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We study the magnetic field-dependence of the thermal conductivity due to magnetic excitations in frustrated
spin-1/2 Heisenberg chains. Near the saturation field, the system is described by a dilute gas of weakly
interacting fermions (free-fermion fixed point). We show that in this regime the thermal conductivity exhibits
a nonmonotonic behavior as a function of the ratio α = J2/J1 between second- and first-nearest-neighbor
antiferromagnetic exchange interactions. This result is a direct consequence of the splitting of the single-particle
dispersion minimum into two minima that takes place at the Lifshitz point α = 1/4. Upon increasing α from
zero, the inverse mass vanishes at α = 1/4 and it increases monotonically from zero for α � 1/4. By deriving
an effective low-energy theory of the dilute gas of fermions, we demonstrate that the Drude weight Kth of the
thermal conductivity exhibits a similar dependence on α near the saturation field. Moreover, this theory predicts
a transition between a two-component Tomonaga-Luttinger liquid and a vector-chiral phase at a critical value
α = αc that agrees very well with previous density matrix renormalization group results. We also show that the
resulting curve Kth (α) is in excellent agreement with exact diagonalization (ED) results. For the low-magnetic
field regime, our ED results show that Kth (α) has a pronounced minimum at α � 0.7. We also demonstrate that
the thermal conductivity is significantly affected by the presence of magnetothermal coupling.
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I. INTRODUCTION

Frustration leads to many fascinating phenomena in quan-
tum magnets, such as the partial or complete suppression of
magnetic order or the stabilization of spin-liquid phases with
fractional excitations [1–3]. These phenomena are particu-
larly prevalent in reduced spatial dimensions, where quantum
fluctuations become increasingly stronger. An even richer
interplay of quantum fluctuations, frustration and interactions
emerges in the presence of external magnetic fields. Several
quantum phases with quite unusual properties were predicted,
including spin-nematic behavior or multipolar order [4–15]
and vector-chiral phases [16–22].

From the experimental point of view, an open question
concerns predictions for clear fingerprints of such states with
unconventional magnetic order in actual measurements (see,
e.g., Refs. [15,23–25] for work in this direction). Moreover,
many of the theoretical predictions apply to the ground-state
phases of one-dimensional systems such as frustrated spin-
1/2 chains [10,11,17–20,26–28], calling for investigations of
the influence of temperature and a weak interchain coupling
that is unavoidably present in real materials. Such ques-
tions were indeed addressed in, e.g., Refs. [27,29–32] and
Refs. [33–35], respectively.

Our work will be concerned with the vector-chiral phase
at finite magnetizations, which is characterized by a finite
expectation value of the vector chirality

κvc
i j = 〈(�Si × �S j ) · ẑ〉. (1)

Here, ẑ is the unit vector along the z-direction, which is the
direction of the applied magnetic field and �Si is the spin-S
operator for site i. The vector-chiral phase breaks a discrete Z2

symmetry and can thus be stabilized even in one-dimensional
systems. In fact, several theoretical papers have established
its existence in frustrated spin-1/2 chain Hamiltonians with a
dominant Heisenberg exchange [16–20,26]

H = J
N∑

i=1

[
�Si · �Si+1 + α�Si · �Si+2 − BSz

i

]
, (2)

where J and αJ are the nearest- and next-nearest-neighbor
exchange couplings and B denotes the magnetic field (we
set the Bohr magneton μB and the gyromagnetic factor
g and h̄ to unity, N is the number of sites and we im-
pose periodic boundary conditions). Several materials pro-
vide close realizations of this and related models, in par-
ticular, materials with a nearest-neighbor ferromagnetic ex-
change J < 0 and α < 0, such as LiCuVO4 [36–40], CuCl2

[41], LiCu2O2[42,43], Li2ZrCuO4 [44], LiCuSbO4 [45,46],
PbCuSO4(OH)2 [47–49], or Ca2Y2Cu5O10 [50], where often
saturation fields are much lower than on the antiferromag-
netic side (J, α > 0). The synthesis of this list of materi-
als, as well as the rich finite-magnetic field phase-diagram
has motivated a large number of theoretical studies (see,
e.g., Refs. [10,11,18,20,29,31]). Earlier, materials with both
J > 0 and α > 0 were known such as SrCuO2 [51–53] or
CuGeO3 [54].
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The main goal of our work is to establish a connection be-
tween frustration and thermal conductivity just below the sat-
uration field. We will contrast the high-field behavior against
the behavior at small magnetic fields. A very active research
on thermal transport in low-dimensional quantum magnets
[55–67] was stimulated by a series of experiments [68–76]
revealing a significant magnetic contribution to the thermal
conductivity (see Refs. [77,78] for a review). Much theoretical
work was devoted to the transport properties of integrable
spin chains, which can exhibit ballistic transport [79]. The
best-known example is the spin-1/2 XXZ chain, which is a
perfect thermal conductor at any finite temperature and for any
strength of the exchange anisotropy [63,64,79]. This peculiar
behavior manifests itself in a small or even vanishing finite-
frequency contribution κreg(ω), but a finite thermal Drude
weight Kth. Formally, this corresponds to decomposing the
thermal conductivity κ into

Re κ (ω) = Kthδ(ω) + κreg(ω). (3)

Even in the absence of external scattering mechanisms, non-
integrable spin systems are believed to be normal diffusive
thermal conductors with a vanishing Drude weight in the ther-
modynamic limit [57,61,80–82]. This notably includes frus-
trated spin-1/2 chains [57,58,83]. For finite-size systems, the
thermal Drude weight is still large in comparison to the total
weight of Re κ (ω), in particular at low temperatures. In certain
parameter regions, other aspects factor in. For instance, the
proximity to the integrable α = 0 model plays a role and a
particularly weak breaking of the energy-current conservation
is realized in frustrated chains for small α [83] (as compared to
other nonintegrable models [61,82]). In addition, the effective
low-energy theory becomes a free-fermion fixed point at the
saturation field, implying that a similar situation should be
expected in this regime.

We employ two approaches to study the thermal con-
ductivity: first, a dilute-gas treatment near saturation, which
correctly predicts the existence of the vector-chiral phase and
the transition point αc. This approach is complemented with
exact diagonalization to provide independent support for the
predictions in the dilute-gas regime. Exact diagonalization
provides full access to κ (ω) but is limited to system sizes
of N ∼ 20 sites if the full spectrum is needed. As a conse-
quence, the low-frequency and low-temperature regime can
suffer from strong finite-size effects. Inspired by Ref. [84],
we demonstrate that in the high-field regime, these finite-size
effects can be reduced by using twisted boundary conditions
and averaging over different twist angles. Using this twist-
angle averaging could be, in general, a strategy to mitigate
finite-size effects in exact-diagonalization studies of frustrated
spin systems.

Since we will be interested in the evolution of the thermal
conductivity as a function of α at both low and high fields,
the proximity to exactly solvable points (or regimes with
very long-lived excitations) will result in Kth ∼ O(I0

th ) on
small, finite systems, where I0

th is the total weight in Re
κ (ω). Thus, while we expect that Kth(α �= 0) → 0 for very
large systems [57,80], we will focus on Drude weights as a
measure of the low-frequency behavior due to the particular
parameter regimes of interest and the limitations of exact
diagonalization. In the simplest picture, we can think of the

FIG. 1. (B, α) quantum phase diagram of the frustrated spin-
1/2 chain described by Eq. (2) with α > 0. Solid, white lines are
the (T = 0) phase boundaries taken from Ref. [19]. The ground-
state phases are one- and two-component Tomonaga-Luttinger liquid
phases (TLL1 and TLL2), a dimer phase (D), a 1/3-plateau phase
(P), a spin-density wave phase where the lowest-lying excitations are
two-magnon bound states (SDW2), vector-chiral phases (VC), and
the ferromagnetic phase where all spins are aligned with the external
field B (FM). The coloring shows the strength of the thermal Drude
weight Kth as defined in Eq. (16), computed with exact diagonaliza-
tion with N = 16 sites for a low temperature T/J = 0.1. To improve
the results of the exact diagonalization, we also performed an average
over different twisted boundary conditions with ten different values
of the twist angle as explained in Sec. V A. The dashed line indicates
the magnetic field region just below saturation that is our work’s main
interest: we follow the evolution of the thermal conductivity as α

increases.

zero-frequency delta function in Eq. (3) acquiring a finite
width as α becomes nonzero (assuming the thermodynamic
limit now), with the Drude weight being a measure of the
integral over this low-frequency peak.

Given that we will mostly deal with thermal transport
in finite magnetic fields, the spin analog of the electronic
Seebeck effect must be taken into account due to the coupling
between the energy current and the spin current as B > 0.
This yields a correction to the thermal conductivity just as
for electrons, which is often dubbed magnetothermal cor-
rection [65,66,85–87]. Whether or not such magnetothermal
corrections exist in real materials is an open question, with
some experiments suggesting their absence [88], presumably
due to spin-orbit coupling. Regardless of these considerations,
we will consider the transport coefficients both including and
ignoring such magnetothermal corrections and will elucidate
the similarities and differences.

We will consider the case of competition between nearest-
and next-nearest-neighbor antiferromagnetic exchange inter-
actions, J > 0 and α > 0, in the presence of an external
magnetic field B. The quantum phase diagram of this model
is well known by now [19,89,90]. Figure 1 shows the field
versus α phase diagram adapted from Ref. [19]. The zero-field
ground state is a Tomonaga-Luttinger liquid (TLL) for α < αd

and a dimerized state for α > αd � 0.241 . . . [91–93]. This
implies that Kth ∝ vT (v is the Fermi velocity) for α < αd ,
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FIG. 2. Evolution of the effective mass at the saturation field as
a function of the frustration parameter α.

while Kth ∝ e−�(α)/kBT for α > αd , at low enough tempera-
ture, where �(α) is the gap of the dimerized phase. In other
words, Kth is strongly suppressed as a function of increasing
α (or frustration) at zero magnetic field. We note, however,
that the spin gap �(α) is a nonmonotonic function of α [92],
implying that Kth(T, B, α) must reach its minimum value at
the finite α value that maximizes the B = 0 spin gap.

In the opposite end of the phase diagram, when the mag-
netic field reaches its saturation value B = Bsat, the critical
boundary B = Bsat (α) is described by a free-fermion fixed
point. Thermodynamic properties are then very well described
with a slightly renormalized version of the bare single-particle
dispersion,

εk (α) = J (cos k + α cos 2k − cos Q − α cos 2Q), (4)

which is obtained by rewriting H in terms of spinless-fermion
operators via a Jordan-Wigner transformation [94]. As ex-
pected, the behavior of Kth near B = Bsat is also basically
determined by the dispersion relation εk (α). The condition
B � Bsat sets the Fermi level of the spinless fermions near the
bottom of the band εk (α), i.e., in the region where εk (α) can
be approximated by a parabolic dispersion with an effective
mass m∗(α). Consequently, Kth has a universal temperature
dependence parametrized by the single parameter m∗(α) at
low enough temperature.

The effective mass m∗(α) is obtained by expanding εk (α)
around its minimum value. εk (α) has a single minimum at
Q = π for α � 1/4 and two minima at ±Q with cos Q =
−1/(4α) for α > 1/4 (we set the lattice spacing to unity).
It is clear from Eq. (4) that εQ(α) = 0 and that the dis-
persion is quadratic around k = Q (the dynamical exponent
is z = 2). The inverse of the effective mass [m∗(α)]−1 =
∂2εk/∂

2k|k=Q is

1

m∗(α)
= J (1 − 4α) for α < 1/4, (5)

1

m∗(α)
= J

(
4α − 1

4α

)
for α > 1/4. (6)

As shown in Fig. 2, 1/m∗(α) is a nonmonotonic function of
α: it decreases (increases) with α for α < 1/4 (α > 1/4).
The point α = 1/4 corresponds to the Liftshitz transition

point with a divergent effective mass (m∗ → ∞ because the
dispersion relation becomes quartic around k = π ). The ther-
mal conductivity is Kth ∝ T 3/2/

√
m∗ for a free-fermion fixed

point. Consequently, the nonmonotonic behavior of 1/m∗(α)
implies a nonmonotonic behavior of Kth(α) near the saturation
field. Moreover, given that Kth ∝ √

JαT 3/2 for α � 1/4, Kth

increases with α for α > 1/4, in contrast to the zero-field case.
The increase of Kth with α becomes even more pronounced

for the Tomonaga-Luttinger liquid phase that exists right
below the saturation field Bsat. The simple reason is that
Kth ∝ vT at low enough T , where v is the (renormalized)
velocity of the excitations that now have a linear dispersion
E (q) = vq near the Fermi level (q = k − k f , where k f is the
Fermi wave vector). As long as B � Bsat, the particle density
ρ remains very low, implying that the interactions produce a
very small renormalization of the Fermi velocity: v � ρπ/m∗.
In terms of the original magnetic moments, the particle
density is given by ρ = (Msat − M ), where M = ∑

j〈Sz
j〉/N

is the magnetization per site, Msat = 1/2 is its saturation
value and N is the total number of sites. Consequently, v �
(Msat − M )/m∗ and Kth ∝ vT � (Msat − M ) T/m∗, implying
that Kth ∝ αT (Msat − M ) for α � 1/4. In other words, Kth(α)
becomes much bigger than Kth(0) (for a fixed value of M) for
α � 1/4. Given that the vector-chiral phase appears for α �
1.3 (see Fig. 1), the system must be in that phase for Kth(α)
to be five times bigger than Kth(0) (see Fig. 2). However, we
emphasize that the increase of Kth(α) is not related to the
emergence of the vector-chiral phase, but to the change in the
single-particle spectrum.

Our analysis indicates that Kth should depend strongly on
the applied magnetic field. For large enough values of α

and a fixed value of M � Msat, Kth(α)/Kth(0) � 4α, while
Kth(α)/Kth(0) ∝ e−�(α)/kBT for M = 0. Here, we show that
this is indeed the case by combining exact-diagonalization
results with simple analytical arguments. As a first account
of our numerical results, Fig. 1 shows the thermal Drude
weight Kth computed for N = 16 sites at T/J = 0.1. The main
focus will be on large fields just below saturation: Kth clearly
increases once the vector-chiral phase is entered (follow the
dashed line in Fig. 1). By contrast, at low fields, Kth decreases
away from α = 0 in the TLL1 phase and becomes very small
in the vicinity of the dimer phase D. The predicted field
dependence of the magnetic contribution to the thermal con-
ductivity could be experimentally verified in materials with a
sufficiently small saturation field. In fact, the thermal transport
properties of frustrated chains (with the exception of the spin-
Peierls material CuGeO3 [95,96]) are largely unexplored.

To conclude the introduction, we wish to alert the reader
that the previous arguments are based on an approximation to
the low-energy spectrum of H (e.g., free bosons with linear
spectrum in the TTL regime), which ignores the combined
effect of irrelevant interactions (in the renormalization group
sense) and deviations from linear dispersion [97–99] and thus
has a purely ballistic thermal transport. For a linear dispersion,
Kth ∝ CV v2, where CV is the specific heat. However, this bal-
listic response becomes diffusive upon including the above-
mentioned corrections, as well as extrinsic mechanisms, such
as scattering off impurities, crystal imperfections and crystal
boundaries. These extrinsic mechanisms give the dominant
contribution to the relaxation time at very low temperatures,
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1/τ = 1/τint + 1/τext because the relaxation time due to inter-
actions between modes becomes arbitrarily long for T → 0.

Our conclusions are thus subject to the assumption that
extrinsic scattering does not introduce additional significant
dependencies on the magnetic field or the frustration param-
eter α through the relaxation time τ . This, however, may
be an unjustified assumption for certain materials in which
spin-phonon coupling plays a dominant role [60,62,100–104].
Thus developing an understanding of thermal transport in
frustrated spin-1/2 chains under incorporation of a spin-
phonon coupling is left for future theoretical and experimental
research.

This work is organized as follows. In Sec. II, we sum-
marize the linear-response expressions for (coupled) spin
and thermal transport. Section III describes the details of
our exact-diagonalization analysis. In Sec. IV, we present a
dilute Fermi-gas treatment that describes the regime near and
above the saturation field for α � 1/4. In Sec. V, we present
our exact-diagonalization results. Section VI will provide a
summary and discussion.

II. TRANSPORT COEFFICIENTS FROM LINEAR
RESPONSE THEORY

We here introduce the linear-response expressions for the
thermal conductivity from the Kubo formula [105]. The ex-
pectation values of the spin and thermal currents, j1 = jS and
j2 = jth, are given by [105]〈

jμ
〉 =

∑
ν

Lμν fν, (7)

where f1 = ∇B and f2 = −∇T refer to the magnetic field and
temperature gradients. Lμν is the conductivity matrix. j1 and
j2 can be expressed via the spin and energy currents jS and
jE by

j1 = jS, j2 = jth = jE − B jS, (8)

where

jS[E] = i
N∑

l=1

[hl−2 + hl−1, dl + dl+1] (9)

with

hl = J�Sl · �Sl+1 + αJ�Sl · �Sl+2 (10)

and dl = hl for the energy current and dl = Sz
l for the spin

current.
The general expression for the coefficients Lμν are (μ, ν =

th, S) [105]

Lμν (ω) = βr

N

∫ ∞

0
dt ei(ω+i0+ )t

∫ β

0
dτ 〈 jμ jν (t + iτ )〉, (11)

where r = 0 for ν = S and r = 1 for ν = th.
As usual, the real part of the coefficients Lμν is decom-

posed into a singular contribution at zero frequency and the
regular part Lreg

μν (ω), with Drude weights Dμν :

Re Lμν (ω) = Dμνδ(ω) + Lreg
μν (ω). (12)

We refer to the total weight in the diagonal coefficients as I0
μμ

and refer to the literature for the sum rules [105,106].

III. EXACT DIAGONALIZATION

A. Spectral representations

In the numerical analysis, we work with standard spectral
representations of Eq. (11), given by

Dμν = πβr+1

ZN

∑
n,o

En=Eo

e−βEn〈n| jμ|o〉〈o| jν |n〉, (13)

Lreg
μν (ω) = πβr

ZN

1 − e−βω

ω

∑
n,o

En �=Eo

e−βEn

×〈n| jμ|o〉〈o| jν |n〉δ(ω − �E ), (14)

where �E = Eo − En.
Since the model is nonintegrable, we expect that all Drude

weights vanish for N → ∞ [57,61,80–82]. Our main interest
is in the dc limit, i.e.,

Lμν = lim
ω→0

Lreg
μν (ω). (15)

For the small system sizes accessible to our analysis, most
of the spectral weight is still in the Drude weights which
is especially true for the quantum phases just below and
above the saturation field. Since it is notoriously difficult to
extract dc conductivities from finite-size data at low tempera-
tures, we will base our analysis on two quantities, the Drude
weights and integrals of Re Lμν (ω) over a low-frequency
window. These quantities provide useful measures of the
low-frequency behavior [86], and we expect that as N in-
creases, the contribution from the Drude weight moves to
finite but small frequencies. Note that this approach does not
necessarily give quantities that are directly proportional to the
respective dc conductivities. To simplify the notation, we will
use subindices E, th, S for the energy-, thermal- and spin-
current related quantities, respectively, and suppress double
indices in the diagonal coefficients, e.g., LSS → LS.

Whenever there is a coupling between the energy and the
spin current, then the thermal conductivity has a magnetother-
mal contribution [65,85] and the Drude weight Kth related to
the thermal conductivity 〈 jth〉 = −κ∇T , measured under the
condition of a vanishing spin-current flow 〈 jS〉 = 0, is [105]

Kth = DE − β
D2

ES

DS
. (16)

In Eq. (16), DE, DS, and DES are the Drude weights related to
the coefficients that result from using the spin current jS and
the energy current jE to set up the formalism, instead of jth and
jS as above. In our numerical analysis, we, in fact, compute
these expressions instead of working with the Lμν introduced
in Eq. (11). The Drude weights Kth can then be obtained from
DE, DS, and DES via Eq. (16).

By IE[S](ω), we denote the integral over the low-frequency
portion of the real parts of the energy and spin conductivity
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(up to a frequency ω), while I0
E[S] are the total weights:

IE[S](ω) =
∫ ω

−ω

dω′ Re Lreg
E[S](ω

′), (17)

I0
E[S] = lim

ω→∞ IE[S](ω). (18)

For completeness, we provide a list of spectral representations
for the Drude weights DE, DS, and DES, as well as the regular
parts of the corresponding conductivities Lreg

E (ω), Lreg
S (ω), and

Lreg
ES (ω). These are the quantities that are directly obtained

from our numerical procedures:

DE = πβ2

ZN

∑
n,o

En=Eo

e−βEn |〈n| jE|o〉|2, (19)

DS = πβ

ZN

∑
n,o

En=Eo

e−βEn |〈n| jS|o〉|2, (20)

DES = πβ

ZN

∑
n,o

En=Eo

e−βEn〈n| jE|o〉〈o| jS|n〉, (21)

and

Lreg
E (ω) = πβ

ZN

1 − e−βω

ω

∑
n,o

En �=Eo

e−βEn |〈n| jE|o〉|2δ(ω − �E ),

(22)

Lreg
S (ω) = π

ZN

1 − e−βω

ω

∑
n,o

En �=Eo

e−βEn |〈n| jS|o〉|2δ(ω − �E ),

(23)

Lreg
ES (ω) = π

ZN

1 − e−βω

ω

∑
n,o

En �=Eo

e−βEn〈n| jE|o〉

× 〈o| jS|n〉δ(ω − �E ), (24)

where again �E = Eo − En.

B. Analysis of the low-frequency behavior

We start our discussion by considering the example of
DE and the associated integrated spectral weight IE(ω).
In order to compute IE (ω), we choose a cutoff of ω =
0.5J , which separates low- from high-frequency contribu-
tions in the regular part in the phases just below saturation.
Figure 3(a) shows IE(ω = 0.5J )/I0

E as a function of magnetic
field B and frustration α at a low temperature T = 0.1J . First
of all, we see that the gapless phases (TLL1, TLL2, VC,
and SDW2) and the fully polarized phase generally exhibit
a larger low-frequency weight than the gapped phases (D
and P), as expected. The SDW2 phase exhibits significant
fluctuations when crossed from small to large values of B at
a fixed value of α, which can be traced back to finite-size
effects.

Our main interest is in the region just below saturation:
there, IE(ω = 0.5J ) ∼ O(I0

E ), i.e., practically all the weight

FIG. 3. (a) Low-frequency weight IE (ω) of the energy conduc-
tivity integrated up to ω/J = 0.5 [see Eq. (17)] relative to the total
weight in the energy conductivity I0

E [Eq. (18)] in the B-α plane.
(b) Energy Drude weight DE relative to the low-frequency weight
IE (ω) integrated up to ω/J = 0.5 [see Eq. (17)], plotted in the B-α
plane. System size N = 20, temperature T/J = 0.1, solid white lines
are the T = 0 phase boundaries from Ref. [19].

is concentrated in the low-frequency window. The same is
true in the FM phase, which at low temperatures has a very
low density of excitations and can be viewed as practically
noninteracting (see the discussion in Sec. IV). In the vicinity
of α = 0, i.e., the integrable Heisenberg chain, which has no
finite-frequency contributions, obviously DE = I0

E. Moreover,
frustration breaks this conservation law only weakly at small
α and therefore, the Drude weight remains substantial in the
entire TLL1 phase on small systems [57,83]. Note that such
a behavior, i.e., a large and almost system-size independent
Drude weight in a nonintegrable model at low temperatures
was also observed for a spin-1 chain in a magnetic field
[107]. The magnetic field induces a transition into a gapless
phase for which an effective spin-1/2 XXZ chain Hamiltonian
can be derived. The latter is integrable, reflected in the large
finite-size Drude weights.

We next argue that at the small systems accessible to us and
for the low temperatures that are relevant for a comparison to
the low-energy theory developed in Sec. IV, most of the spec-
tral weight that exists at low frequencies is concentrated in the
Drude weight. To establish that notion, we plot DE/IE(ω =
0.5J ) in Fig. 3(b). Clearly, the Drude weight accounts for
most of the low-frequency spectral weight in all gapless
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FIG. 4. Comparison of exact diagonalization with periodic
boundary conditions (ED) to results obtained from averaging over
a twist angle (ED[φ]). Kth vs α at M = 0.4 and T = 0.1J for N =
16, 18, 20 obtained from ED (open symbols) and N = 16, 18
obtained from ED[φ] (solid symbols). Vertical black lines are the
T = 0 phase boundaries from Ref. [19].

phases, including the phases below saturation where DE �
0.8IE (ω = 0.5J ). We therefore focus the following discussion
on the Drude weights as a qualitative measure of the B and
α dependencies of the low-frequency part of the relevant
conductivities at low temperatures.

Finally, let us comment on the temperature dependence
(data not shown here). Generally, increasing temperature
smoothens out the features seen in Fig. 3 yet the general trend,
i.e., an enhanced weight in the thermal conductivity below
the saturation field can be observed at higher temperatures
as well.

C. Exact diagonalization with twisted boundary conditions

In order to reduce undesirable finite-size effects, most of
the ED results shown in this work are obtained by using
twisted boundary conditions (ED[φ]). The resulting Hamil-
tonian is

H = J
N∑

i=1

{
1

2
(eiφ/NS+

i S−
i+1 + H.c.) + Sz

i Sz
i+1

+α

[
1

2
(ei2φ/NS+

i S−
i+2 + H.c.) + Sz

i Sz
i+2

]
− BSz

i

}
. (25)

We take the average over ten different values of the twist
angle (φ = n2π/10 with 0 � n < 10). Averaging over the
twisted boundary conditions is known to reduce the finite-
size effects for quadratic Hamiltonians [84] and we expect a
similar improvement in our case.

As an example, we show a comparison between exact
diagonalization with periodic boundary conditions (ED) and
twist-angle-averaged data (ED[φ]) in Fig. 4. There, we plot
Kth as a function of α for M = 0.4 at T = 0.1J . It is obvious
from the figure that the bare ED data suffer from large
fluctuations for α > 0.6 (compare the sets for N = 16 and
18), while the twist-angle-averaged data are very close to each
other for α < 1.2. We emphasize that the main effect of the
twist-angle averaging is that fluctuations from system size to

system size get reduced in some quantum phases and there-
fore, the convergence of the results is faster. However, in other
phases fluctuations remain large (e.g., in the SDW2 phase).
This qualitative effect of twist-angle averaging, namely, the
reduction of strong finite-size oscillations, is also seen in other
quantities (e.g., DE). Therefore, and for consistency reasons,
we will only show data averaged over different twist angles
from here on unless stated otherwise.

IV. DILUTE GAS OF FERMIONS

General formalism

Near its saturation field, the magnetic system can be
mapped onto a dilute gas of interacting fermions. We will
consider the more general case of a spin-1/2 XXZ model that
includes the Hamiltonian H as a particular case:

Hxxz = J
∑

j

(
�Sz

jS
z
j+1 + Sx

j S
x
j+1 + Sy

j S
y
j+1

)

+αJ
∑

j

(
�Sz

jS
z
j+2 + Sx

j S
x
j+2 + Sy

j S
y
j+2

) − B
∑

j

Sz
j .

(26)

In the following we assume J > 0, α > 0, i.e., both exchange
interactions are antiferromagnetic. The spin Hamiltonian can
be mapped into a spinless-fermion model via the Jordan-
Wigner transformation. In momentum space,

Hxxz =
∑

k

εkc†
kck + 1

2!2!N

∑
K,k,p

VK (p, k)

× c†
K
2 −k

c†
K
2 +k

c K
2 +pc K

2 −p, (27)

where

εk = J cos k + αJ cos(2k) − (B + J� + αJ�), (28)

is the single-particle dispersion and VK (p, k) is the anti-
symmetrized interaction vertex given in the Appendix. The
interaction between fermions is repulsive because of the an-
tiferromagnetic character of both exchange couplings. The
single-particle dispersion εk has two minima at ±Q [Q =
cos−1(−1/4α)] when α > 1/4. Otherwise, it has a single
minimum at Q = π .

In the long-wavelength limit, we can expand the single-
particle dispersion around Q and −Q. Given that there are
two minima, we must introduce an index σ = ± to distinguish
the particles with momenta near each of these minima. The
resulting effective Hamiltonian is

H̃xxz =
∑
q,σ

(
q2

2m∗ − μ

)
a†

qσ aqσ

+ 1

N

∑
σ,k,p

Ṽσ,σ (k, p)a†
−kσ

a†
kσ

apσ a−pσ

+ 1

N

∑
σ,k,p

Ṽσ,σ̄ (k, p)a†
−kσ

a†
kσ̄

apσ̄ a−pσ , (29)
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(a) TLL2 (b) VC

µ < 0

FIG. 5. Single-particle dispersion with two minima. (a) ρ+Q =
ρ−Q; (b) ρ+Q = ρ, and ρ−Q = 0. The chemical potential is assumed
to be negative μ < 0 (namely, above the saturation field Bsat), and we
consider the subspace with a fixed density ρ = ρ+Q + ρ−Q (excited
states).

where σ̄ ≡ −σ , μ = Bsat − B and the asymptotic behavior of
the effective interaction vertex in the low-density limit ρ =
1/N

∑
q,σ 〈a†

qσ aqσ 〉 � 1 [the momenta p, k � kF with p, k are
defined with respect to ±Q depending on σ = + or − and
kF = O(ρ)] is given by

Ṽσ,σ (k, p) = Ṽσ̄ ,σ̄ (k, p) = C(Q)pk + O(ρ3),

Ṽσ,σ̄ (k, p) = Ṽσ̄ ,σ (k, p)

= π�0

m∗ f
(

2�0
p+k

) −
(

π�0

m∗ f
( 2�0

p+k

)
)2

D2(Q)

D1(Q)

+ 4 sin6(Q)

D1
pk + O(ρ3). (30)

These effective interaction vertices are obtained by summing
up series of ladder diagrams, as described in the Appendix.
�0 ∼ πρ/2 is the infrared cutoff introduced to regularize the
integrals that determine the effective interaction vertices and
C(Q), D1(Q), and D2(Q) are functions that can be found in
the Appendix.

In the following, we are going to assume that B approaches
Bsat from above (μ < 0, see Fig. 5) and compute the ground-
state energy in the subspace with fixed but infinitesimally
small density ρ (note that the global ground state is the empty
state ρ = 0 for μ < 0). The ground state in the finite-density
sector will allow us to determine when the chiral susceptibility
becomes divergent for μ → 0 (see Fig. 5). After a mean-field
(MF) decoupling of the interaction term, we can compute the
energy density,

e = ekin + eint − μρ, (31)

as a function of the difference between the fermionic densities
ρ+Q and ρ−Q, with

ρσQ =
∫

〈a†
kσ

akσ 〉 dk

2π
. (32)

The total fermionic density is ρ = ρ+Q + ρ−Q.
The contribution from the kinetic energy term is

ekin = π2ρ3
+Q

6m∗ + π2ρ3
−Q

6m∗ = π2

6m∗

(
ρ3

4
+ 3ρδ2

)
, (33)

where ρσQ = ρ/2 + σδ and −ρ � 2δ � ρ is the difference
between the fermion density around the Q and −Q points, i.e.,

FIG. 6. Phase diagram in the �-α plane, where � is the spin-
exchange anisotropy (the isotropic case corresponds to � = 1) and
α = J2/J1. The red line is the phase boundary obtained from the di-
lute Fermi-gas approach, where the dashed part is first order while the
solid part is second order, the black pentagram is the numerical result
from Ref. [19]. The dotted line is the phase boundary obtained from
the hard-core boson approach [27,32]. For α < 0.25, the ground state
becomes a TLL1 phase irrespective of �.

the order parameter of the chiral phase. The contribution from
the interaction terms, eint , can be expanded in powers of ρ. The
leading-order contribution (order ρ3) up to quadratic order
in δ is

e(1)
int = π2

8m∗ �̄0�

(
�̄0,

2δ

ρ

)
(ρ3 − 4ρδ2), (34)

where �̄0 = �/kF with kF = πρ/2. The infrared cutoff must
be chosen so that ekin + e(1)

int is independent of δ for the phase
transition to take place at a given value of α > 1/4 [32]. The
phase-transition line αc(�) is then determined by the O(ρ4)
corrections, arising from subleading contributions (order ρ2)
to the interaction vertex.

Up to an irrelevant constant, the expansion of the energy
density up to fourth order in ρ is

e(2)
int = gρ2ρ−Qρ+Q + u(ρ3

−Qρ+Q + ρ−Qρ3
+Q)

+ w
(
ρ4

+Q + ρ4
−Q

)
, (35)

where the first line corresponds to the interaction between
fermions from different minima (±Q) and the second line
corresponds to the interaction between fermions from the
same minimum. The coefficients g, u, and w are derived in
the Appendix. The expansion of the total energy density (31)
in powers of the order parameter δ becomes

ftot (δ) = ftot (δ = 0) + Aρ2δ2 + Bδ4 − μρ, (36)

the minimization of which with respect to δ determines the
phase boundary between the TLL2 and VC phases, namely,
the function αc(�) presented in Fig. 6 on the �-α plane (see
the Appendix for more details, where the coefficients of this
expansion are also given). In the spin language, the broken-
symmetry state (VC) corresponds to the chiral state with
order parameter κvc

i j �= 0. The nature of the transition changes
from first to second order at a critical value of the anisotropy
�c � 0.6684. For isotropic spin exchange, the transition turns
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out to be weakly first order and the critical value of α,
αc(� = 1) � 1.264, is in very good agreement with the nu-
merical results of Ref. [19] (the dotted line in Fig. 6 indicates
the phase boundary obtained in Fig. 1 by solving the two-body
problem in the bosonic language). We note that the bosonic
treatment presented in Refs. [27,32] (which was primarily
developed for frustrated spin chains with S > 1/2) gives a
critical value of α which is rather far from the numerical
result, as already pointed out in Ref. [27]. We attribute this
difference between the bosonic and fermionic treatments of
the problem to the fact that the mean-field approximation
of the low-energy Hamiltonian H̃xxz is better justified in the
fermionic case. The quantum critical point at the saturation
field is a free-fermion fixed point for S = 1/2 (the Fermi
exclusion principle accounts exactly for the hard-core con-
straint) [108]. We also note that in one dimension, the exact
solution of the two-body problem does not necessarily provide
accurate values of the coefficients A and B (the values of these
coefficients are modified by n-body processes with n > 2).

An important consequence of this derivation is that the
renormalization of the bare single-particle dispersion,

εk (α) = J (cos k + α cos 2k − cos Q − α cos 2Q)

+ (B − Bsat ), (37)

is quadratic in the fermion density. In particular, this implies
that the single-particle dispersion is not renormalized at all for
B > Bsat and T = 0. This is a direct consequence of the U(1)
invariance of the model, which leads to a dynamical expo-
nent z = 2 (quadratic dispersion) at B = Bsat. Given that ρ ∝√

Bsat − B, for B � Bsat, the correction to the Fermi velocity is
proportional to m∗(Bsat − B), while the bare Fermi velocity is
of order

√
Bsat − B. Consequently, the single-mode dispersion

is well approximated by the bare dispersion (37) for B � Bsat.
This simple observation enables an accurate calculation of
Kth ∝ vT (for T � |B − Bsat|) in this regime because it only
depends on the velocity v � ∂εk/∂k|kF = |kF − Q|/m∗ of the
low-energy modes (note that the same is not true for the low-T
behavior of Dth ∝ Kv/T , which also depends on the value of
the Luttinger parameter K [85]). At T � B − Bsat, Kth crosses
over into the Kth ∝ T 3/2/

√
m∗ behavior that is obtained at

the fixed point B = Bsat. Finally, for B > Bsat, we have Kth ∝
T 3/2e−�/T /

√
m∗. We note that in the three regimes Kth has

the same dependence on T and m∗ as CV 〈v2〉, where 〈v2〉 is
the average value of the square of the quasiparticle velocity.

An important observation is that the behavior of Kth is
dictated by the single-mode dispersion, which is very well
approximated by the bare dispersion (37) near the satura-
tion field because corrections to the Fermi velocity are of
order ρ2. From the viewpoint of Kth, the main difference
between the TLL2 and the (chiral) TLL1 is that the former
has two channels of energy carriers, while the latter has only
one. Nevertheless, at the bare level, the Fermi velocity of
carriers in the TLL2 (v = πρ/2m∗) is twice smaller than
the Fermi velocity v = πρ/m∗ of carriers in the TLL1 (this
is a direct consequence of the quadratic dispersion around
±Q). Consequently, the factors of 2 compensate to give Kth ∝
πρ/m∗ in both phases. Based on the above considerations,
the dependence of Kth on α right below the saturation field
and at a fixed magnetization value M � Msat should be very

FIG. 7. Drude weight of the thermal conductivity as a function of
α for the noninteracting fermionic theory arising from a mean-field
decoupling of H̃xxz. The fermionic density is fixed at ρ = Msat −
M = 0.01 and T = 8EF (α = 0), where EF (α = 0) is the Fermi
energy at α = 0.

similar to the one shown in Fig. 7, which is obtained using
the noninteracting fermionic theory arising from a mean-
field decoupling of H̃xxz in Eq. (29) (see also the discussion
in the Sec. V A). As anticipated in the introduction, the α

dependence of Kth has the same trend as the α dependence
of 1/m∗ shown in Fig. 2.

V. RESULTS FROM EXACT DIAGONALIZATION

In this section, we complement our preceding analytical
arguments by a numerical study of the transport coefficients
of our model in finite magnetic fields. We first present a direct
comparison between our dilute Fermi-gas theory and exact
diagonalization in Sec. V A. Then, we proceed to comparing
DE and Kth in order to assess the significance of magnetother-
mal corrections in Sec. V B. In Sec. V C, we compare the
dependence on α at low and high magnetization.

A. Comparison of dilute fermion theory to exact
diagonalization for B > Bsat

In the previous section, we argued that a MF decoupling
of H̃xxz should give quantitatively correct results in the small
density limit for the Drude weights introduced in Sec. II.
In particular, the fermionic density is very small above the
saturation field (B > Bsat) for T � B − Bsat (exponentially
small in (B − Bsat )/T ). The purpose of this subsection is to
verify this statement by comparing the analytical treatment
with exact-diagonalization results. Under the mean-field de-
scription of H̃xxz, the thermal and spin current operators are
simply given by

jMF
th =

∑
k

εkvknk, jMF
S =

∑
k

vknk, (38)

where vk = ∂εk/∂k is the group velocity and nk = c†
kck

is the fermionic particle number. Within the mean-field
approximation, the spin/energy-current correlation functions

134413-8



LARGE MAGNETIC THERMAL CONDUCTIVITY INDUCED … PHYSICAL REVIEW B 99, 134413 (2019)

have only a singular contribution at zero frequency [see
Eq. (12)], with the Drude weights given by

DEE = −β

2

∫ 2π

0
(εkvk )2∂εk f (εk ) dk,

DES = −1

2

∫ 2π

0
εkv

2
k ∂εk f (εk ) dk, (39)

DSS = −1

2

∫ 2π

0
v2

k ∂εk f (εk ) dk,

where f (εk ) = 1/[1 + exp(βεk )] is the Fermi function. The
single-particle dispersion around each minimum at k = ±Q
is εk = �g + k2

2m∗ , with �g = B − Bsat + π2ρ2/4m∗. For T �
�g, we have

DEE � 4�2
g√

2m∗T
e−β�g�

(
3

2

)
,

DES � 4�g

√
T√

2m∗ e−β�g�

(
3

2

)
, (40)

DSS � 4
√

T√
2m∗ e−β�g�

(
3

2

)
.

Under the condition of a vanishing spin-current flow, the
thermal conductivity Kth is computed by substituting these
expressions into Eq. (16). For T � �g, we get

Kth = 4T 3/2

√
2m∗ e−β�g�

(
7

2

)
, (41)

where �(x) is the Gamma function.
We note that Kth ∝ 1/

√
m∗ for B > Bsat, while Kth ∝ 1/m∗

for B � Bsat, implying that the increase of Kth as a function
of α is much more pronounced in the TLL regime, as it
is evident from direct comparison between Figs. 7 and 8.
Figure 8 also shows a comparison with the results obtained
from exact diagonalization (ED[φ]) in the high-field regime
B > Bsat. We fix the magnetic field at B = Bsat + 0.2J and
choose a temperature T/J = 0.1, which is half of the spin
gap �g = 0.2J . Given that the low-energy sector of H is well
described by an effective noninteracting theory, we expect that
the averaging over the twist angle should drastically reduce
the finite-size effects. Indeed, the N = 16 and 18 ED[φ] data
are very similar, and, as shown in Fig. 8(a), the analytical
results are in excellent agreement with ED[φ]. At this point,
where we have analytical data available for comparison, we
can further illustrate the effect of the averaging over twist
angles. In Fig. 8(b), we present non averaged data which for
α � 0.4 fluctuates wildly. Comparing Fig. 8(a) to Fig. 8(b),
it is evident that the averaging over twist angles leads to a
remarkable improvement of the results.

B. Magnetothermal corrections

The reason for focusing on DE and Kth is that their differ-
ence is directly related to the magnetothermal corrections due
to a field-induced coupling of the spin and the energy current.
Figures 9(a) and 9(b) thus also illustrate the magnitude and
qualitative field dependence introduced by the second term
in Eq. (16). As a function of B, DE first increases and then

FIG. 8. Kth as defined in Eq. (16) at magnetic field B = Bsat +
0.2/J as a function of α at T/J = 0.1. The solid green line is
the dilute Fermi-gas result and the different symbols are exact-
diagonalization results for system sizes N = 16 (blue diamonds) and
18 (red squares). (a) ED[φ] obtained by averaging over 10 different
values of the twist angle as explained in Sec. V A. (b) ED without
average over twist angles.

takes a maximum in the high-field vector-chiral phase before
decreasing upon entering into the (gapped) fully polarized
region. The maximum of DE in the VC phase is likely not a
sole consequence of vector chirality, since such a maximum
is also present in the field-induced Luttinger liquid phase
in the spin-1/2 XXZ chain [85] and is thus a consequence
of the proximity to the fully polarized phase. The thermal
Drude weight Kth exhibits a different field dependence: apart
from finite-size fluctuations in the SDW2 phase, Kth is a
monotonously decreasing function of B. Magnetothermal cor-
rections result in a significant reduction of the absolute values,
i.e., Kth < DE. This difference in the field dependence of DE

and Kth resembles the behavior known for the spin-1/2 XXZ
chain in its partially polarized Luttinger-liquid phase [85].

It is further very instructive to contrast the field dependen-
cies of DE and Kth to the specific heat, which is shown in
the inset of Fig. 9(a) (see Refs. [29,31,109–111] for previous
studies of the specific heat in this model). The specific heat
increases rapidly as a function of magnetic field and also
takes a maximum in the vicinity of the high-field vector-
chiral phase and thus behaves similarly to the energy-current
Drude weight DE but very differently from the full thermal
Drude weight Kth that includes magnetothermal corrections.
This can be understood by recalling that Kth has the same
temperature and mass dependence as CV 〈v2〉. For a fixed
temperature, CV is maximized at the saturation field because
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FIG. 9. (a) Energy Drude weight DE and (b) thermal Drude
weight Kth [see Eq. (16)] as a function of the magnetic field B at α =
1.5 for system sizes N = 16 and 18 at T/J = 0.25. Vertical black
lines are the T = 0 phase boundaries from Ref. [19]. Inset of (a):
specific heat cV = CV /N at α = 1.5 for system sizes N = 16 and 18
at T/J = 0.25. All data were obtained by averaging over ten different
values of the twist angle as explained in Sec. V A.

the dispersion relation becomes quadratic at B = Bsat. In other
words, at low enough temperature, CV ∝ m∗T/

√
Bsat − B

for B � Bsat and T � (Bsat − B), CV ∝ √
m∗T at B = Bsat

and CV ∝ √
m∗T e−�g/kBT for B > Bsat. However, Kth is not

maximized at B = Bsat because 〈v2〉 is suppressed upon
approaching the saturation field: 〈v2〉 ∝ (Bsat − B)/(m∗)2 for
B � Bsat, 〈v2〉 ∝ T/m∗ at B = Bsat and 〈v2〉 ∝ Te−�g/kBT /m∗
for B > Bsat. As a result, we have that Kth ∝ √

Bsat − BT/m∗
for B � Bsat and T � (Bsat − B), Kth ∝ T 3/2/

√
m∗ at B =

Bsat and Kth ∝ T 3/2e−�g/kBT /
√

m∗ for B > Bsat, implying that
Kth must decrease upon approaching the saturation field, as
shown in Fig. 9(b). Therefore these qualitatively different
field dependencies may allow one to detect or rule out mag-
netothermal corrections in quasi-one-dimensional quantum
magnets (see Refs. [88,100] for experimental studies along
those lines).

C. Dependence on frustration α at high
versus small magnetization

The final result of our work that further supports the dilute
Fermi-gas arguments of Sec. IV is presented in Fig. 10(a).
There, we plot the Drude weights DE and Kth as a function
of α at a fixed magnetization of M = 0.4 and at T/J = 0.1,
normalized to their respective values at α = 0. For both DE

and Kth, we recover the prediction from dilute Fermi-gas

FIG. 10. Energy Drude weight DE and Kth as defined in Eq. (16)
at magnetization (a) M = 0.4 and (b) M = 0 for T/J = 0.1 as a
function of α. In (a), we show data for system sizes N = 16 and 18
(solid and dashed lines, respectively). In (b), only DE is shown for
N = 12 and 16 (dashed and solid lines, respectively) since DE = Kth

at B = 0. All quantities are obtained by averaging over 10 different
twist angles and normalized to their values at α = 0. Vertical black
lines are the T = 0 phase boundaries at the corresponding field
strength B from Ref. [19].

theory, namely, a significant increase of the Drude weights
once α goes beyond α = 0.25. This agreement between the
exact diagonalization and the dilute Fermi-gas prediction
concerning the α dependence of the thermal Drude weight just
below saturation is a main result of our work, as it suggests
an enhanced thermal conductivity upon entering the high-field
vector-chiral phase.

We finally compare this to the α dependence of the Drude
weights at small values of M for which we also presented
qualitative arguments in the Introduction, Sec. I. These results
are shown in Fig. 10(b) for M = 0 (since DE = Kth at B = 0
we only show DE here). For this choice of T and M, the
system goes first through the TLL1 phase and then enters
into the dimerized phase. DE has a pronounced minimum at
α = 0.7 before the Drude weight starts to increase again until
the maximum at about α ≈ 1.2 is reached. This behavior in
the dimerized phases can be understood as follows: between
α ≈ 0.25 and ≈ 0.7 the thermal conductivity decreases as
the gap increases. For α > 0.7, the gap gets smaller so one
expects an increase of the thermal conductivity.

While this behavior is seen for 0.7 � α � 1.2, the thermal
Drude weight decreases for even bigger α. We believe that
this is a finite-size effect (which cannot be remedied by twist-
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angle averaging), rooted in the fact that we work at fixed
temperature.

The comparison of Figs. 10(a) and 10(b) underlines the
main result of our work: at small values of M, the frustration
leads to a decrease of the thermal Drude weight by a factor of
ten comparing the values at α = 0 to the minimum at α ≈ 0.7,
while at large M, a pronounced increase is observed once the
frustration parameter exceeds α ≈ 0.25. This numerical result
supports the conclusions of the dilute Fermi-gas analysis of
Sec. IV.

VI. SUMMARY AND DISCUSSION

In this work, we used a combination of a dilute Fermi-gas
theory and exact diagonalization to study the thermal conduc-
tivity of frustrated spin-1/2 chains in the presence of a large
magnetic field. We focused on the behavior in the vicinity
of the saturation field and on systems with antiferromagnetic
exchange couplings. The dilute Fermi-gas theory consists of a
mean-field treatment of the effective low-energy Hamiltonian
that is obtained by taking the long-wavelength limit of the
original model. The renormalized two-body interactions are
obtained by summing up ladder diagrams. This mean-field
treatment includes many-body effects beyond the exact so-
lution of the two-body problem. Like any other mean-field
approximation, it cannot reliably predict the correct order
of the quantum phase transition between the TLL2 and VC
phases. However, the value of αc that is obtained from this
treatment is in very good agreement with previous numerical
results [19], confirming that many-body effects (beyond two-
body) give a significant contribution to the Landau-Ginzburg
expansion of the energy in powers of the VC order parameter.

As a main result, we predict a significant increase of
the low-temperature thermal Drude weight as the frustration
parameter α increases. Interactions enhance this effect. By
contrast, at small values of the total magnetization or low
magnetic fields, turning on frustration leads to a decrease of
the thermal Drude weight for sufficiently large values of the
frustration parameter α � 0.2, with a pronounced minimum
at α ≈ 0.7.

We further elucidated the role of magnetothermal correc-
tions to thermal transport. While the increase of the thermal
Drude weight Kth in the vector-chiral phase below saturation
is present in either case, the magnetic field and α dependence
of Kth is qualitatively affected by the presence of the mag-
netothermal coupling. While the bare energy Drude weight
increases with B with a maximum before the fully polarized
phase is reached, this is not the case for the thermal Drude
weight Kth, which shows a decrease as a function of B.
These observations on the field dependence of the thermal
conductivity compared to the specific heat are similar to those
reported for the finite-magnetic field transport properties of
spin-1/2 XXZ chains [85] and may thus be used to detect
magnetothermal corrections.

Our data show that twist-angle averaging can significantly
reduce finite-size dependencies as we demonstrated in the
high-field regime. It would be worth exploring the advantages
of twist-angle averaging in the whole phase diagram which is
beyond the scope of the present work.

Our conclusions should apply to real materials in so far as
we need to assume that no drastic changes in the magnetic
field dependence result from external scattering mechanisms.
Investigating this point for the case of frustrated spin systems
remains as an open theoretical problem. The prediction of
an enhanced low-temperature low-frequency weight in the
thermal conductivty should carry over to higher-dimensional
frustrated spin systems as well so long as these still realize a
free-fermion fixed point below saturation.
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APPENDIX: FERMIONIC THEORY

The (antisymmetrized) vertex of Eq. (27) is

VK (p, k) =
2∑

i=1

Ai(K )Ti(p)Ti(k), (A1)

where K is the center-of-mass momentum,

A1(K ) = 4J (� + 2α cos(K )), (A2)

A2(K ) = 4αJ�, (A3)

and

T1(p) = sin p, (A4)

T2(p) = sin 2p (A5)

are the lattice harmonics associated with nearest- and next-
nearest-neighbor interactions. The scattering amplitude be-
tween fermions is strongly renormalized in the low-density
limit (ρ � 1) and it is determined by the ladder diagrams
depicted in Fig. 11(a), corresponding to the solution of the
Bethe-Salpeter (BS) equation

�K,�(p, k) = VK (p, k) − 1

2

∫ 2π

0

dq

2π

× VK (p, q)�K,�(q, k)

ε K
2 −q + ε K

2 +q − � − i0+ . (A6)

K is the center-of-mass momentum and � the total frequency.
We consider the case with α = J2/J1 > 1/4 where the nonin-
teracting spectrum of the fermion contains two minima at ±Q
related by spatial inversion symmetry. The solution is a linear
combination of the lattice harmonics T1(p), T2(p):

�K,�(p, k) =
2∑

i=1

Bi(k; K,�)Ti(p), (A7)
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(a)

(b) (c)

K

2
− p

K

2
+ p

K

2
+ k

K

2
− k K

2
− q

K

2
+ q

= +

−Q + k1

Q + p1 Q + p2

−Q + k2 Q + k2Q + k1

Q + p1 Q + p2

FIG. 11. (a) Ladder diagrams contributing to the effective inter-
action vertex. (b) Interaction vertex for two fermions from opposite
minima. (c) Interaction vertex for two fermions from the same
minimum.

where the coefficients Bi satisfy a system of two linear equa-
tions(

1
A1(K ) + τ11 τ12

τ21
1

A2(K ) + τ22

)(
B1(k)
B2(k)

)
=

(
T1(k)
T2(k)

)
, (A8)

with

τi j (K,�) = 1

2

∫ 2π

0

dq

2π

Ti(q)Tj (q)

ε K
2 −q + ε K

2 +q − � − i0+ . (A9)

For the construction of an effective low-energy description
used in the main text, we compute the static component of
the interaction vertex (� = 0) between fermions from the
same and opposite minima of the noninteracting spectrum.
We will use the simplified notation �K (p, k) for the scattering
amplitude with � = 0 in the following.

1. Scattering amplitude between fermions
from different minima

The scattering process depicted in Fig. 11(b) is described
by the scattering amplitude

�p1+k1

(
Q + p1 − k1

2
, Q + p2 − k2

2

)
, (A10)

where p1, k1 are the incoming momenta of the two fermions
and p2, k2 are the outgoing momenta. The noninteracting
kinetic energy spectrum becomes gapless at the saturation
field and τi j (K,� = 0) has an infrared divergence with K =
p1 + k1. To regularize this integral, we introduce an infrared
cutoff �0 obtaining

τi j (K, 0) = m∗

π�0
Ti(Q)Tj (Q) f

(
2�0

K

)
+ τ

reg
i j (K, 0). (A11)

The first term corresponds to the singular contribution in the
infrared limit with

f (x) = x

(
π

2
sgn(x) − arctan(x)

)
. (A12)

The second term of Eq. (A11) is the remaining regular inte-
gral. Substituting this result into the Bethe-Salpeter equation,
we obtain the scattering amplitude expanded in powers of
�0 ∝ ρ ∝ kF :

�K (Q + p̃, Q + k̃) = π�0

m∗ f
( 2�0

K

) −
(

π�0

m∗ f
( 2�0

K

)
)2

D2

D1

+ 4 sin6(Q)

D1
pk + O

(
k3

F

)
, (A13)

where

D1 = T 2
1 (Q)

(
1

A2(0)
+ τ

reg
22 (0)

)
+ T 2

2 (Q)

(
1

A1
+ τ

reg
11 (0)

)

− T1(Q)T2(Q)
(
τ

reg
21 (0) + τ

reg
12 (0)

)
(A14)

and

D2 =
(

1

A2
+ τ

reg
22 (0)

)(
1

A1
+ τ

reg
11 (0)

)
− τ

reg
12 (0)τ reg

21 (0).

(A15)

2. Scattering amplitude between fermions
from the same minimum

We consider the scattering process depicted in Fig. 11(c),
where the two incoming and outgoing fermions belong to the
same minimum of the single-particle dispersion (either Q or
−Q). The corresponding scattering amplitude is

�2Q+p1+k1

(
p1 − k1

2
,

p2 − k2

2

)
. (A16)

In contrast to the previous case, the integral τi j is convergent.
The expansion of this vertex up to quadratic order in momenta
gives

�2Q+K (p, k) = C pk, (A17)

with K = p1 + k1, where

C = 1

M

[(
1

A2(2Q)
+ τ22(2Q, 0)

)

+ 4

(
1

A1(2Q)
+ τ11(2Q, 0)

)

− 2τ12(2Q, 0) − 2τ21(2Q, 0)

]
(A18)

and

M = (
A−1

1 (2Q) + τ11(2Q, 0)
)(

A−1
2 (2Q) + τ22(2Q, 0)

)
− τ12(2Q, 0)τ21(2Q, 0). (A19)

Given the spatial inversion symmetry of Hxxz, we also have

�−2Q+K (p, k) = C pk. (A20)

The effective low-energy Hamiltonian given in Eq. (29) of
the main text is obtained by replacing the bare interaction
vertex in Eq. (27) with the renormalized vertex obtained in
this section.
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3. Hartree-Fock approximation

The very small effective interaction vertex in the low-
density limit justifies the application of a Hartree-Fock (HF)
approximation to the effective Hamiltonian. The interaction
term is approximated by

HHF
int = 1

2N

∑
p,q

�p+q

(
q − p

2
,

q − p

2

)

× [
npc†

qcq + nqc†
pcp − npnq

]
, (A21)

where np = 〈c†
pcp〉. The first two terms renormalize the non-

interacting spectrum, which is of order ρ.
To account for the competition between the two-

component Tomonaga-Luttinger liquid and the vector-chiral
phase, we compute the lowest-energy density for a fixed
density ρ as a function of the order parameter δ. The fermion
density around the σQ minimum is ρσQ = ρ

2 + σδ with σ =
±. The Fermi momentum around each minimum is given
by kσ

F = kF + σ�, with kF = πρ

2 and � = πδ. The kinetic
energy density is

ekin = e0(1 + 3δ̄2), (A22)

where e0 ≡ π2

24m∗ ρ
3 is the kinetic energy density of the nonchi-

ral phase with ρ+Q = ρ−Q = ρ/2 and δ̄ ≡ 2δ
ρ

is the normal-
ized vector-chirality order parameter. The interaction energy
density is given by

eint = 1

2

∫
d p

2π

dq

2π
�p+q

(
q − p

2
,

q − p

2

)
npnq ≡

∑
σσ ′

eσσ ′
int ,

(A23)

where

e++
int = 1

2

∫ k1
F

−k1
F

d p

2π

∫ k1
F

−k1
F

dq

2π
�2Q+p+q

(
q − p

2
,

q − p

2

)
,

(A24)

e−,−
int = 1

2

∫ k2
F

−k2
F

d p

2π

∫ k2
F

−k2
F

dq

2π
�−2Q+p+q

(
q − p

2
,

q − p

2

)
,

(A25)

e+,−
int = 1

2

∫ k1
F

−k1
F

d p

2π

∫ k2
F

−k2
F

dq

2π

× �p+q

(
−Q + q − p

2
,−Q + q − p

2

)
, (A26)

e−,+
int = 1

2

∫ k2
F

−k2
F

d p

2π

∫ k1
F

−k1
F

dq

2π
�p+q

(
Q + q − p

2
, Q + q − p

2

)
.

(A27)

Because of the Pauli exclusion principle, the dominant con-
tribution comes from the interaction between fermions with
opposite momenta around ±Q in the low-density limit. The
corresponding O(ρ3) contribution to the interaction energy
density is

e(1)
int = 3e0�̄0�(�̄0, δ̄)(1 − δ̄2), (A28)

where �̄0 = �0/kF and

�(�̄0, δ̄) =
∫∫ 1

−1

d pdq

4

1

f
( 2�̄0

p+q+δ̄(p−q)

) . (A29)

Therefore, the leading O(ρ3) contribution to the total energy
density is

e(1)
tot = ekin + e(1)

int = 3e0[�̄0(�(�̄0, δ̄) − �(�̄0, 0))

+ δ̄2(1 − �̄0�
(
�̄0, δ̄

)
)] + · · · , (A30)

where we have omitted irrelevant constants. As we explained
in the main text, the cutoff �̄0 must be chosen so that the
O(ρ3) contribution to the energy density is independent of δ:

�̄0
(
�

(
�̄0, δ̄

) − �
(
�̄0, 0

)) + δ̄2
(
1 − �̄0�

(
�̄0, δ̄

)) ≡ 0.

(A31)
It can be shown numerically that this condition leads to a very
weak dependence of �̄0 on the order parameter δ: �̄0(δ̄) =
a0 + a2δ̄

2 + . . . with a0 � 0.999991, a2 � −0.0552232.
The O(ρ2) correction of the interacting vertex leads to an

O(ρ4) contribution to the energy density:

e(2)
int = gρ2ρ−Qρ+Q + u

(
ρ3

−Qρ+Q + ρ−Qρ3
+Q

)
+w

(
ρ4

+Q + ρ4
−Q

)
, (A32)

FIG. 12. Coefficients of the quadratic (red) and quartic (blue)
terms of the free-energy expansion Eq. (A38). The spin-exchange
anisotropies are (a) � = 1 and (b) � = 0.5, corresponding to weak
first-order and second-order transitions, respectively.
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where the first line arises from the interaction between
fermions from different minima,

g = −π4�̄2
0�(�̄0, δ̄)D2

4m∗2D1
, (A33)

u = π2 sin6(Q)

6D(0)
1 (Q)

, (A34)

and the second line arises from the interaction between
fermions from the same minimum

w = π2C

12
. (A35)

The universal function �(�̄0, x) is given by

�(�̄0, δ̄) = 1

4

∫∫ 1

−1
d pdq

1

f 2
(

2�̄0

p+q+δ̄(p−q)

) . (A36)

The dependence of g on δ̄ is as follows:

g(�̄0(δ̄), δ̄) = g0(1 + c2δ̄
2 + c4δ̄

4 + . . . ), (A37)

where g0 = − 1.10753×π4D2

4m∗2 D1
, c2 � −0.00290, and c4 �

−0.00105. In summary, given the renormalization condition
(A31), the total free energy density is

ftot (δ) = ftot (δ = 0) + (3w − g0(1 − c2))ρ2δ2

+ (2(w − u) − 4g0(c2 − c4))δ4, (A38)

where

ftot (δ = 0) = 2g0 + u + w

8
ρ4 − μρ (A39)

refers to the free energy of the normal state. The coefficients
of the quadratic and quartic terms of the free energy expansion
Eq. (A38) are shown in Fig. 12. Upon increasing α, the
quartic coefficient becomes negative before the quadratic one
for isotropic spin exchange (� = 1). Correspondingly, the
transition from the TLL2 phase to the vector-chiral phase is of
first order for � = 1 and αc � 1.264. The transition becomes
continuous for � < �c � 0.6684, as indicated in Fig. 12(a).
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