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Density-matrix renormalization group calculations are used to determine the ground-state phase diagram of
the mixed spin-(1/2, 5/2, 1/2) Heisenberg chain whose backbone consists of regularly alternating s = 1/2
and S = 5/2 spins, the latter of which are coupled to additional s = 1/2 spins providing lateral branching.
The proposed magnetic structure aims to describe the main characteristics of the heterotrimetallic coordination
polymer [Cu™n"(L")][Fe™ (bpb)(CN),] - ClO4 - H,O. The full ground-state phase diagram in the parameter
space exchange anisotropy versus magnetic field unveils special critical points, at which the intermediate
magnetization plateaus emergent at 3/7 and 5/7 of the saturation magnetization vanish. A detailed description
of the zero-temperature magnetization process and pair entanglement entropy is accomplished with the aim to
distinguish the main coupling regimes. A scaling analysis is performed to accurately locate Kosterlitz-Thouless
and Gaussian critical points. In particular, we introduce a new finite-size scaling protocol to properly extract
the critical parameters from the size dependence of the magnetic-field range corresponding to the magnetization
plateau in the close vicinity of the Gaussian point at which two gapped phases meet.

DOLI: 10.1103/PhysRevB.99.134408

I. INTRODUCTION

Recent advances in a targeted design of single-chain mag-
nets (SCMs) have impelled studies of diverse one-dimensional
quantum spin models. In particular, heterobimetallic SCMs
[1-4] are nowadays considered as important physical realiza-
tions of quantum ferrimagnetic chains, which may exhibit a
lot of unconventional magnetic properties at low temperatures
due to coexistence of ferro- and antiferromagnetic spin-wave
excitations [5—11]. Owing to a slow magnetic relaxation and
strong quantum correlations between constituent spin units,
SCMs afford a promising class of advanced materials that
may be beneficial for the development of spintronics, quantum
computing and high-density storage devices [12—16].

The simplest quantum ferrimagnetic spin system is the
mixed spin-(1/2, 1) Heisenberg chain. Besides the gapless
Tomonaga-Luttinger spin-liquid phase, this one-dimensional
quantum spin system displays in a zero-temperature magneti-
zation curve an intermediate plateau at 1/3 of the saturation
magnetization in agreement with Oshikawa, Yamanaka, and
Affleck (OYA) arguments [17]. In the case of an isotropic
Heisenberg coupling, the Lieb-Mattis ferrimagnetic phase
pertinent to the intermediate 1/3-plateau predominates at low
magnetic fields and it terminates at a field-driven quantum
phase transition towards the Tomonaga-Luttinger spin-liquid
phase emergent at higher magnetic fields [10]. However, it
has been recently verified that an exchange anisotropy can
suppress the intermediate 1/3-plateau with the character of
Lieb-Mattis ferrimagnetic phase through an extension of the
spin-liquid regime, until the 1/3-plateau phase ultimately
disappears at a special Kosterlitz-Thouless critical point
[18,19].
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Over the past few decades, experimental realizations of fer-
rimagnetic quantum Heisenberg chains with alternating spins
of different magnitudes have been examined in particular
[20]. Heterobimetallic polymeric compounds incorporating
regularly alternating Cu®* and Mn?* magnetic ions, which
are linked through dithioxalato ligand, afford for instance ex-
perimental realizations of the ferrimagnetic mixed spin-(1/2,
5/2) Heisenberg chains with almost isotropic coupling [1,2].
The OYA criterion predicts for this class of magnetic materials
an intermediate magnetization plateau at 2/3 of the satura-
tion magnetization [10]. Another interesting class of poly-
meric compounds affording the ferrimagnetic Heisenberg spin
chains constitute metal-organic frameworks, where transition-
metal ions such as Mn>* are coupled to organic radicals such
as nitroxide [21]. Among these, the ferrimagnetic compound
[Mn(NITIm)(NITImH)]CIO4 involves alternating sequence of
Mn?>* ions (S = 5/2) coupled within the linear chain to the
nitroxide radical (s = 1/2), whereas additional nitroxide rad-
ical is laterally attached to each Mn*" ion [22]. According to
the OYA criterion, the aforedescribed quantum spin chain may
exhibit two intermediate magnetization plateaus at 3/7 and
5/7 of the saturation magnetization even though numerical re-
sults unveiled presence of a single 3/7 magnetization plateau
only [9]. Unconventional magnetic properties have also been
recently reported for the ferrimagnetic mixed spin-(1/2,1)
Heisenberg branched chain with the spin-1 pendants [23].

Another strategy for producing the ferrimagnetic Heisen-
berg spin chains may take advantage of cyanide and or-
ganic phenolate bridging ligands to couple diverse metallic
ions [24-26]. For instance, the heterotrimetallic coordi-
nation compound [Cu™Mn™(L")][Fe(bpb)(CN),] - ClO; -
H,O involves within the main chain superexchange pathways
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between Fe’* (s = 1/2) and Mn>* (S = 5/2) ions mediated
through the cyanide bridge in addition to the lateral superex-
change pathways between Mn?t (S = 5/2) and Cu** (s =
1/2) ions mediated by the phenolate bridge [27]. The low-
spin Fe*" ion has a strong uniaxial magnetic anisotropy due
to unquenched orbital momentum and hence, the superex-
change coupling between Fe’' and Mn?* ions along the
chain backbone should be highly anisotropic in contrast to
the lateral superexchange coupling between Mn?* and Cu’*
ions that should be nearly isotropic. Considering that the
exchange anisotropy can significantly affect the nature of
quantum ground states and phase transitions, it is of principal
importance to investigate its effect upon the ground state of
this heterotrimetallic coordination compound.

In the present work, we will therefore address the above
question by reporting a detailed density-matrix renormaliza-
tion group (DMRG) study of the ground state of a mixed spin-
(1/2,5/2,1/2) Heisenberg branched chain accounting for
the exchange anisotropy between s = 1/2 and S = 5/2 spins
coupled along the chain backbone. We will provide results
for the magnetic-field dependence of the sublattice magneti-
zation of each spin species, the total magnetization and the
entanglement entropy between the laterally coupled spins. By
exploring distinct anisotropy regimes, we will unveil the full
ground-state phase diagram involving three different gapped
ground states corresponding to the intermediate magnetization
plateaus, as well as, two special quantum critical points at
which the intermediate magnetization plateaus disappear. A
finite-size scaling analysis will be used to characterize the
distinct nature of these quantum critical points.

II. MIXED SPIN-(1/2, 5/2, 1/2) HEISENBERG
BRANCHED CHAIN

The essential magnetic interactions of the heterotrimetal-
lic polymeric compound [Cu"™Mn™(L!)][Fe' (bpb)(CN),] -
ClO4 - H,O [27] can be captured by the mixed spin-(1/2,
5/2, 1/2) Heisenberg branched chain with three distinct spins
per unit cell resembling crystallographic positions of Fe*,
Mn?*, and Cu?* magnetic ions, respectively (see Fig. 1 for a
schematic illustration). The magnetic backbone of the consid-
ered quantum spin chain consists of an alternating sequence
of s =1/2 and S = 5/2 spins resembling Fe*™ and Mn*"
ions, which interact through the anisotropic XXZ Heisenberg
exchange coupling due to a relatively high unquenched orbital
momentum of Fe*" ions residing a low-spin state s = 1/2.
Contrary to this, each Mn>* ion of the magnetic backbone
is laterally attached via the isotropic Heisenberg coupling to
Cu®* ion with s = 1/2 spin. The Hamiltonian of the under-
lying mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain
can be written as

N, N
H=J) [(s1:-S2)a+ (Sriv1-S2)al +7° ) Syi-ss
i=1 i=1
N,
—gusB Y (55 +55,), M

i=1

where s;; stands for the s = 1/2 spin of Fe*t ion, Sy
corresponds to the S = 5/2 spin of Mn*" ion and s;3; to the

>
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FIG. 1. The magnetic
5/2, 1/2) Heisenberg branched chain, which mimics the main

structure of the mixed spin-(1/2,

characteristics of the heterotrimetallic polymeric compound
[Cu"™Mn" (L")][Fe™ (bpb)(CN),] - ClO, - H,0 [27]. The backbone
of the polymeric chain consists of alternating sequence of s = 1/2
and S =5/2 spins pertinent to Fe*™ and Mn?" magnetic ions,
whereas an additional pendant s = 1/2 spin inherent to Cu®" ion
is attached to each § =5/2 spin (Mn>" ion) of the backbone.
The lateral coupling J’ is considered as the isotropic Heisenberg
interaction, while the coupling constant J along the backbone is
considered as the XXZ anisotropic Heisenberg interaction.

s = 1/2 spin of Cu* ion laterally attached to the backbone.
Hence, the coupling constant J' determines the strength of the
isotropic exchange interaction in the lateral direction, while
the exchange constant J accounts for the anisotropic XXZ
exchange interaction along the chain backbone

(S1i-S2)a = 51,55 + 5,55, + As{ ;S5 . @)

Note furthermore that the parameter A quantifies the degree
of anisotropy in the XXZ exchange interaction along the main
chain axis, B is the external magnetic field oriented along the
z axis, up is the Bohr magneton and g is the gyromagnetic
factor, which is assumed to be the same for all three metallic
species for the sake of simplicity. In this way, the anisotropy
parameter A also measures the relative strength between
the coupling constants within the longitudinal and transverse
directions. In what follows, we will be mainly interested
in the effects of the degree of exchange anisotropy on the
ground-state phase diagram and quantum phase transition by
restricting our further attention to the particular case with
J =J’, which will henceforth serve as the energy unit. We
will also use units of gug = 1.

III. DMRG RESULTS FOR THE GROUND-STATE
PROPERTIES

The ground-state energy, entanglement entropy, global
and local magnetizations of the mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain were calculated using state-of-the-
art DMRG simulations by adapting the open-source software
from the Algorithms and Libraries for Physics Simulations
(ALPS) project [28]. To this aim, the periodic boundary
conditions were imposed in order to reduce finite-size effects,
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FIG. 2. The total magnetization per unit cell as a function of
the external magnetic field for the fully isotropic mixed spin-(1/2,
5/2, 1/2) Heisenberg branched chain with A = 1. Data for two
chain sizes are reported to show the absence of significant finite-size
corrections. These are mainly reflected in the number of magnetiza-
tion steps within the spin-liquid phase (see inset). The intermediate
magnetization plateaus at the total magnetizations 3/2 and 5/2
per unit cell are detected besides the ultimate fully polarized (FP)
ferromagnetic phase. The field-driven quantum phase transitions,
which are delimited by dotted vertical lines, separate gapful ground
states from the gapless Tomonaga-Luttinger spin-liquid (SL) phase.

whereas the number of kept states during the DMRG simu-
lations was set up to 800 with eight sweeps for the targeted
system size. This setting enabled us to achieve convergence
of the ground-state energy and magnetization with a trunca-
tion error of 1078 and an absolute accuracy in energies of
10~* (relative error of 107%) for the mixed spin-(1/2, 5/2,
1/2) Heisenberg branched chains. Simulations were mainly
performed in chains with N = 30 unit cells, with somewhat
larger chains being simulated in a vicinity of special critical
points.

Let us start our discussion by exploring the magnetiza-
tion curve of the fully isotropic mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain with A = 1. For this purpose,
the total magnetization per unit cell is plotted in Fig. 2 as a
function of the external magnetic field, which invokes pres-
ence of two intermediate magnetization plateaus with the total
magnetization My = 3/2 and 5/2 per unit cell. If the total
magnetization per unit cell would be normalized with respect
to its saturation value, the observed magnetization plateaus
would correspond to M. /My = 3/7 and 5/7 in agreement
with OYA criterion. It is noteworthy that the magnetization
plateau with the total magnetization M. = 3/2 per unit cell
develops from very low magnetic fields in accordance with
the Lieb-Mattis theorem [29]. A comparison between the
magnetization data computed for N = 20 and N = 30 unit
cells implies absence of relevant finite-size effects on essential
features of the magnetization curves (see Fig. 2), since both
system sizes afford roughly the same magnetization curves
and critical fields.

In order to provide a deeper insight into the magnetic
ordering realized within each phase, we have also computed
the magnetic-field dependence of the mean values of all
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FIG. 3. The mean values of all individual spin species emer-
gent in the unit cell of the fully isotropic mixed spin-(1/2, 5/2,
1/2) Heisenberg branched chain with A = 1. There is a two-step
transition towards the full saturation when the magnetic field pre-
dominantly reverses within the first (second) spin-liquid region the
lateral spins s3 (the backbone spins s ). The numerical data stem from
DMRG simulations of spin chains with N = 30 unit cells.

individual spin species emergent in the unit cell of the
isotropic mixed spin-(1/2, 5/2, 1/2) Heisenberg branched
chain (see Fig. 3). It is evident from Fig. 3 that the large
spin species S = 5/2 are in all phases predominantly oriented
along the magnetic field though quantum fluctuations prevent
its full polarization except of the ultimate fully polarized state
emergent above the saturation field. At low magnetic fields,
both smaller spins s = 1/2 are predominantly oriented against
the magnetic field due to the antiferromagnetic coupling with
the large spin S = 5/2 within the Lieb-Mattis ferrimagnetic
phase manifested as the intermediate plateau with the total
magnetization M. = 3/2 per unit cell. It should be also
stressed, however, that the mean values of the individual spin
species are not fully saturated within the Lieb-Mattis ferri-
magnetic ground state due to quantum fluctuations, which are
responsible for a quantum reduction of the magnetization for
all three spin species. It turns out, moreover, that the laterally
attached spins s = 1/2 (s3) tend to align towards the magnetic
field before the backbone spins s; within the lower range of
magnetic fields, which follows after a field-driven quantum
phase transition between the gapful Lieb-Mattis ferrimagnetic
phase and the gapless Tomonaga-Luttinger spin-liquid phase.
The laterally attached spins successively become almost per-
fectly aligned along the magnetic field within another quan-
tum ferrimagnetic ground state, which is responsible for the
intermediate plateau with the total magnetization My = 5/2
per unit cell. Last but not least, the backbone spins s = 1/2
(s1) from the main chain undergo a gradual spin reorientation
within the second spin-liquid region, which appears above
a field-induced quantum phase transition closely associated
with a breakdown of the intermediate plateau with the total
magnetization My = 5/2 per unit cell. Interestingly, the
magnetization of the backbone spins s; from the main chain
exhibit a nonmonotonous dependence during the spin reorien-
tation of the lateral spins s3.

It is quite obvious from the unsaturated character of the
local magnetizations (mean spin values) that all
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FIG. 4. The magnetic-field dependence of von Neumann entan-
glement entropy between the large S = 5/2 spin species (S;) and
either the laterally coupled spins (s3) or the backbone spins (s;) of
the fully isotropic mixed spin-(1/2, 5/2, 1/2) Heisenberg branched
chain with A = 1. The pair entanglement entropies pass through
maxima during the spin reversal emergent within the spin-liquid
phases. The numerical data stem from DMRG simulations of spin
chains with N = 30 unit cells.

aforedescribed ground states except the fully polarized
phase emergent above the saturation field should display
a high degree of quantum entanglement. There are several
quantities that are commonly used to analyze the degree of
quantum entanglement. In what follows, we will illustrate
this aspect by computing von Neumann entropy, which sheds
light on the entanglement of a spin pair with the remaining
part of the system [30-32]. In particular, we will focus on the
pair von Neumann entropy of the large spin S, (S = 5/2) with
one of its nearest neighbors s; or s3 (s = 1/2). Both pair von
Neumann entropies are plotted in Fig. 4 against the magnetic
field for the fully isotropic mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain with A = 1. Within both plateau
phases, the pair von Neumann entropies remain constant
and, as expected, they vanish in the classical fully polarized
state. In the Lieb-Mattis ferrimagnetic phase (M = 3/2
plateau), the pair von Neumann entropy of the large spin
S = 5/2 with the laterally attached spin s3 is larger than that
with the neighboring backbone spin s;. The reversal of the
lateral spin s3 within another quantum ferrimagnetic phase
(Mt = 5/2 plateau) has just a small impact on the S, — s3
pair entanglement entropy, while it significantly enhances the
pair entanglement entropy s; — Sy (both pair entanglement
entropies become nearly the same). It is noteworthy that the
pair von Neumann entropies reach local maxima within the
spin-liquid region, which are closely related to both spin-
reversal processes. This feature is related to the development
of strong quantum correlations in the spin-liquid phases. The
maximum values of the pair entanglement entropies can be
detected during the reversal of the lateral spin s3.

In addition, we have also performed an extensive study
of the ground-state properties of the mixed spin-(1/2, 5/2,
1/2) Heisenberg branched chain for a wide range of values of
the exchange anisotropy A. First, we will report some results
for one representative case with the anisotropy parameter
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FIG. 5. The total magnetization per unit cell as a function of
the external magnetic field for the mixed spin-(1/2, 5/2, 1/2)
Heisenberg branched chain with an anisotropic XXZ interaction
along the backbone characterized through the exchange anisotropy
A = —0.2. Only the intermediate magnetization plateau at the total
magnetization M..; = 5/2 per unit cell is present at moderate values
of the magnetic field. The field-driven quantum phase transitions are
delimited by dotted vertical lines. The numerical data stem from
DMRG simulations of spin chains with N = 30 unit cells.

A = —0.2. Under this condition, the coupling between the
longitudinal spin components along the backbone chain is
much weaker than that between the transverse ones while
having the reverse ferromagnetic character. In contrast to the
previously discussed case with isotropic coupling (A = 1.0),
the spin-liquid phase develops in the zero-temperature mag-
netization curve at low magnetic fields instead of the Lieb-
Mattis ferrimagnetic phase (see Fig. 5). Owing to this fact, an
intermediate plateau with the total magnetization M = 3/2
per unit cell is not evident in the magnetization curve, which
involves just one wide intermediate magnetization plateau
with the total magnetization M.y = 5/2 per unit cell. Besides,
it directly follows from Fig. 6 that the observed magnetization
plateau has completely different nature than the one reported
previously for the same value of the total magnetization
M.en = 5/2 per unit cell. In this particular case, the backbone
spins s; are predominantly aligned into the magnetic field,
while the lateral spins s3 are predominantly aligned in oppo-
site to the magnetic field due to the antiferromagnetic coupling
with the field-aligned large spins S,. Such ordering of spins
directly relates to a weak ferromagnetic coupling between the
longitudinal spin components along the backbone of the main
chain.

To examine the degree of quantum entanglement, we have
plotted in Fig. 7 the magnetic-field dependence of the pair
von Neumann entropies for the highly anisotropic mixed
spin-(1/2, 5/2, 1/2) Heisenberg branched chain with a weak
ferromagnetic longitudinal coupling A = —0.2. These results
would suggest that the quantum entanglement characterized
through the pair von Neumann entropies is generally lowered
within the first spin-liquid region upon strengthening of the
magnetic field until it approaches the constant local minimum,
which is then stable over the magnetic-field range correspond-
ing to the intermediate plateau with the total magnetization
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FIG. 6. The mean values of all individual spin species emer-
gent in the unit cell of the mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched chain with an anisotropic XXZ interaction along the back-
bone chain with A = —0.2. The spins s, and S, from the backbone
chain are predominantly oriented along the magnetic field, while the
lateral spins s3 are predominantly ordered in opposite to the magnetic
field within the intermediate plateau with the total magnetization
My = 5/2 per unit cell, which breaks down at a field-induced
quantum phase transitions towards the spin-liquid phase associated
with a reversal of the lateral spins s3;. The numerical data stem from
DMRG simulations of spin chains with N = 30 unit cells.

Meen = 5/2 per unit cell. It should be emphasized that the
maximum value of the pair entropy S, — s3 is relatively close
to the limiting value of a spin pair (1/2,5/2) (i.e., In12 =
4.4849), which indicates a strong quantum fluctuations at low
enough magnetic fields. Note furthermore that the pair von
Neumann entropy between the spins S, — s3 remains larger
than the pair von Neumann entropy between spins s; — S2
regardless of a relative size of the magnetic field in contrast
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FIG. 7. The magnetic-field dependence of von Neumann entan-
glement entropy between the large S = 5/2 spin species (S,) and
either the laterally coupled spins (s3) or the backbone spins (s;)
of the highly anisotropic mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched chain with the exchange anisotropy A = —0.2. The pair
entanglement entropies approach maximal values at zero magnetic
field. The numerical data stem from DMRG simulations of spin
chains with N = 30 unit cells.
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FIG. 8. The ground-state phase diagram of the mixed spin-(1/2,
5/2, 1/2) Heisenberg branched chain in the exchange anisotropy vs
magnetic field (A — B) plane. There exist two distinct 5/2-plateau
phases, which merge together at the Gaussian critical point. The
intermediate 3/2-plateau pertinent to the Lieb-Mattis ferrimagnetic
phase terminates at the Kosterlitz-Thouless critical point. The plateau
phases are separated from each other through the spin-liquid regions.

with the behavior thoroughly described for the fully isotropic
case. It is interesting to notice that, in both cases of isotropic
and anisotropic interactions, the pair entropy of s; — S, is
substantially smaller than that for the s3 — S, pair if s3 and
S, have average opposite orientations (see the 3/2 plateau in
Fig. 4 and the 5/2 plateau in Fig. 7). This feature indicates that
antiferromagnetic transversal correlations effectively reduces
the degree of quantum entanglement along the chain. For
ferromagnetic transversal correlations, both pair entropies are
of similar magnitudes (see 5/2 plateau in Fig. 4).

Finally, let us conclude our survey of the results by a
comprehensive analysis of the ground-state phase diagram of
the mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain,
which has been constructed in the exchange anisotropy versus
magnetic field (A — B) plane from zero-temperature mag-
netization curves calculated for the following range of the
anisotropy parameter A € [—2, 2]. The phase boundaries cor-
respond to the lower and upper magnetic fields of each plateau
phase. It is quite evident from Fig. 8 that the overall ground-
state phase diagram totally involves a single 3/2-plateau
phase and two distinct 5/2-plateau phases besides the gapless
Tomonaga-Luttinger spin-liquid phase and the fully polarized
ferromagnetic phase. The intermediate 3/2-plateau relates to
the Lieb-Mattis ferrimagnetic phase, which appears at low
enough magnetic fields whenever the coupling between the
longitudinal spin components along the backbone is strong an-
tiferromagnetic (A > 1). Contrary to this, the weak coupling
|A| < 1 between the longitudinal spin components of either
ferromagnetic (A < 0) or antiferromagnetic (A > 0) charac-
ter supports the presence of the quantum spin-liquid phase
at low enough magnetic fields though the 3/2-plateau phase
may still be found at moderate values of the magnetic field.
However, the width of the 3/2-plateau phase substantially
shrinks upon lowering of the anisotropy parameter A until it
completely vanishes at the Kosterlitz-Thouless critical point
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A, = —0.247. The Kosterlitz-Thouless nature of this special
point represents the transition from a gapped (massive) phase
on which there is a magnetization plateau to a nongapped
(nonmassive) critical spin-liquid phase. The strong ferro-
magnetic coupling A < —1 between the longitudinal spin
components along the backbone causes the existence of the
5/2-plateau phase at sufficiently low magnetic fields, in which
the backbone spins s; and S, are predominantly oriented into
the magnetic field and the lateral spins s3 against the magnetic
field. This is in a sharp contrast with the spin arrangement
of the second 5/2-plateau phase, which emerges at relatively
higher magnetic fields whenever stronger antiferromagnetic
coupling between the longitudinal spin components along
the backbone is considered. The latter 5/2-plateau phase is
consistent the quantum ferrimagnetic order of the backbone
spins s; and S, supplemented with almost polarized lateral
spins s3. The two 5/2-plateau phases meet together at a
very special Gaussian critical point, which implies absence
of the intermediate 5/2-plateau for one particular value of
the exchange anisotropy A, = 0.467. It should be mentioned
that all three quantum ferrimagnetic phases being responsible
for the emergence of intermediate magnetization plateaus
are separated by continuous quantum phase transitions from
the Tomonaga-Luttinger spin-liquid phase, which is generally
suppressed for very large values of the exchange anisotropy A
because a strong ferro- or antiferromagnetic coupling between
the longitudinal spin components along the backbone chain
suppresses quantum fluctuations being a necessary prerequi-
site of the quantum spin-liquid ground states.

To precisely locate the ending points of the gapped 3/2-
and 5/2-plateau phases, we have performed a finite-size scal-
ing analysis for the width of each intermediate magnetization
plateau in the close vicinity of both quantum critical points.
If the zero-temperature magnetization curve involves a true
magnetization plateau, then, the plateau should persist in a
range of the magnetic fields AB =Bt — B~ (B" and B~
are the upper and lower critical fields delimiting the plateau)
and this field range should remain finite as the chain size N
increases. On the other hand, the range of each magnetization
sector should scale as 1/N when this magnetization sector
is not responsible for a persistent magnetization plateau.
Therefore, when N AB curves for a given magnetization sector
are plotted against the control parameter A for distinct chain
sizes, they should merge together in absence of the actual
magnetization plateau, in contrast to a continuously increase
with the system size N observable within the gapful plateau
phases.

Let us start our finite-size scaling analysis by plotting
NAB against the anisotropy parameter A in a vicinity of
the Kosterlitz-Thouless (KT) critical point, at which the in-
termediate 3/2-plateau vanishes. It can be clearly seen from
Fig. 9(a) that the NAB curves plotted for distinct chain
sizes collapse within the spin-liquid phase and start to di-
verge above the KT critical point. However, the exponentially
small size of the plateau near the KT point makes difficult
to locate the KT critical point using DMRG data, which
were obtained for relatively small chain sizes. To give a
more precise estimate of the KT critical point, we have also
explored the expected universal scaling form of the plateau
size NAB = f(£/N), where the correlation length £ should
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FIG. 9. (a) A plot of NAB data for the magnetization sector be-
ing responsible for the 3/2-plateau against the anisotropy parameter
A in a vicinity of the KT critical point. All curves collapse within
the spin-liquid phase but diverge in the 3/2-plateau phase. (b) The
NAB — (NAB), data as a function of the proper scaling variable
x=b/(A— A)Y? —1InN. The best data collapse is achieved for
A, = —0.247. The dashed line represents the large x behavior
f(x) o< 1/x%, which is consistent with the linear behavior of NAB
close to the KT critical point shown in (a).

exhibit an essential singularity when diverging close to the
KT point according to & o ¢?/(A=2" a5 long as an eventual
small logarithmic correction to scaling is neglected [33,34].
Owing to this fact, all NAB curves should collapse above
the KT critical point when plotted against the proper scaling
variable x = b/(A — A.)!"/?> —InN with b being a constant
independent of A. The best data collapse of the NAB curves
was obtained for the exchange anisotropy A, = —0.247 and
is shown in Fig. 9(b). The fine collapse of data supports the
absence of relevant logarithmic corrections to scaling. It is
worth noticing that the 3/2-plateau cannot be clearly visible
in Fig. 5 due to its exponentially small size just above the
KT critical point, since it becomes indistinguishable in the
reported numerical data from finite-size steps resulting from
other magnetization sectors.

Next, let us turn our attention to a finite-size scaling
analysis close to the second special quantum critical point, at
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FIG. 10. (a) A plot of N AB data for the magnetization sector be-
ing responsible for the 5/2-plateau against the anisotropy parameter
A in a vicinity of the Gaussian critical point. All displayed curves
coalesce at the Gaussian critical point A., where they have unitary
slope (see the inset). (b) The NAB — (A — A,) data as a function of
the proper scaling variable x = N'/"(A — A,). The best data collapse
is achieved for A, = 0.467 and 1/v = 0.46.

which two different 5/2-plateau phases meet together. Such
Gaussian critical point is commonly observed in anisotropic
quantum Heisenberg spin chains [7,35-37]. The scaled size
of the 5/2-plateau N AB is plotted in Fig. 10(a) as a function
of the exchange anisotropy A for distinct chain sizes. It can be
clearly seen from this figure that all displayed curves coalesce
at a single point, which can be identified with the Gaussian
critical point. In fact, all displayed curves have unitary slope
at the Gaussian critical point A, and there in no crossing point
(see the inset). This feature requires an extended scaling form
for N AB to account for the size independence of the slope at
the critical point. The proper scaling format for N AB near the
Gaussian critical point should have the form

NAB = (NAB). + (A — Ac)+ f(§/N), 3)

because the finite-size scaling should affect only the higher-
order terms of its series expansion. The Gaussian critical
point has a regular singularity and hence, & o< (A — A.)™"
with v being the critical exponent of the correlation length.
This scaling form implies that all curves NAB — (A — A,)
should collapse into a single curve independent of the chain

size when plotted against N'/"(A — A.). Such data collapse
is shown in Fig. 10(b), which provides our best estimate
for the correlation length critical exponent 1/v = 0.46, A, =
0.467, and (NAB). = 1.246. Notice that the above scaling
analysis allows to precisely evaluate the critical properties of
the Gaussian point using data directly extracted from chains
with periodic boundary conditions. As such, it stands as an
efficient alternative protocol in comparison with techniques
resorting to twisted boundary conditions [36].

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a detailed DMRG study
of the ground-state properties of the mixed spin-(1/2, 5/2,
1/2) Heisenberg branched chain, which mimics the main
characteristics of the heterotrimetallic coordination polymer
[Cu"™n" (LY)][Fe™ (bpb)(CN),] - ClOs- H,O [27]. The
backbone of the mixed spin-(1/2, 5/2, 1/2) Heisenberg
branched chain consists of regularly alternating s = 1/2 and
S = 5/2 spins coupled through an anisotropic XXZ exchange
interaction, which takes into account the superexchange cou-
pling between the low-spin Fe** (s = 1/2) and high-spin
Mn?* (S = 5/2) magnetic ions. The branching of the mixed
spin-(1/2, 5/2, 1/2) Heisenberg chain is preserved by an
isotropic Heisenberg interaction with the third spin species
s = 1/2, which relates to the lateral superexchange coupling
of each Mn?* (S =5/2) magnetic ion with the pendant
Cu** (s = 1/2) magnetic ion. In particular, we have calcu-
lated the ground-state phase diagram, global and local mag-
netizations in addition to von Neumann pair entanglement
entropies, which were used for quantifying the degree of
quantum entanglement.

It has been demonstrated that the exchange anisotropy has
a strong influence upon the ground state of the mixed spin-
(1/2, 5/2, 1/2) Heisenberg branched chain. If the backbone
coupling between longitudinal spin components is stronger
than that between transverse spin components (i.e., |A| > 1),
the mixed spin-(1/2, 5/2, 1/2) Heisenberg branched chain
exhibits at low enough magnetic fields the gapful ferrimag-
netic ground state being responsible either for the intermediate
3/2-plateau (A > 1) or 5/2-plateau (A < —1) phase. On
the other hand, the gapless Tomonaga-Luttinger spin-liquid
phase develops at low enough magnetic fields whenever the
backbone coupling between longitudinal spin components is
weaker than that between transverse spin components (i.e.,
|A| < 1). Altogether, the mixed spin-(1/2, 5/2, 1/2) Heisen-
berg branched chain displays two distinct ferrimagnetic 5/2-
plateau phases that meet together at the Gaussian critical point
in addition to a single ferrimagnetic 3/2-plateau phase of
Lieb-Mattis type, which disappears at the Kosterlitz-Thouless
critical point. The nature of these two special quantum crit-
ical points was corroborated by a comprehensive finite-size
scaling analysis. It is also noteworthy that two quantum fer-
rimagnetic ground states with the same total magnetization
M.y = 5/2 per unit cell differ from each other by the relative
orientation of the backbone and lateral spins s = 1/2. These
gapped phases meet at a single Gaussian point at which the
gap vanishes. We have unveiled that a proper scaling analysis
in a close vicinity of this transition has to take into account the
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scale invariance of both rescaled gaps and its gradient at the
Gaussian point.

Several recently synthesized bimetallic and trimetallic
polymeric coordination compounds have their main superex-
change couplings between two spin species forming the back-
bone chain and a third spin species laterally attached to one
of the backbone spins such as one-dimensional manganese-
nitroxide [21,22] and heterotrimetallic [27] coordination poly-
mers. These polymeric coordination compounds thus afford
ideal physical systems, which can be examined in connec-
tion with an experimental probing of unconventional quan-
tum phase transitions and critical points in putative one-
dimensional quantum spin systems.

In particular, the available experimental data for the low-
temperature magnetization curve of the heterotrimetallic co-
ordination polymer [Cu'Mn™(L")][Fe'(bpb)(CN),] - ClO, -
H,0 [27] recorded at magnetic fields up to 5-T signals an
intermediate plateau roughly at 3/7 of the saturation mag-
netization (see Fig. S1 in Ref. [27]), i.e., 3/2-plateau when
expressed through the magnetization per unit cell in gug
units. The experimentally detected 3/7-plateau thus corre-
sponds to the quantum ferrimagnetic ground state, which
has the spin-5/2 (Mn>*) magnetic ions almost fully aligned
towards the magnetic field and both spin-1/2 (Fe’* and
Cu?") magnetic ions almost fully aligned in opposite to the
magnetic field (see Fig. 3 for typical field dependence of
individual magnetic moments). Note furthermore that this
magnetization scenario is consistent with the antiferromag-
netic nature of both considered coupling constants, which is

also supported by temperature dependence of susceptibility
times temperature product (see Fig. 3 in Ref. [27]). The high-
field magnetization curve of the heterotrimetallic coordination
polymer [Cu™™Mn"(L")][Fe™ (bpb)(CN),] - ClO4 - H,O thus
represents a challenging task for future experimental study,
because it could possibly involve, according to the ground-
state phase diagram shown in Fig. 8, another intermediate 5/7-
plateau in addition to two tiny spin-liquid regions even though
both coupling constants should be apparently of different
relative size. We hope that the complex ground-state phase
diagram reported in the present work, which involves two
special quantum critical points of Gaussian and Kosterlitz-
Thouless types, will stimulate further experimental efforts
towards the synthesis and magnetic characterization of this
promising class of magnetic materials and motivate additional
theoretical works aiming to unveil other exotic magnetic
phenomena.
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