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Quasiperiodic magnetic chain as a spin filter for arbitrary spin states
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We show that a quasiperiodic magnetic chain comprising magnetic atomic sites sequenced in a Fibonacci
pattern can act as a prospective candidate for spin filters for particles with arbitrary spin states. This can be
achieved by tuning a suitable correlation between the amplitude of the substrate magnetic field and the on-site
potential of the magnetic sites, which can be controlled by an external gate voltage. Such correlation leads to a
spin filtering effect in the system, allowing one of the spin components to completely pass through the system
while blocking the others over the allowed range of energies. The underlying mechanism behind this phenomena
holds true for particles with any arbitrary spin states S = 1, 3/2, 2, . . ., in addition to the canonical case of
spin-half particles. Our results open up the interesting possibility of designing a spin demultiplexer using a
simple quasiperiodic magnetic chain system. Experimental realization of this theoretical study might be possible
by using ultracold quantum gases and can be useful in engineering new spintronic devices.
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I. INTRODUCTION

The ability to controllably tune, manipulate and detect
the spin degree of freedom of a particle in low-dimensional
systems plays a pivotal role in the field of spintronics [1–3].
It has emerged as one of the most significant areas of re-
search over the past few decades due to its potential to
realize new functionalities in future electronic devices, and
keep the promise to integrate memory and logic in a single
device. Spin-based electronic devices are assumed to have
several important advantages, such as high memory storage
density, faster access speed, low power consumption, and
nonvolatility, which give them a significant edge over the ex-
isting conventional electronic device technologies. To realize
such devices for real-life applications, a detailed investigation
and understanding of the spin-dependent transport in model
nanostructured systems is of immense importance and can
be treated as a powerful tool to envision the role of the spin
degree of freedom in coherent electronic systems. Generation
of a spin-polarized current source has been one of the key area
of investigation in the spintronics research domain and has
attracted intense theoretical as well as experimental research
studies over the course of time [4–14].

For the desirable operations and the development of the
spin-based devices such as spin-FETs [15], spin-interference
devices [16], and readout devices for quantum information
processing and quantum computers [17], the notion of spin-
polarized current or the so-called spin filter is one of the most
pertinent components. Spin interference effects in a quantum
ring geometry subject to the Rashba spin-orbit interaction
was successfully realized experimentally [18] a few years
ago following an earlier theoretical study [19]. To date, some
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notable progress has been achieved in the study of spin-
polarized transport, where people have used ferromagnetic
semiconductor heterostructures [20,21], metallic multilayer
structures [22], ferromagnetic metal-semiconductor interfaces
[23], and carbon-based organic materials [11,12] among oth-
ers to achieve highly controllable spin-polarized spin injection
sources. Furthermore, the study of spin-polarized transport
and spin filtering effects in quantum networks with loop
geometries [24–27], or in helical molecules [28], and DNA
double helix structure [29,30] has also ushered new light
into this research arena, revealing different subtleties of spin
polarized transport in mesoscopic systems.

However, to date, the study of spin-polarized transport has
mainly focused on the transportation of electrons, i.e., for
spin-1/2 particles, while the investigation of spin-polarized
transport for particles with higher spin states, such as spin-1 or
spin-3/2 or other higher-order states has not received the same
level of attention. Only recently, the idea of spin-polarized
transport and spin filtering effects for higher spin states in
a periodic magnetic chain is being proposed and studied in
detail [31]. We strongly believe that this is an area which
needs to be explored more rigorously in order to bring out
the possibilities of designing next-generation novel quantum
information storage devices which rely on the spin-polarized
transport of particles with arbitrary higher spin states. Such
systems exhibiting higher-order spin states can be realized
in experiments using ultracold fermionic or bosonic quantum
gases [32–37].

It is always an intriguing question to ask whether one can
have spin filtering phenomena in a system which has no long-
range translational order. In the present article, we address
this question and investigate the possibility of a spin filtering
effect for arbitrary higher-order spin states in a quasiperiodic
system. The quasiperiodic system we consider for our study
is a Fibonacci chain, which represents the simplest model of
a quasicrystal [38,39]. It is well known that the eigenstates
of a periodic system are extended Bloch states [40] and the
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corresponding energy spectrum is continuous while, for a
disordered system, like in a one-dimensional Anderson model,
all the eigenstates are localized [41]. In contrast to these
two cases, for a Fibonacci quasiperiodic system, the energy
spectrum forms a singular continuous Cantor set [38,39].
The corresponding eigenstates are critical and show mul-
tifractal character. Thus quasiperiodic systems, in general,
are expected to show up poor conducting behavior. In this
communication, we present a unique exception of the above
scenario and show that, for a correlation between the param-
eters of the Hamiltonian, our simple tight-binding model of
a quasiperiodic magnetic chain presents a ballistic transmis-
sion window for one of the spin channels while completely
blocking the particles in the other spin channels. It is worth
mentioning that, very recently, Mukherjee et al. have studied
the spin filtering effect in a variety of aperiodic systems
[42], where they have taken certain special kinds of quasi-
one-dimensional building blocks to form the quasiperiodic
systems. They have shown that, for some special numerical
correlations between the hopping integrals of the system, and
in some cases an additional external magnetic flux, will lead
to a spin filtering effect in the system. We note that, in their
study, in addition to a major spin channel having a high
transmittivity, the other remaining minor spin channels also
show some transport in their transmission characteristics. In
contrast with the above scenario, we propose a very simple
model of a one-dimensional quasiperiodic magnetic chain.
Here one can only tune the values of the on-site potentials
of the atomic sites by using some external gate voltages to
accomplish a complete spin filtering effect for one of the
desired spin components (channels), while the remaining spin
components will have zero transport through the system under
this condition.

In what follows, we present the model and describe the
essential results. The layout of the paper is the following:
In Sec. II, we introduce our model and describe the essential
mathematical framework employed to extract the results. The
results for the spin-dependent transport and the spin filtering
effect along with the corresponding local density of states
(LDOS) for different spin channels are discussed in detail in
Sec. III. Finally, in Sec. IV, we draw our conclusion with a
summary of the key findings and their possible applications.

II. THE MODEL AND THE THEORETICAL FRAMEWORK

A. The Fibonacci chain

We propose the construction of a linear magnetic chain
model following a Fibonacci sequence. The Fibonacci se-
quence is a quasiperiodic sequence of two letters; say, A and
B. To construct the system, one can start from the letter A, and
then apply the following substitution rule to grow the system
into its different higher-order generations:

A → AB and B → A. (1)

By using the above prescription in Eq. (1), we can easily
construct the different generations of a Fibonacci system as
follows: ABA, ABAAB, ABAABABA, and so on. For our
model, the letters A and B are simply replaced by two kinds of
magnetic atomic sites grafted on some substrates to form the

FIG. 1. Schematic diagram of a finite-size Fibonacci sequenced
quasiperiodic magnetic layered structure coupled between two semi-
infinite nonmagnetic leads, viz., source (S) and drain (D).

system shown in Fig. 1. These magnetic sites have magnetic
moments �hA and �hB, respectively, associated with them. In
the thermodynamic limit, i.e., for an infinitely long chain, the
ratio of A-type to B-type magnetic sites is incommensurate
and gives σ = (1 + √

5)/2, which is known as the “golden
ratio.”

B. Hamiltonian of the system

The Hamiltonian of the system in a tight-binding frame-
work can be written as

H =
∑

i

c†
i

(
εi − �hi · �S (S)

i

)
ci +

∑
〈i, j〉

(c†
i t i jc j + H.c.), (2)

where 〈i, j〉 indicates the nearest-neighbor atomic sites. We

note that, each of the terms c†
i (ci ), εi, t i j , and �S (S)

i represents
multicomponent matrices with dimensions that depend on the
spin of the particles. For the simplest case of a spin-half
(S = 1/2) particle, these matrices, viz., creation (annihilation)
matrix, on-site potential matrix, and hopping matrix, take the
following forms:

c†
i =

(
c†

i,↑ c†
i,↓

)
, ci =

(
ci,↑
ci,↓

)
,

εi =
(

εi,↑ 0
0 εi,↓

)
, t i j =

(
t 0
0 t

)
, (3)

where the indices “↑” and “↓” refer to the spin-up and spin-
down components (“channels”), respectively. Note that the
dimension of these matrices will increase proportionately as
we go to the higher-order spin cases, viz., S = 1, 3/2, . . .,

and so on. The term �hi · �S (S)
i represents the interaction of the

spin (S) of the injected particle with the local magnetic field
�hi ≡ (hx, hy, hz ) at site i. �S (S)

i represents the set of generalized
Pauli spin matrices (Sx,Sy,Sz ) expressed in units of h̄S for
an incoming particle with spin S. For the spin-half (S = 1/2)
case, (Sx,Sy,Sz ) turns out to be the set of the usual Pauli

spin matrices (σx, σy, σz ), and the term �hi · �S (S)
i at site i will

have the following explicit form:

�hi · �S (S=1/2)
i =

(
hi cos θi hi sin θie−iφi

hi sin θieiφi −hi cos θi

)
, (4)

where hi is the amplitude of the vector �hi, and θi and φi

denote the polar and azimuthal angles, respectively, as shown
in Fig. 2.

C. Equivalence of the spin system with a
multi-strand ladder network

Using the Hamiltonian (2), one can write down the time-
independent Schrödinger equation for a general spin-S system
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FIG. 2. Decomposition of �h in a three-dimensional plane. θ

denotes the polar angle and φ denotes the azimuthal angle.

as follows:

H |�〉S = E |�〉S, with |�〉S =
∑

�

+S∑
mS=−S

ψ�,mS |�, mS〉. (5)

A simplification of Eq. (5) for a spin-half (S = 1/2) sys-
tem will lead to the following set of difference equations

corresponding to the spin-up (↑) and spin-down (↓) channels,
respectively, as follows:

[E − (εi,↑ − hi cos θi )]ψi,↑ + hi sin θie
−iφiψi,↓

= tψi+1,↑ + tψi−1,↑, (6a)

[E − (εi,↓ + hi cos θi )]ψi,↓ + hi sin θie
iφiψi,↑

= tψi+1,↓ + tψi−1,↓. (6b)

It is interesting to note that the above set of difference equa-
tions (6a) and (6b) resemble the difference equations for a
spinless particle in a two-strand ladder network [43]. The ef-
fective on-site potentials for the upper strand (identified with
the spin-up (↑) component) and the lower strand (identified
with the spin-down (↓) component) of the analogous ladder
network are εi,↑ − hi cos θi and εi,↓ + hi cos θi, respectively,
the hopping amplitude between the two neighboring sites
along each strand of the ladder can be identified as t , while
the term hi sin θieiφi plays the role of the interstrand coupling
along the ith rung of the ladder.

In a similar way, starting from Eq. (5) for a spin-1
(S = 1) system, we can obtain the following set of three
coupled difference equations for the three spin channels 1, 0,
and −1, respectively, as

[E − (εi,1 − hi cos θi )]ψi,1 + 1√
2

hi sin θie
−iφiψi,0 = tψi+1,1 + tψi−1,1, (7a)

[E − εi,0]ψi,0 + 1√
2

hi sin θie
iφiψi,1 + 1√

2
hi sin θie

−iφiψi,−1 = tψi+1,0 + tψi−1,0, (7b)

[E − (εi,−1 + hi cos θi )]ψi,−1 + 1√
2

hi sin θie
iφiψi,0 = tψi+1,−1 + tψi−1,−1, (7c)

where we have used the following set of spin matrices (SS=1
x ,SS=1

y ,SS=1
z ) for a spin-1 system:

SS=1
x = 1√

2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, SS=1

y = 1√
2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠, SS=1

z =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠. (8)

Once again, the above prescription leads to the fact that a
spin-1 (S = 1) system can be identified with a three-strand
ladder network for a spinless particle. The above two analyses
for the spin-half (S = 1/2) and the spin-1 (S = 1) cases lead
to the conclusion that the above treatment can be extended
to a general spin-S system and can be identified with an
equivalent (2S + 1) strand ladder model for spinless particles.
We note that, as we go to the higher-order spin cases, there
will be more such coupled difference equations corresponding
to the different spin channels. This analogy between the spin
model and the multi-strand ladder network is employed to
engineer the spin filtering effect for our quasiperiodic system,
as described in the subsequent sections.

III. RESULTS AND DISCUSSION

One of the essential requirements to have the spin filtering
effect is to decouple the different spin channels from each
other, i.e., there should not be any spin mixing between
different spin components. For our model, this condition

can be satisfied by setting the polar angle θi = 0 ∀ i. By
looking at the set of equations (6) and (7), it can be easily
understood that the hybridization terms (spin-mixing terms)
between different spin components vanishes for θi = 0 as
the sin θi terms vanishes under this condition, irrespective of
the value of the azimuthal angle φi. The physical meaning
of the above condition is that the magnetic moments of the
atomic sites in the system have to be aligned along the z axis
parallel to each other.

A. Spin-half (S = 1/2) system

For a spin-half (S = 1/2) system, the above choice of θi

will lead to the following set of equations from Eq. (6):

[E − (εi,↑ − hi )]ψi,↑ = tψi+1,↑ + tψi−1,↑, (9a)

[E − (εi,↓ + hi )]ψi,↓ = tψi+1,↓ + tψi−1,↓. (9b)

It is apparent from the two equations above that the spin-
up (↑) and the spin-down (↓) channels are now completely
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decoupled from each other. We furthermore can choose εi,↑ =
εi,↓ = εi, i.e., the on-site energies at an ith atomic site are to
be the same for both the spin-up (↑) and the spin-down (↓)
particles. For our model, hi can take two possible values hA
and hB sequenced following a Fibonacci pattern, as depicted
in Fig. 1. Such a sequence can be generated mathematically
by using

hi = P + Q[�(i + 1)(σ − 1)� − �i(σ − 1)�], (10)

where the function �x� denotes the greatest integer less than
x, σ = (1 + √

5)/2, and P and Q are two parameters that
control the values of hA and hB. Using Eq. (10), one can
easily find that the values of hA and hB will turn out to
be hA = P + Q and hB = P, respectively, sequenced in a
Fibonacci pattern. We can also choose the values of the on-site
potentials εi to follow a Fibonacci pattern, consisting of two
kinds of constituents εA and εB, respectively. The values of
these two on-site potentials can be easily controlled by using
an external gate voltage [5]. Hence, one can easily have the
exactly identical Fibonacci pattern for εi as that of hi.

Now with this convention, if we set εA = 	 + hA and εB =
	 + hB (where 	 is some constant value which sets the center
of the energy spectrum), then from Eq. (9), it immediately
follows that, for the spin-up (↑) channel, the effective on-site
potentials on different atomic sites will have a constant value,
while for the spin-down (↓) channel the effective on-site
potentials on different atomic sites will follow a Fibonacci
quasiperiodic pattern. As a result of this, we will have an
absolutely continuous energy spectrum for the spin-up (↑)
channel populated with extended states, while the spin-down
(↓) channel will feature a singular continuous multifractal
spectrum. Thus, under this condition, we will have a high
transmission probability for the spin-up (↑) particles whereas
the spin-down (↓) particles will encounter zero transmission
probability. To analyze this fact, we evaluate the local density
of states (LDOS) for the different spin channels by using the
Green’s function technique. The formula for the LDOS is

ρ j,mS = − 1

π
lim

η→0+
[Im(〈 j, mS|G(E )| j, mS〉)], (11)

where G(E ) = (z+I − H )−1 is the Green’s function with
z+ = E + iη (η → 0+), and mS will have 2S + 1 values for
a general spin-S system, e.g., for the spin-half (S = 1/2) case,
mS = 1/2(↑), −1/2(↓).

We show the plots of LDOS for the spin-up (↑) and the
spin-down (↓) channels in Fig. 3(a). We have used a real-space
renormalization group (RSRG) method [44,45] to compute
the LDOS spectrum for the different spin channels. We can
clearly observe that the spin-up (↑) channel shows an abso-
lutely continuous energy spectrum in between E = 	 − 2t
and E = 	 + 2t (here we have taken 	 = 0 and t = 1). All
the eigenstates populated under this absolutely continuous
energy spectrum are of extended character. For the spin-down
(↓) channel, we have a multifractal energy spectrum with
self-similarity, which exhibits the signature of a quasiperiodic
system. The corresponding transmission probabilities for the
two spin channels, viz., up (↑) and down (↓), are exhibited
in Fig. 3(b). Evidently, we have a high transmission proba-
bility T↑ for the spin-up (↑) component corresponding to the

FIG. 3. (a) Plots of LDOS for the spin-up (↑) and the spin-down
(↓) channels under the correlation condition εA = 	 + hA and εB =
	 + hB . The spin-up (↑) channel exhibits an absolutely continuous
spectrum (shaded portion) while the spin-down (↓) channel shows
a multifractal singular continuous spectrum. We set 	 = 0, hA = 3,
and hB = 0.5 measured in units of the hopping integral t . (b) The cor-
responding transmission probabilities T↑ and T↓ for the spin-up (↑)
and the spin-down (↓) components computed for a 15th-generation
Fibonacci magnetic chain with 610 atomic sites.

absolutely continuous spectrum in Fig. 3(a), while the spin-
down (↓) component gets completely blocked with zero trans-
mission probability T↓. To evaluate these transmission char-
acteristics, we take a finite-size quasiperiodic magnetic chain
and couple it in between two nonmagnetic periodic leads, viz.,
source (S) and drain (D), as shown schematically in Fig. 1. For
the results of the transmission probabilities presented here, we
have considered a 15th generation Fibonacci chain with 610
atomic sites. The values of the other parameters; namely, the
on-site potentials for the atomic sites in the leads, the hopping
amplitudes for sites in the lead, and the lead to magnetic
chain (MC) couplings are chosen to be εS = εD = 0, tS =
tD = 4, and tS,MC = tMC,D = 4, respectively, for our calcula-
tion. We have used a standard transfer-matrix method (TMM)
elaborated in detail in Ref. [31] to obtain the transmission
probabilities corresponding to the different spin components
for our quasiperiodic system.

We note that one can have exactly the opposite phe-
nomenon as compared with the results described in the last
two paragraphs for a different choice of correlation between
the two sets of parameters {εA, εB} and {hA, hB}, viz., εA =
	 − hA and εB = 	 − hB, where 	 is a constant value which
sets the center of the energy spectrum. With this choice of
the correlation, it follows from Eq. (9) that now we will
have a constant value of the effective on-site energies for the
spin-down (↓) channel whereas the particles in the spin-up (↑)
channel will feel a quasiperiodic effective on-site potential.
Consequently, we will have an absolutely continuous energy
spectrum for the spin-down (↓) channel and a multifractal
self-similar singular continuous spectrum for the spin-up (↑)
channel as shown in Fig. 4(a). The resulting transmission
characteristics for this case are displayed in Fig. 4(b), where
we can clearly see that the particles with spin-down (↓)
component will have a transparent transmitting window for
the allowed energy regime while the particles with spin-up
(↑) component will have a completely opaque transmitting
window. So the conclusion is that one can make a tunable spin
filter for one of the desired spin components by choosing an
appropriate correlation between {εA, εB} and {hA, hB}. This
can be achieved basically by suitably tuning the values of
εA and εB using some external gate voltages. The typical
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FIG. 4. (a) Plots of LDOS for the spin-up (↑) and the spin-down
(↓) components with the correlation condition εA = 	 − hA and
εB = 	 − hB . We choose 	 = 0, hA = 3, and hB = 0.5 measured in
units of the hopping integral t . (b) The corresponding transmission
characteristics T↑ and T↓ measured for a 15th generation Fibonacci
magnetic chain containing 610 atomic sites. The other parameters are
same as in Fig. 3.

experimental value of the spatial extension over which a
modulation of the gate voltage can be achieved is in the range
of 100–150 nm.

B. Spin-1 (S = 1) system

Now we turn to the case of a spin-1 (S = 1) system, which
has three components, viz., 1, 0, and −1. It can be identified
with a 2S + 1 = 3 strand ladder network. Once again, by
setting the polar angle θi = 0 ∀ i, we can decouple the three
spin channels from each other, and analyze the transport
properties for each of these three different spin channels. With
the above choice, the three decoupled equations following
from Eq. (7) can be written as

[E − (εi,1 − hi )]ψi,1 = tψi+1,1 + tψi−1,1, (12a)

[E − εi,0]ψi,0 = tψi+1,0 + tψi−1,0, (12b)

[E − (εi,−1 + hi )]ψi,−1+ = tψi+1,−1 + tψi−1,−1. (12c)

Now we can choose εi,1 = εi,0 = εi,−1 = εi, i.e., the values of
the on-site potentials for the three different spin components
at an ith atomic site are assumed to be the same. We know
that, for our model, the values of the local magnetic fields
hi = hA and hB, are distributed following a Fibonacci pattern.
We can choose exactly the same Fibonacci sequence for the
values of the on-site potentials εi = εA and εB. We can then
suitably control the values of εA and εB through some external
gate voltages to have the appropriate correlation condition
for the spin filtering. The possible correlation conditions for
the spin-1 particles are εi = 	 ± hi, i ∈ {A,B}. By applying
one of these two sets of conditions, we generate an abso-
lutely continuous energy spectrum for one of the three spin
channels while the remaining channels will have multifractal
energy spectrum. Consequently, we will have one of the spin
components passing through the system while the remaining
ones will be completely blocked. In Fig. 5, we exhibit one
such situation as a prototype example, where we apply the
correlation conditions εA = 	 + hA and εB = 	 + hB. This
makes the system completely transparent for the particles with
spin-1 component, while completely impeding the particles
with spin-0 and spin-(−1) components. It is easily understood
that the other correlation condition will make the spin-(−1)
component transparent through the system while blocking the

FIG. 5. (a) Plots for the LDOS for the spin-1, spin-0 and spin-
(−1) components with the correlation condition εA = 	 + hA and
εB = 	 + hB . We take 	 = 0, hA = 3.5, and hB = 0.5 measured in
units of the hopping integral t . (b) The corresponding transmission
probabilities T1, T0, and T−1 evaluated for a 15th generation Fibonacci
magnetic chain containing 610 atomic sites. The lead parameters
are εS = εD = 0, tS = tD = 5, and tS,MC = tMC,D = 4, respectively.
The plots with the dotted lines in both panels are for the spin-0
component.

particles with spin-0 and spin-1 components. We do not show
this result to save space. We note that we cannot have spin
filtering for the spin-0 component; as for the spin-0 channel,
we do not have an “h term” in the effective on-site potentials,
as reflected in Eq. (12b).

C. Other higher-order spin systems

It can be appreciated that the mathematical framework
we have used to compute the results for the previous two
cases of a spin-half (S = 1/2) and a spin-1 (S = 1) system
can be easily extended for any general “spin-S” system. It is
automatically understood that, as we go to the higher-order
spin cases, we will have more numbers of spin components
and eventually one of them will filter out through the system
for the suitable correlations between the values of the local
magnetic fields and the on-site potentials. Of course, we need
to have different choices of correlations between εi and hi to
achieve the spin filtering for different cases as we move up
along the higher-order spin ladder. We note that, to have the
filtering for a particle with a certain spin component, the Fermi
energy of the particle has to lie within a certain energy range
where the absolutely continuum spectrum appears. One can
easily work out that, for the case spin S = 3/2, the set of cor-
relation conditions will be εi = 	 ± hi and εi = 	 ± (hi/3);
for the case spin S = 2, the set of correlation conditions will
be εi = 	 ± hi and εi = 	 ± (hi/2); and for the case spin
S = 5/2, the set of correlation conditions will be εi = 	 ± hi,
εi = 	 ± (hi/5), and εi = 	 ± (3hi/5). Here i ∈ {A,B} for
our Fibonacci quasiperiodic magnetic chain model. One can
also calculate the conditions for the spin filtering for other
higher-order spin particles following the same prescription.

Remark on the various disorder effects on the spin filtering
phenomenon. It is important to discuss the robustness of the
spin filtering protocol with respect to various disorder effects
in the system. One can easily understand that disorder or ther-
mal fluctuations in the system will spoil the perfect alignment
of the polar angles θi = 0 ∀ i of the magnetic moments. Hence,
it is significant to understand what should be the cutoff limit
in the random tilting of the θi angles before the spin filtering
mechanism in the system breaks down. Upon performing
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a rigorous numerical investigation, it has been found that
our results on the spin filtering effect are fairly robust for
small random tilting of the angle θi below θi = ±10 degrees.
Beyond this critical value of random tilting of θi, the states
populating the energy spectrum consist of highly localized
states, directing the system to act as a poorly conducting
system. So it can be concluded that, for a weak disorder (or
thermal broadening) corresponding to the above-mentioned
critical value of random tilting of the angle θi, the spin filtering
protocol persists.

Similarly, it is also worth addressing the effect of the
mismatches between the on-site energies εi and the local
magnetic fields hi at different atomic sites on the spin filtering
effect. One can capture this effect by choosing a random 	i.
We have numerically found that, for a very weak random
disorder in 	i, chosen randomly between the values −0.2t
and 0.2t (t being the hopping amplitude), the spin filtering
effect is preserved in the system. As we increase the strength
of this disorder to higher values, strong localization effect
starts to take over and the efficiency of the spin transport
through the system is extensively reduced. So the protocol for
the spin filtering in our system is robust against weak disorder
in 	i. It is also to be noted that, for larger S the system
could be more inclined towards thermal fluctuations. But in
an actual experimental situation, such thermal fluctuations
can be controlled by performing the experiment at a low
temperature. However, we have to keep in mind that, from
the point of view of practical applicability, one cannot go
down too low in the temperature scale. Hence, for a real-
life application purpose one has to judiciously compromise
between the thermal fluctuations and the temperature scale.

IV. CONCLUSION

In this paper, we have studied the spin-dependent transport
for particles with arbitrary higher-order spin states in a tight-
binding quasiperiodic magnetic chain model. A mathematical
analogy between a multi-strand ladder network for spinless
particles and a multicomponent spin-S system mimicking a
(2S + 1) strand ladder network has been exploited to analyze
the problem and extract the useful results for the spin filtering
for different spin components. We show that, by incorporating
a suitable correlation between the magnitude of the of local

magnetic fields and the on-site potentials of the magnetic
atomic sites, one can render an absolutely continuous energy
spectrum for one of the desired spin channels (components)
with a highly transmitting window for the entire allowed
energy range, while the other spin channels exhibit a multi-
fractal energy spectrum with zero transmission probabilities.
We show and explain the results in detail for two prototype
examples of spin-half (S = 1/2) and spin-1 (S = 1) cases. We
also give the outline for the other higher-order spin cases and
justify that the essential mathematical exercise employed by
us for our problem is a general one that holds true for any
arbitrary higher-order spin-S particles, where S is an integer
or half-integer.

Some of the recent interesting experimental studies [46,47]
show that it is possible to manipulate the spin direction of
individual magnetic atoms to form nanomagnets with arrays
of a few exchange-coupled atomic magnetic moments, ex-
hibiting a rich variety of magnetic properties and can be
explored as the constituents of nanospintronic technologies.
This indicates that our theoretical proposal of a quasiperiodic
magnetic chain with an array of atomic magnetic moments
sequenced in a Fibonacci pattern is not far from reality and
might be realized in real-life experiments. Our results can be
useful to realize novel magnetic quantum information storage
devices and spin-based logic operators [48], relying on the
operation of higher-order spin states. One can carry forward
our analysis and results of this work for systems with other
quasiperiodic sequences like Thue–Morse, period-doubling,
copper mean, etc. Finally, we believe that our theoretical
study of the realization of spin filters by using a simple tight-
binding quasiperiodic magnetic chain system might open up
an interesting futuristic prospect of realizing spin filters using
quasicrystalline materials.
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