk〉, (53)

where vi(k) is the kth element of the eigenvector vi. And, |� ′〉
is constructed as

|� ′〉 = Yi j |θi〉|ψ j〉 (54)

with

Yi j = vi(k)Xk j . (55)

If the formal reduction is unitary (zero reduction), substituting
Eqs. (53) and (55) into (54) restores the wave function in (51).
When the truncation of space of A takes place (i.e., when
the eigenvector matrix kept is rectangular, hence no longer
unitary), we have

|� ′〉 = Xk jvi(k)vi(l )|φl〉|ψ j〉 = |�〉 − |R〉 (56)

with

|R〉 = Xk j�kl |φl〉|ψ j〉. (57)

Here, �i j = ∑n
k=M+1 vi(k)v j (k). It is straightforward to show

|||R〉||2 = ∑n
i=M+1 ηi.

Following the line of local space reduction, DMRG uses
the density matrix to keep a fixed number of transformed basis
vectors for an enlarged part of the system. DMET provides an
alternative to DMFT, using the density matrix to improve the
impurity state of a fragment embedded in the background. We
implement the density matrix in a different way where it is
used to reduce spaces in MPS. Dividing a quantum lattice into
L blocks each of which contains N physical sites, a MPS is
built as follows:

|�〉 =
∑

...ri ...rL

tr
(
. . . ξ i−1

ri−1 · ξ i
ri . . .

)
. . .

∣∣φi−1
ri−1

〉∣∣φi
ri

〉
. . ., (58)

where each MPS tensor ξ i is associated with a block, say, the
ith block. Different from Eq. (7), the MPS in Eq. (58) has a
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more general form. Its tensor does not necessarily have a unit-
cell structure and the space index ri runs from 1 to Q ≡ RN

meaning that each of the N physical sites in a block has a
general space rank R.

The computational burden of variational optimization for
each MPS tensor is determined by both bonding rank P
and space rank Q. One needs a tractable strategy to balance
between choices of P and Q. Choosing blocks that contain
more physical sites has the following benefits. First, there are
fewer tensors to solve. Second, it uses smaller P to achieve
the same precision. In the extreme case when a block contains
the whole system, one only needs a MPS tensor of rank 1 to
precisely represent the system wave function. However, as Q
increases exponentially with N to exclude the possibility of
building MPS on a block containing the whole system, one
still needs to solve multiple MPS tensors, while the same com-
putational resource only allows smaller P when N is larger.

We propose a scheme to overcome this difficulty when
building MPS on a blocked quantum lattice. A MPS ranked
P1 in the original spaces |�〉⊥P=P1 is used to construct density
matrix for each block, say the ith block, as

ρ i
ab = tr

[
. . .

(
ξ i−1

ri−1,α1γ1
ξ i−1

ri−1,α2γ2

)(
ξ i

a,γ1η1
ξ i

b,γ2η2

)
× (

ξ i+1
ri+1,η1θ1

ξ i+1
ri+1,η2θ2

)
. . .

]
. (59)

In ξ i
a,γ1η1

, a denotes the space index and the bond indices γ1

and η1 are explicitly shown here. Note that the density matrix
element in Eq. (59) should be adjusted according to the MPS
normalization. Density matrices will be constructed for all
L tensors (blocks) and are diagonalized simultaneously. For
each block, only eigenvectors corresponding to the largest M
diagonal elements are used to transform the space {|φi

j〉} to the
smaller one {|θ i

j〉} according to Eq. (53), where the superscript
refers to the block’s label.

The MPO tensor is correspondingly transformed as

�r′s′,mn = vr′ (s)�rs,mnvr′ (r). (60)

Notice that only the space index is changed in Eq. (60). Also
note that MPS in the reduced space set {Hi,′ ≡ {θ i

j}} for P �
P1, |� ′〉⊥P�P1 , can be reconstructed from the existing MPS
|�〉⊥P�P1 as

|� ′〉 =
∑

...si ...sL

tr
(
. . . κ i−1

si−1 · κ i
si . . .

)
. . .

∣∣θ i−1
si−1

〉∣∣θ i
si

〉
. . . (61)

with

κ i
a = va(b)ξ i

b. (62)

|� ′〉⊥P>P1 is then variationally determined. Alternatively, the
MPS in reduced spaces can be variationally determined for

all the ranges of P. The variational solution is described in
Sec. II B. In both ways, {Hi,′} has a smaller rank Q′ < Q
and the same computational resource now allows larger P,
yielding better accuracy in turn.

For the spin ladder studied in this work, we showed that
the linking complexity between the building units of MPO is
reduced to a linear dependence on N and the large-rank GEE is
efficiently handled by integrating the Jacobi-Davidson method
with MPS and MPO. The only remaining factor that gains
exponential complexity with increasing lattice width is the
space rank 2N of an effective site. This rank has been crucial
in handling even larger lattices or different complex scenarios
by iqEPT. This exponential complexity is now systematically
overcome by the space reduction in MPS.

Meanwhile, the density matrix can be used to reveal the
system properties since it determines which kind of basis vec-
tor contributes the most in the GS wave function. To this end,
we define the following quantity to reveal the spontaneous
spin-rotational symmetry breaking:

S̄z
j ≡ 〈

θ i
j

∣∣ N∑
k=1

(−1)kSz
(i,k)

∣∣θ i
j

〉
. (63)

Here, |θ i
j〉 is the jth new basis vector in the space (only unitar-

ily transformed, not necessarily reduced) of the ith effective
site. (i, k) is the 2D coordinate of a physical site. For a wave
function having the broken symmetry, one spin configuration
is expected to have a larger amplitude than its upside-down
counterpart in GS. It leads to nonzero values of S̄z

j with the
same sign for those j′s with non-negligible diagonal density
matrix elements. In contrast, this quantity is zero when there
is no spin-rotational symmetry breaking.

H. Spin-spin correlation and local magnetization

The spin-spin correlation is defined as Cr ≡ 〈Sz
(i, j)S

z
(i+r, j)〉

where the operators are separated by r sites along LD of an
∞ × N lattice. Without loss of generality, we set j = 1. After
converting the lattice into a chain of effective lattice sites, the
operators are redefined as

Sz
i,eff ≡ Sz

(i,1) ⊗ I(i,2) ⊗ · · · ⊗ I(i,N ), (64)

where I(i,m) is an identity operator operating on (i, m)th phys-
ical lattice site.

It is straightforward to construct a tensor � for Sz
i,eff. After

implementing the checkerboard transformation, the same ten-
sor also applies to Sz

i+r,eff. Therefore, the correlation function
is written as

Cr = tr
[
. . .

(
ξsi,αiαi+1

�siriξri,γiγi+1

) · (
ξsi+1,αi+1αi+2

ξsi+1,γi+1γi+2

)
. . .

(
ξsi+r ,αi+rαi+r+1

�si+r ri+r ξri+r ,γi+rγi+r+1

)
. . .

]
tr
[
. . .

(
ξsi,αiαi+1

ξsi,γiγi+1

) · (
ξsi+1,αi+1αi+2

ξsi+1,γi+1γi+2

)
. . .

] . (65)

We convert the quantities in the first and second parentheses in the numerator of Eq. (65) to matrices G and B as we did in Eq. (9)
in Sec. II B. Equation (65) becomes

Cr = lim
M→∞

tr(G · Br · G · BM−r−2)

tr(BM )
. (66)
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Since Eq. (66) only yields positive values, a proper sign
should be given to C(r) according to even or odd r, to
reflect the checkerboard transformation. We do SVD on B as
B = μ�ν. The singular values {�i} are sorted in descending
absolute magnitude. Equation (66) leads to

Cr = tr
(
νT

1 · G · Br · G · μ1
)

�r+2
1

. (67)

When r → ∞, we have

C∞ = F 2
1

�2
1

(68)

with

F1 ≡ νT
1 · G · μ1. (69)

The numerator may be zero or nonzero, giving disorder in-
cluding quasi-long-range order (QLRO) or order of the lattice.
Moreover, it is straightforward that the local magnetization is

M̄ ≡ 〈Sz〉 = lim
M→∞

tr(G · BM−1)

tr(BM )
= F1

�1
. (70)

Thus, we arrive at a theorem that the spin-spin correlations
after infinite spin-spin separation is square of the local mag-
netization,

C∞ = M̄2. (71)

This theorem is a useful supplement to the commonly used
definitions relating spin-spin correlations to staggered magne-
tization [6] though they are not universally agreed upon [68].

A new quantity

τr ≡ ln(lnCr − lnCr+1) (72)

is shown in Sec. IV to be useful. Although only the largest
eigenvalue of B determines the asymptotic C∞, the first eigen-
value �k̄ that has significant nonvanishing

Fk̄ ≡ νT
1 · G · μk̄ = νT

k̄ · G · μ1 (73)

is also important in determining how Cr approaches C∞
asymptotically. Given

Cr ≈ F 2
1

�2
1

+ F 2
k̄

�2
1

(
�k̄

�1

)r−1

, (74)

there are different scenarios of τr versus r after F1 is converged
with P.

Case 1. F1 �= 0. The lattice is ordered. We have

τr ≈ (r − 1)(ln�k̄ − ln�1) + f (75)

with

f ≡ 2(lnFk̄ − lnF1) + ln(1 − �k̄/�1). (76)

Equation (75) reads that τr is linear with r. The slope of τr

versus r is a nonzero constant p0 ≡ ln�k̄ − ln�1. Then, lnCr ,
hence, Cr becomes constant for large r.

Case 2.1. F1 = 0 and �k̄ is significantly smaller than �1.
Equation (74) reads as

Cr ≈ F 2
k̄

�2
1

(
�k̄

�1

)r−1

(77)

and

τr ≈ ln(ln�1 − ln�k̄ ). (78)

τr is a constant for large r. Cr decays exponentially with r.
The lattice is disordered and gapped.

Case 2.2. F1 = 0 and the first few largest eigenvalues
are almost degenerate with �1 while having less significant
Fj . They give small but slowly decaying contribution to the
correlation. Eigenvalues which have significant Fj’s are, how-
ever, definitely smaller than �1. They give to the correlation
contribution that is large for small r but decays exponentially.
All summed up, the resultant correlation function shows a
power-law decay in a large range of r. τr is linear with ln(r)
instead of r. The lattice is QLRO. See Appendix A for an
example with the spin chain.

III. BENCHMARK

In order to check the correctness of our algorithm, we
benchmark the method on decoupled spin- 1

2 ladders for var-
ious width N’s. Regardless of N , the ground-state energy per
site ε0 should be equal to the exact value −0.443 147 by Bethe
ansatz [3] of a single spin chain. Previously, the results for
N = 1 along a similar line of reasoning were reported [36]
to agree with the exact results. There was no need to utilize
the entanglement reduction in MPO described in Sec. II C
and the algorithm extensions presented in this work were not
applied. For N = 2, our extended algorithm reproduced the
exact energy at P = 2000, proving its correctness.

Figure 7(a) shows a linear log-log relationship between the
error of iqEPT data, relative to the exact value, and the MPS
rank P. Figure 7(b) further shows that the ratio of PN (for N) to
PN−1 (for N − 1) approaches 2 when 1/N → 0. This indicates
that P will asymptotically increase as an exponential function
2N when N → ∞. This increase is very rapid. For example,
the MPS rank needed to obtain an energy accuracy of 99.99%
is about 6 × 105 for N = 6. It is clear that treating a decoupled
spin ladder by iqEPT is inefficient.

We compute the entanglement entropy according to
Eq. (28) after diagonalizing the density matrix of a rung
obtained in Eq. (59). Figure 8(a) shows that it has a lin-
ear dependence on P−1/3. It can be used to make reliable
extrapolations used in Fig. 8(c). The linear dependence of
the entanglement entropy versus N , shown as open circles,
confirms our prediction in Sec. II D that the area law of
entanglement entropy coincidentally applies to decoupled lad-
ders in our method. Note that the convergence of entropy
is continuous in Fig. 8(a) for the gapless decoupled ladders.
In what follows, however, the scenario changes drastically
for an isotropically coupled spin ladder with either PBC or
open boundary condition (OBC) imposed along the rungs.
First is the ladder with OBC along the rungs for N up
to 6, to directly compare with the existing methods in the
literature.

The solid circles in Fig. 8(c) show that the area law does
not apply to the coupled ladder (see Sec. II D for explanation).
Also, the sudden convergence of entanglement entropy in
Fig. 8(b) shows that the coupled ladder with OBC along the
rungs is gapped [61] for N = 2, 4, and 6. However, the gap
does not exponentially decay with increasing N because the
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(a)

(b)

FIG. 7. (a) Relative error versus MPS rank P for decoupled
ladders of N = 1, 2, 3, 4, 5, 6, 7, and 8, ordered from left to right.
(b) Ratio of PN and PN−1 with respect to 1

N . At both PN and PN−1 the
same accuracy is obtained. The comparison is made for accuracies
99.9%, 99.7%, and 99% from top to bottom.

entanglement entropy will otherwise be linear [61,70,71] with
N . This observation does not yet violate NLSM’s prediction
on the exponential decay of the gap because this prediction
only applies to the coupled ladder with PBC in the rung. To
confirm this, the entanglement entropy in the target model
(the coupled ladder with PBC in the rung) is computed.
Figure 13(c) partially confirms the prediction for N = 2, 4,
and 6, as the entropy segment within this interval of N is
indeed linear. Nevertheless, the saturation starting from N = 8
suggests that NLSM’s prediction does not apply to larger
N’s. See Sec. IV for details. For the moment, we continue
to use the model with OBC to compare with the existing
methods.

Since there is no exact result to calculate the relative error
directly, we extrapolate the asymptotic energy ε̄ ≡ εP→∞
to obtain the relative error. Assuming a power relationship
between the relative error and P in iqEPT for isotropically
coupled ladders, the parametrized sum of squared residuals is

(a)

(b)

(c)

FIG. 8. Entanglement entropy of a rung versus P−1/3 for (a) de-
coupled ladders and (b) coupled ladders with OBC in the rung.
(c) Entanglement entropy versus N . Open and solid circles represent
coupled and decoupled ladders, respectively.
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(a)

(b)

FIG. 9. (a) Sum of squared residuals versus GS energy per site
and (b) log-log view of relative error versus MPS rank P for an
isotropically coupled ladder of N = 5 with OBC along the rungs.
The minimum of curve in (a) gives the extrapolation at P → ∞ for
GS energy per site needed to calculate the relative error in (b).

defined as

l (ε̄) ≡
∑

i

(
b1logPi + b2 − log

ε̄ − εPi

ε̄

)2

(79)

(a)

(b)

FIG. 10. Comparison of GS energy per site for spin ladders of
(a) N = 4 and (b) N = 6 both in the energy scale of 0.003, by
iqEPT, DMRG, and the MC loop algorithm. The short dotted line
indicates the DMRG extrapolation. Circled iqEPT results converge
to its dashed extrapolation.

with

b1 = m
∑

i logPilog
ε̄−εPi

ε̄
− ∑

i logPi
∑

i log
ε̄−εPi

ε̄

m
∑

i (logPi )2 − ( ∑
i logPi

)2 ,

(80)

b2 = 1

m

(∑
i

log
ε̄ − εPi

ε̄
− b1

∑
i

logPi

)
.

TABLE I. Comparison of GS energy per site among iqEPT, DMRG, and the MC loop algorithm for spin ladders with open boundary
condition imposed along the rungs.

iqEPT DMRG [30]

N P′ εP′ Extrapolation � Extrapolation MC loop [69]

2 40 −0.578043 −0.578043 −0.578043 −0.57802
3 500 −0.600538 −0.600538 −0.600537 −0.60063
4 640 −0.618567 −0.618567 −0.618566 −0.61873
5 1200 −0.627781 −0.627787 9.6 × 10−6 −0.62776 −0.62784
6 1600 −0.634681 −0.634690 1.4 × 10−5 −0.6346 −0.635(1)
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TABLE II. The simulated GS energy per site εP′ at the largest
MPS rank tried P′, the extrapolated energy ε̄, and the relative error
� for various N’s of an ∞ × N lattice with periodic BC imposed
in both directions. The extrapolation for N = 14 is replaced by the
interpolation in Fig. 11(c).

N P′ εP′ ε̄ �

2 32 −0.85935 −0.85935
4 266 −0.68328 −0.68329 1.5 × 10−5

6 560 −0.67277 −0.67279 3.0 × 10−5

8 2000 −0.67074 −0.67078 6.0 × 10−5

10 1400 −0.66996 −0.67017 3.1 × 10−4

12 560 −0.66871 −0.67001 1.9 × 10−3

14 350 −0.66636 −0.66993 5.3 × 10−3

Minimizing Eq. (79) gives the optimal extrapolation ε̄. Fig-
ure 9(a) shows an example of such extrapolation for N = 5.
Figure 9(b) confirms the assumed power relationship, making
the extrapolation self-consistent.

Extrapolations are made for all ladders in comparison.
Figure 10 shows that the GS energies for N = 4 and 6 have
converged in the scale shown. Table I compares results by
iqEPT, DMRG [30], and the MC loop algorithm [69]. Data
given by DMRG in [30] are not the raw data but their
extrapolation after two loops of scaling which vary both the
finite ladder length and the number of kept diagonal elements
in density matrix. Both Fig. 10 and Table I show that the
discrepancy between iqEPT results (including extrapolation)
and DMRG extrapolation rapidly increases when N increases
from 4 to 6. Explicitly, it is 1.62 × 10−6 (1.62 × 10−6) for
N = 4 and 1.28 × 10−4 (1.42 × 10−4) for N = 6, increasing
by two orders in magnitude. For larger N , the discrepancy is
expected to be progressively larger. As the next subsection
will show, for the ladder of interest which has PBC imposed in
both directions, the relative error of iqEPT result at P = 2000
for N = 8 is about 7.5 × 10−5. For N = 12, it is about 10−3.
See Table II for details. It is obvious that the relative error in
iqEPT scales much more slowly with respect to N than that in
DMRG for a spin ladder.

One last interesting observation is that the ladders with
OBC along the rungs are computationally more demanding
in iqEPT. For instance, to obtain the same relative error
3.0 × 10−5 for N = 6, P = 900 is required for OBC while
P = 560 for PBC. In contrast, DMRG favors OBC [62].
This difference has twofold meaning. First, the entanglement
entropy of a rung in the ladder with OBC [solid circles in
Fig. 13(c)] is greater than that with PBC [Fig. 13(b)] for each
N in comparison. It determines that OBC along the rungs is
necessarily more challenging to simulate. Second, DMRG’s
difficulty with PBC is caused by the winding MPS form [61]
[Fig. 2(b)].

IV. RESULTS

A. Ground-state energy

Our target model is the isotropically coupled ladder of even
N’s, with PBC imposed in both directions. One of our main
results is the GS energy per site for N up to 14, shown in

Fig. 11. In Fig. 11(a), the varying of energy with respect to
the MPS rank P is hardly noticeable for a large-P value in the
energy scale of 0.1 shown for N up to 12. Recall that Fig. 7
shows a power relationship between the relative error and P
and shows negative linear coefficients b1 defined in Eq. (80).
Therefore, the straight lines of energy versus 1/P should give
reliable extrapolations when 1/P → 0, which is a simpler al-
ternative to the extrapolating process in Eq. (79). Figure 11(b)
shows energy versus 1/P in the scale of 0.01 for N = 6, 8, 10,
and 12 from bottom to top, with the scale of 0.001 for N = 4
in the inset. Indeed, the straight lines steadily approach the
extrapolations. Table II lists the largest MPS rank P′ used for
each N , the simulated GS energy per site εP′ , the extrapolated
energy ε̄, and the relative error �. Note that the kept digits
of −0.859 345 7(1) with P � 16 for N = 2 is much more
than other N’s. We plot the extrapolated energies for each N
versus N−4 in Fig. 11(c). Only data for N = 6, 8, 10, and 12
are shown due to the very fast decay of N−4. They quickly
approach the thermodynamic limit value of −0.669 84 with
an uncertainty of 9.6 × 10−6. Our value agrees well with the
accepted values such as −0.6696 ± 0.0003 by series expan-
sions [72] and −0.6693(1) by the cluster algorithm [73]. It
can be compared with the DMRG result of −0.6768 [30]. It is
worth mentioning that the finite-size effect fades away in our
work by one order of 1/N faster than when approaching from
N × N lattice. The energy for an ∞ × N (N = 12) lattice has
a 2.5 × 10−4 difference relative to the thermodynamic limit
value, as close as that for a 22 × 22 lattice (interpolation from
Fig. 5 of [6]).

Meanwhile, the most intriguing information from the en-
ergy observation is the plot in Fig. 12(a). It shows the ratio of
the MPS rank for a given accuracy, say, 1.9 × 10−3 for N to
that for N − 2, with respect to 1/N . Figure 12(b) explains how
to get each PN . In Fig. 12(a), the dashed guiding line shows the
tendency of PN/PN−2 = 1 with 1/N → 0. This implies that
the increase of entanglement in a MPS wave function built
on an effective 1D lattice, whose site is converted from the N
sites in the rung of an ∞ × N lattice, will slow down with N
and possibly will be saturated for larger N .

The mechanism of this saturation of P with N is accounted
for by the saturating entanglement entropy of an effective site,
shown in Fig. 13(b). It is now clear that, treating an ∞ × N
lattice as if in 1D does bypass the area law of entanglement
entropy for the strongly correlated 2D quantum system if only
larger N can be reached. Figure 13(a) shows that the computed
entanglement entropy has a linear dependence on P−1/3. For
the ladders of N = 2, 4, and 6, it does suddenly converge
[61] when P reaches a threshold, forming plateaus shown in
the inset. Recall that the definitely gapless decoupled ladder
shows continuous convergence of entanglement entropy with
respect to the MPS rank in Fig. 8(a). Now that the ladders
of N = 8, 10, and 12 show no plateau either, it is necessary
to check whether the sudden convergence of a gapped ladder
is not reached yet or the ladder is gapless. These two pos-
sibilities shall be explored with more physical quantities. At
the moment, however, an immediate assertion can be made
that, starting from N = 8, the lattice is out of the applicable
regime of NLSM’s prediction that the ladder has a gap which
exponentially decays with increasing width. Otherwise, the
entanglement entropy would be linear in the full range of N .
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(a)

(b)

(c)

FIG. 11. (a) The convergence of GS energy per site with respect
to the MPS rank P, for N = 4, 6, 8, 10, and 12 from bottom to
top. The inset is for N = 2 in a distinct energy scale. (b) The
convergence of energy with respect to 1/P. The inset is for N = 4
in a distinct energy scale. They give extrapolations used in (c).
(c) The GS energy per site approaches the thermodynamic value as a
fourth-order function of 1

N → 0, one order faster than the approach
from N × N lattices. Only data for N = 6, 8, 10, and 12 are shown
due to the very fast decay of N−4.

(a)

(b)

FIG. 12. (a) Ratio of the MPS rank PN to PN−2, with respect
to 1

N . At both PN and PN−2 the same accuracy is obtained. The
tendency of PN

PN−2
→ 1 for 1

N → 0 implies the saturating MPS rank

with increasing N . The inset shows a larger scale starting from P2
P1

.
(b) The horizontal dashed line intercepts the curves of “relative error
versus 1/P,” giving PN ’s used in (a), given certain relative error, say
1.9 × 10−3. The comparison between N = 12 and 14 is made for the
relative error of 5.3 × 10−3, where P = 195 for N = 12 and P = 350
for N = 14, respectively.

B. Signature of dimensional transition

We now show that the ladder is still gapped for N = 8
and that it is ordered hence gapless for N � 10. We study
Cr versus r, where Cr is spin-spin correlation at separation
r in LD. Hereafter, we discuss the absolute value of the
correlations, despite the fact that they have alternating signs
due to the antiferromagnetism.

Figure 14 is shown in the semilogarithmic scale for N =
2, 4, and 6. The straight tilted lines indicate exponential
decays with respect to the spin-spin separation. Comparison
of the spin-spin separation needed for the same value of
spin-spin correlation gives the ratio 1 : 4 : 9 of correlation
lengths for these three lattices. It is worth noting the behavior
of N = 6. It looks straight when P � 250 but then jumps
down to the bottom when P = 270, and finally converges to
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(a)

(b)

FIG. 13. Entanglement entropy of an effective site for coupled
ladders with PBC in the rung. (a) Entanglement entropy versus P−1/3.
The steady tendency to P−1/3 = 0 gives extrapolation for N = 8, 10,
and 12 shown as rectangles, circles, and triangles, respectively. Those
of N = 2, 4, and 6 from bottom to top in the inset exhibit sudden
convergence. (b) Entanglement entropy versus N .

the fixed line. This is a clear indication of the competition
between order and disorder.

For N � 8, we did not obtain the converged plot of Cr

versus r due to the larger entanglement entropy. For those
systems, we study a quantity τr ≡ ln(lnCr − lnCr+1). It is the
varying rate of lnCr . If this rate is a negative constant, the
correlation decays exponentially with r. If the rate decreases
with r, the correlation is a constant at infinite separation, indi-
cating that the lattice is ordered. Figures 15(b) and 16(c) both
show that this quantity is linear with r at various MPS rank
P’s, as explained in Sec. II H. But, their asymptotic (P → ∞)
behaviors are different. For N = 8, τr asymptotically becomes
a negative constant for large r’s shown as the dashed curve in
Fig. 15(b). This negative constant is obtained when the lines
of τr versus P−3/4 for various large r’s converge to the same
value when p → ∞ in Fig. 15(a). Starting from C1 = ε̄0/6
and then tracing along the asymptotic curve in Fig. 15(b), we

(a)

(b)

(c)

FIG. 14. lnCr versus r. The linear tilted lines in logarithmic
scale suggest the exponential decay of correlations with respect to
separations. They approach the fixed one from bottom when P = 4
to top when P = 28 (every augment of 4 for P) for N = 2 in (a); from
bottom when P = 40 to top when P = 200 (every 40) for N = 4 in
(b). However, the beginning lines are flat at top in (c) for N = 6,
starting from top when P = 190 to the last flat one in the middle
zone when P = 250 (every 20). It suddenly jumps down to the tilted
line at the bottom when P = 270 and approaches the fixed tilted line
when P = 560 (every 20).
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(a)

(b)

(c)

FIG. 15. Cr and τr ≡ ln(lnCr − lnCr+1) for N = 8. (a) τr versus
P−3/4 at separations r = 10, 20, 30, 40, and 50 from top to bottom.
(b) τr versus r at various P’s. They asymptotically approach the
dashed curve obtained by the extrapolation in (a). Trace along
the asymptotic curve in (c), starting from lnC1 = ln ε̄0

6 , yields the
asymptotic curve of lnCr versus r.

obtain the dependence of lnCr on r in Fig. 15(c). It is seen that
Cr for N = 8 decays exponentially with r. Nevertheless, For
N = 10, Fig. 16(a) shows that the lines of τr versus P−3/4 do

(a)

(b)

(c)

(d)

FIG. 16. Cr and τr ≡ ln(lnCr − lnCr+1) for N = 10. (a) τr ver-
sus P−3/4 at r = 10, 20, 30, 40, and 50 from top to bottom.
(b) (τr − τr+10 )/(τ10 − τ20 ) versus P−3/4 at r = 20, 30, and 40.
(c) τr versus r at various P’s. They asymptotically approach the
dashed curve obtained by the extrapolation in (a). (d) Trace along
the asymptotic curve in (c) yields the asymptotic curve of lnCr

versus r.
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(a)

(b)

(c)

FIG. 17. Effect of space reduction in MPS for N = 10. (a) GS
energy per site versus MPS rank P. Open circles denote the solution
before reduction. Result at P1 = 100 is used to reduce the space rank
to 128, 256, 384, and 512, yielding new solutions shown as dotted-
dashed, dotted, dashed, and solid curves. (b) GS energy versus 1/P.
Tangents of convergence yield the extrapolated energies for various
space ranks, 128, 256, 384, 512, and 1024 (unreduced) from top to
bottom. (c) Extrapolation of the energy in unreduced spaces using
those obtained in reduced spaces.

not converge to the same value when p → ∞. Figure 16(b)
further shows that τr − τr+10 are equal for r = 10, 20, 30,
and 40, implying that the lines in Fig. 16(a) are equally

FIG. 18. Use of space reduction in MPS for N = 14. Tangents of
the convergence of GS energy per site versus 1/P yield extrapolated
energies for various space ranks, 512, 1024, 1536, and 2048 from
top to bottom. The inset extrapolates GS energy per site in the
unreduced space using those extrapolations obtained in reduced
spaces.

spaced. Thus, the dashed asymptotic curve in Fig. 16(c) has
a constant negative slope for large r’s. Tracing along the
asymptotic curve, we obtain the dependence of lnCr on r
in Fig. 16(d). lnCr hence Cr become a nonzero constant at
infinite spin-spin separation. The ladder of N � 10 is ordered.
Since no external pinning magnetic field [74] is applied, it
implies that the spin-rotational symmetry is spontaneously
broken.

Our finding that the lattice of N � 6 is not ordered is
fully consistent with the previous report [5] that gaps exist
for lattices of 300 × N , N � 6. The gap leads to the fast
exponential-like decay for spin-spin correlations reported for
those lattices. Nevertheless, we show with strong numeri-
cal evidence that the spin-rotational symmetry spontaneously
breaks for a spin- 1

2 lattice of N � 10. Since a spontaneously
ordered GS is regarded as a 2D characteristic by the existing
theories, such as SWT, NLSM, and Mermin-Wager theory
[11,12], the spontaneous symmetry breaking defines a quan-
tum dimensional transition from 1D including quasi-1D to 2D
at a finite ladder width N .

C. Effects of space reduction in matrix product state

The effect of space reduction in MPS is shown with the
example of N = 10 in Fig. 17. In Fig. 17(a), simulated data in
the original space of rank of 210 are shown with open circles.
At P1 = 100, the solution is used to reduce the space rank to
128, 256, 384, and 512 to yield solutions in dotted-dashed,
dotted, dashed, and solid curves, respectively. Except for the
reduced rank 128, simulations for other reductions reproduce
the solution before reduction when P � P1. The closing gaps
between flattening curves are confirmed in Fig. 17(b), where
the energies versus 1/P are plotted for space ranks 128, 256,
384, and 512 from top to bottom. The simulation in original
space is also carried on after P1, shown as the bottom curve
in the same plot. All curves show convergence. The extrapo-
lation by tangents of those converging curves yields energies
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(a)

(b)

FIG. 19. Relative error versus (a) M/2N (reduction ratio) and
(b) 2N/M (inverse ratio). In (a), the dotted line gives a reference
of zero error, while the dashed line intercepts each curve to give
the reduction ratio at a certain accuracy. (b) Energies obtained in
reduced spaces for lattices of larger N approach more linearly to
those in unreduced space. Figures 17(c) and 18 show such examples
for N = 10 and 14, respectively.

in spaces of both various reduced sizes and the original size.
Those in the reduced spaces are used to extrapolate the energy
in the unreduced space, as shown in Fig. 17(c). There, the
linear fit yields −0.6704, agreeing well with −0.670 22 by
extrapolation using the data obtained before space reduction
in Fig. 17(b). Note that this scheme, which extrapolates the
result in original spaces with the data obtained in reduced
spaces, is much more computationally efficient so as to allow
simulation at larger-P values.

We run simulations for N = 14 in various reduced spaces
of ranks 512, 1024, 1536, and 2048 up to P = 500, shown
from top to bottom in Fig. 18. The lowest energy without
extrapolation is −0.666 76 at P = 500 in the reduced space
of size 2048, lower than the value −0.666 36 in Table II
obtained at P = 350 that is the largest P value to be handled
in the unreduced spaces. Meanwhile, the inset extrapolates to
−0.669 98 with the difference of 5 × 10−5 from −0.669 93
which was obtained by the interpolation in Fig. 11(c).

Figure 19(a) shows the result of ε versus M/2N for various
M’s and N’s, where 2N is the original space rank; ε is the

FIG. 20. Ratio of basis vector numbers kept for N and N − 2,
respectively, versus 1/N . The linear fit overlaps with the guiding
dashed line to 1 when N → ∞.

relative error between the energies obtained before and after
reduction. It is seen that, for N = 12, only 1/8 of the original
space size 212 is needed to achieve a relative error of 4.1 ×
10−3. In comparison, the same accuracy for N = 4 is obtained
with 15 out of 24 basis vectors. For N = 2, no reduction will
achieve good accuracy. Figure 19(b) shows the dependence
of relative error on 2N/M. Larger lattices (N � 8) show a
linear dependence, which is a reconfirmation for the reliability
of extrapolating results using simulation in reduced spaces.
Figures 17(b) and 17(c) illustrate such an example for a lattice
of N = 10. Figure 18 shows another example for N = 14.

We plot in Fig. 20 MN/MN−2 (ratio of numbers of basis
vectors kept to achieve the same accuracy for N and N − 2,
respectively) versus 1/N . It shows that this ratio tends to ap-
proach 1 when N → ∞. As discussed in Sec. II D, a saturating
number of significant diagonal density matrix elements of an
effective site is responsible for the saturating entanglement
entropy and consequently for the saturating MPS rank P,
when N increases. Figures 12(b) and 20 are indeed consistent.

V. CONCLUSION

In conclusion, the way we treated the ∞ × N quantum
lattice as 1D effective lattice, converting N lattices in the rung
into an effective site, enables us to handle the unprecedented
lattice sizes with N up to 14. We show that both the number
of significant diagonal density matrix elements and the entan-
glement entropy of an effective site saturate with increasing
N . The former is responsible for the latter. It bypasses the
area law of entanglement entropy for the 2D quantum lattice.
Our results for such a lattice with OBC along the rungs are
progressively more accurate for larger N’s than DMRG.

For the target model with PBC both along the rungs and
LD, the prediction of NLSM that the lattice will have a gap
which exponentially decays with N until N → ∞ is shown
to only fully apply to N � 6 and partially apply to N = 8
whose gap does not decay exponentially. In contrast, our data
revealed the signature of a quantum dimensional transition
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from 1D (including quasi-1D) to 2D that takes place at a
critical width N = 10, with emerging [4] order parameters.

VI. OUTLOOK

The saturating entanglement guarantees that the MPS rank,
which otherwise exponentially increases with N , saturates as
well, relieving the major computational burden related to the
MPS size. It is instructive to exhaust other factors which will
cause an exponential growth of computational burden with
respect to N in this method. The first such factor is the linking
complexity in MPO that in this work is reduced to a linear
relationship with N by the entanglement perturbation of MPO.
The second and also the last such factor is the exponentially
increasing number of local quantum states on the effective
site. It is 2N for spin- 1

2 . The limited number of significant
diagonal density matrix elements of an effective site enables
an efficient reduction of the space in MPS, hence eliminating
the last exponential factor in this method. It is possible that
a 2D ∞ × ∞ quantum lattice physically behaves like a 1D
lattice which has limited significant local states on a slice
and is linked with limited entanglement between neighboring
slices, when looked from any direction of its two dimensions.
The method used in this work is a promising numerical tool
when studying strong correlations in 2D in this way.

In addition, the emerging local magnetization in those ∞ ×
N lattices with N � 10 shows different finite-size effect from
that of an N × N or αN × N [74] (α is a small integer) lattice.
Since no pinning magnetic field B is needed, extrapolating to
the thermodynamic limit will be simpler. Staggered magne-
tization, one of the most fundamental physical quantities for
quantum spins, warrants more investigation along this line.

Note that the space reduction in MPS shown in this study
can be readily extended to any form of MPS or TNS based
methods such as PEPS, whenever they are built on a blocked
quantum system.
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APPENDIX: CORRELATIONS WITH MPS QUANTITIES

Bosonization [32,33] predicts a power-law decay of spin-
spin correlations C(r) ∝ r−1 for an antiferromagnetic spin- 1

2
chain, r being the spin-spin separation. So, the spin chain has
QLRO. In Sec. II H we discussed in the framework of MPS
that the eigenvalue structure of the building unit B [defined in
the second equation of (9)] for 〈g|g〉 is responsible for spin-
spin correlations, where |g〉 is the GS.

Figure 21(a) shows Fj’s defined in Eq. (73) for the first
100 largest eigenvalues of B. Only a few are significant in
magnitude. In the inset, the ratio � j/�1 versus j shows that
a few largest eigenvalues are almost degenerate with �1.
We then plot Cr versus r for spin chain in Fig. 21(b). The

(a)

(b)

(c)

FIG. 21. QLRO correlations of a spin chain. (a) The largest few
eigenvalues, which are shown in inset to be nearly degenerate with
�1, have less significant Fj’s. They make small contributions to Cr

that slowly decay with r. The eigenvalues which have significant
Fj’s are definitely smaller than �1. They make contributions that are
large at smaller r’s but decay rapidly with r. (b) The solid line in
the log-log view of Cr versus r collects contributions to Cr from
all eigenvalues. Rectangles collect contributions only from those
mentioned in (a). (c) τr ≡ ln(lnCr − lnCr+1) versus r. The inset takes
the odd branch as an example to show τr is linear with ln(r), in sharp
contrast to the linear dependence of τr on r for both disorder and
order.
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(a)

(b)

FIG. 22. Eigenvalue structure of B for (a) the disordered spin
ladder of N = 4 and (b) the ordered ladder of N = 10.

linear solid line in log-log view is obtained according to
Eq. (67), showing a power-law decay. This result contains
contributions from all eigenvalues of B. Nevertheless, the
rectangles represent data that only collects the contributions
from a few largest eigenvalues, that are nearly degenerate
with �1 but have less significant F ’s, and from those that
are definitely smaller than �1 but have more significant F ’s
shown as spikes in Fig. 21(a). The slowly varying constant-
like correlation contribution by the former adds up with the
fast exponentially decaying correlation contribution by the
latter, reproducing the power-law decay in a large range of
r. Meanwhile, Fig. 21(c) plots τr defined in Eq. (72) versus
r. The odd and even series both converge with the MPS rank
P to nonlinear curves. The inset shows that, for instance, the
odd series of τ versus ln(r) is linear. It is in sharp contrast to
the linear dependence of τ on r of either disorder [Fig. 15(b)]
or order [Fig. 16(c)].

Figure 22 shows the eigenvalue structure of B for disorder
in Fig. 22(a) and order in Fig. 22(b). For the disordered spin
ladder of N = 4 in Fig. 22(a), only the third largest eigenvalue
of B has nonvanishing F3 shown as the spike. Inset shows that
�3/�1 is significantly smaller than 1. It leads to the exponen-
tial decay of Cr to zero for large r, making τr a constant. If
F1 is not converged with the MPS rank P yet and hence does
not vanish, it will be a small value compared to F3. τr linearly
decreases with r. The decreasing rate asymptotically becomes
zero when P → ∞. See Fig. 15 for such an example of N = 8.
For the ordered spin ladder of N = 10 in Fig. 22(b), only the
first and eighth largest eigenvalues of B have nonvanishing
F1 and F8 shown as the spikes. �8/�1 is significantly smaller
than 1 in inset. It belongs to Case 1 described in Sec. II H.
lnCr exponentially decays to a nonzero constant when r is
large, as Fig. 16 shows. Thus, the lattice has a nonvanish-
ing correlation even at infinite separation and is therefore
ordered.
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