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Magnetostriction reveals orthorhombic distortion in tetragonal Gd compounds
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We report detailed thermal expansion and magnetostriction experiments on GdCoIn5 and GdRh(In1−xCdx )5

(x = 0 and 0.025) single-crystal samples that show a sudden change in the dilation at a field B� for temperatures
below the Néel transition temperature TN . We present a first-principles model including crystal-field effects,
dipolar and exchange interactions, and the dependence of the latter with lattice distortions in order to fully
account for the magnetostriction and magnetic susceptibility data. The mean-field solution of the model shows
that a transition between metastable states occurs at the field B�. It also indicates that two degenerate phases
should coexist at temperatures below TN , which may explain the lack of observation, in high-resolution
x-ray experiments, of an orthorhombic distortion at the Néel transition, even though the experimentally
determined magnetic structure breaks the tetragonal symmetry and the magnetoelastic coupling from our model
is significant. These conclusions could be extended to other tetragonal Gd-based compounds that present the
same phenomenology.
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I. INTRODUCTION

Rare-earth magnetic compounds are among the strongest
permanent magnets and present the highest magnetostrictive
responses ever recorded. These remarkable properties stem
from the large magnetic moments of the rare-earth ions with
partially filled f shells and the magnetic anisotropy associ-
ated with crystal-field effects and spin-orbit couplings. The
magnetic structure of these compounds is mainly determined
by the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange
interactions between the magnetic moments of the rare-earth
ions and by the crystal field, which dominate over the dipolar
interaction.

In many materials, magnetoelastic couplings lead to sig-
nificant spontaneous lattice distortion concomitant with the
magnetic order at zero applied magnetic field. In some sys-
tems, the associated changes in the lattice constants can be as
large as a few percent [1]. When the symmetry of the magnetic
order is lower than the lattice symmetry, a reduction of the
latter is expected at the magnetic transition. This can occur,
e.g., when the magnetoelastic couplings generate changes
in the lattice parameters which do not preserve the lattice
symmetry.

Among the rare-earth atoms, Gadolinium stands as dif-
ferent. In solid state compounds, it is generally found as
a trivalent ion Gd3+ for which Hund’s rules indicate the
maximum spin allowed S = 7/2, and zero angular momen-
tum L = 0. As a consequence of the latter, the magnetic
coupling to the lattice via crystal-field effects is expected to be

weak. The magnetic anisotropy observed in Gd compounds is
therefore usually attributed to the dipolar interaction [2]. The
dependence of the exchange couplings on the relative distance
between ions can give rise to large magnetoelastic couplings.

Although a coupling between lattice and magnetic orders
is observed on most Gd compounds there are few reports
of lattice symmetry breaking at the magnetic transition (see
Ref. [1] for a review).

Many Gd compounds with tetragonal lattice show anti-
ferromagnetic (AFM) order [1,2]. Competing magnetic cou-
plings can result in an AFM order other than the trivial
G-AFM, where every pair of first neighbors is antiparallel.
For instance, a second-neighbor AFM coupling can lead to
a C-AFM order where chains of parallel-aligned moments
order antiparallel (antiferromagnetically) between them along
one of the [100] or [010] directions (see Fig. 1) [3,4]. If
these chains are aligned along the basal plane, it is expected
that below the AFM ordering temperature TN , the lattice low-
ers its symmetry to orthorhombic [5]. Although symmetry-
conserving distortions at the AFM transition have been de-
tected [1], high-resolution x-ray difraction experiments do not
show any difference between a and b lattice parameters [5,6].
Such an intriguing absence of lattice symmetry breaking at the
Néel transition in Gd-based AFM systems has been referred to
as the magnetoelastic paradox [5].

In this work, we present very sensitive dilation experi-
ments across the Néel transition in GdCoIn5 (TN ≈ 30 K)
[7] and GdRhIn5 (TN ≈ 40 K) [8]. Both systems show, for
temperatures below TN , an abrupt change of the longitudinal
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FIG. 1. Crystal structure of the 115 compounds. The observed
magnetic configuration (C-AFM) is indicated by the thick arrows on
the Gd atoms. The spins are parallel to the â axis.

linear forced magnetostriction in an external field of ∼1 T. We
perform detailed calculations which indicate that the dipolar
interaction [2], the crystal electric field (CF) [9], and the
strain dependence of the magnetic exchange couplings are
all necessary to account for the observed lattice distortions
and magnetic structure. The importance of CF effects on Gd
compounds has been discussed on Ref. [9] for the specific
case of GdRhIn5, and for other compounds on Refs. [10,11].
Anisotropic RKKY exchange couplings (where for instance
out-of-plane components of the magnetic moments couple
differently to the in-plane components) could also be present
via 5d Gd electrons [12,13]. To keep the complexity of the
problem at a reasonable level we choose not to consider this
last possibility and keep only isotropic couplings between
different neighbours (as calculated on Ref. [14]) . We also
show that the dilation data are compatible with the existence
of a tetragonal to orthorhombic distortion of the lattice at the
Néel transition. The predicted orthorhombic distortions result
from the competition between the different magnetoelastic
couplings.

A so-called “2q” structure has been proposed in
Refs. [15,16], to explain the magnetoelastic properties of
GdNi2B2C and the magnetoelastic paradox. The model used
in Ref. [16] leads however to an infinitely degenerate ground
state if no lattice distortions are allowed. Our extended model
that includes crystal field effects, lifts this degeneracy and
leads to the experimentally observed single-q configuration
for GdRhIn5. Despite of using the best achievable resolution
from single-crystal XRD data, E. Granado et al. [6] did
not find the proposed structure symmetry reduction nor any
anomaly in the evolution of the full width at half maximum
(FWHM) with temperature of hh0 or h00 diffraction lines
on GdRhIn5. Our current results therefore suggest that the
structural distortion observed in GdRhIn5 is taking place
within the experimental XRD uncertainty. This makes the
experimental detection largely sample dependent; i.e., slightly

different single-crystal surface domain structures would hin-
der the observation.

The rest of this paper is organized as follows. Section II
presents the main experimental and theoretical results for the
magnetostriction and thermal expansion data for the GdCoIn5

and GdRhIn5 compounds. Section III presents the model,
while Sec. IV presents the numerical simulations and their
interpretation. Finally, in Sec. V, we present the conclusions.

II. EXPERIMENT

We present below the main experimental and theoretical
results on the magnetostriction and thermal expansion data
for the GdCoIn5 and GdRhIn5 compounds. Both materials
crystallize in the tetragonal HoCoGa5 structure (see Fig. 1).
The magnetic structure inferred by x-ray magnetic scattering
experiments in GdRhIn5 is of C-type [6] (see Fig. 1).

The high-quality single crystals used in the present work
were grown by the self-flux technique. Samples of GdCoIn5

(GCI) and GdRhIn5 (GRI) come from batches grown in
Bariloche (Argentina) [7,17], while GdRh(In0.975Cd0.025)5

samples come from Uberlandia (Brazil). The starting mate-
rials were mixed in the nominal ratio Gd : Rh : In : Cd =
1 : 1 : 20-x : x, as for Cd-doped CeRhIn5 [18]. The grown
single crystals were confirmed by powder x-ray diffraction
to crystallize also in the HoCoGa5-type structure with no
traces of secondary phases. The specific heat and the magnetic
susceptibility data are compatible with S = 7/2 spins at the
Gd3+ ions coupled by exchange interactions mediated by the
conduction electrons. The main difference between GdCoIn5

and GdRhIn5 is the larger exchange coupling along the c axis
in the latter which leads to a higher TN [14].

Platelet-shaped crystals of typical size 1 × 1 × 0.4
mm3 were selected for the dilation experiments which were
performed with a high-resolution (�L � 1 Å) capacitive
dilatometer [19]. All dilation experiments under magnetic
field were carried out in the longitudinal configuration, i.e.,
with the magnetic field B parallel to the sample dimension L
being measured.

Figure 2 summarizes the most important experimental
observations from this work. It displays the forced magne-
tostriction (lattice dimension change driven by an external
magnetic field) along the â axis for both GCI and GRI. At
temperatures below TN , �La/La shows a sudden increase at
an in-plane field B� ∼ 1 T. Above this field, �La/La becomes
field independent for GCI and shows a weak increase with
increasing magnetic field for GRI. This weak upturn may arise
from a small contribution from the c axis, since it is not ob-
served in GRI single crystals from a different source nor in Cd
doped crystals. Other than this, there is full quantitative and
qualitative agreement (values of B� and �La/La for instance)
between samples from different sources and batches [see the
â-axis magnetostriction for GdRh(In0.975Cd0.025)5 in the same
figure]. No hysteresis effects are observed. At temperatures
above TN the magnetostriction becomes negligible and no
sudden change is observed. This type of change in �L for T <

TN is usually seen on ferromagnetic materials and attributed
to the change from the zero magnetization to the saturated
magnetic state (see Chap. 1 on Ref. [20]). As we will see in
the following section, in these antiferromagnetic systems an
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FIG. 2. Solid symbols: experimental forced magnetostriction for
GdCoIn5 (black symbols) and GdRhIn5, GdRh(In0.975Cd0.025)5 (grey
symbols with filled and empty circles, respectively) at different
temperatures and along different directions as indicated in the figure.
Dashed lines: calculated forced magnetostriction (see main text).

applied magnetic field induces a spin-flop transition (at the
field B�) to a metastable state where the spins point mainly
along the ĉ axis [21,22]. To account for the value B� and the
absence of hysteresis both the dipole interaction and the effect
of the crystal field in second order perturbation theory needs
to be considered in the calculations. The theoretical results
(dashed lines in Fig. 2), were obtained using fitting interaction
parameters constrained to the range of estimated values (see
Sec. III).

Along the ĉ axis, the field dependence of the forced magne-
tostriction (MS) is quadratic at all temperatures as it is shown
in Fig. 2 for GCI. GRI mimics this behavior (not shown here).

The spontaneous and the forced magnetostrictions are a
measure of the strength of the magnetoelastic couplings which
can be extracted from the thermal expansion data. The main
panel of Fig. 3 shows the â-axis thermal expansion �La/La

of GCI at zero field and at B = 5 T > B∗. A small kink
signposts the magnetic transition at TN . In the paramagnetic
state (T > TN ), �La/La is proportional to T 2 in a very good
approximation, as seen in the inset of Fig. 3. This quadratic
nonmagnetic thermal-expansion background (which implies a
nearly constant thermal expansion coefficient divided by T , as
reported in Ref. [7]) is also included in the main panel and it
extrapolates at low temperatures to �La (nonmagnetic, T →
0)/La = −2.5 × 10−5. We take the quadratic fit as the non-
magnetic thermal expansion, and the difference between the
zero-field thermal expansion curve and that fit corresponds
to the spontaneous MS. Accordingly, the difference between
the finite field and the zero-field data is the forced MS. The
total MS is the sum of the forced and the spontaneous MSs
and can be obtained subtracting to the finite field curve the
nonmagnetic fit.

According to this analysis, the â-axis spontaneous MS
is positive in GCI, resulting in a zero temperature ex-
pansion �La(B = 0, T → 0)/La − �La (nonmagnetic, T →
0)/La = 2.5 × 10−5, while the forced MS is also positive giv-
ing �La(B = 5 T, T → 0)/La − �La(B = 0, T → 0)/La =

−4
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FIG. 3. Thermal expansion along the â axis as a function of the
temperature for GdCoIn5 at B = 0 and 5 T. The spontaneous and
forced magnetostrictions are indicated in the figure. The nonmag-
netic contribution (thin line) is obtained from a linear fit of the
thermal expansion versus T 2 at B = 0 and for T > TN as shown in
the inset.

2 × 10−5. The zero-temperature spontaneous and forced MS
of both GCI and GRI are summarized in Table I. An equivalent
analysis can be performed from the thermal expansion data
along the ĉ axis. In this case, however, the spontaneous MS
has the opposite sign �Lc(T → 0)/Lc = −1.2 × 10−5.

The theoretical description of the MS data needs also to ac-
count for the pronounced anisotropy observed in the magnetic
susceptibilities below TN as it was reported previously [8,23].
Interestingly, the observed difference between the â-axis and
ĉ-axis susceptibilities is rapidly suppressed as the magnetic
field is raised above ∼1 T [23,24].

III. THEORY

In this section, we present the model used to describe the
experimental data. We present the different magnetic interac-
tion terms in the Hamiltonian and analyze their coupling to
the lattice degrees of freedom.

A. Exchange interactions

The magnetic exchange interactions between localized
magnetic moments at the Gd3+ ions were determined by mag-
netic susceptibility and specific heat experiments combined
with first-principles calculations [7,14]. Density functional
theory (DFT) was used to compute the energy of different
magnetic configurations as detailed in Ref. [14]. From those

TABLE I. Measured and calculated spontaneous and forced mag-
netic expansions �L/L for â-axis and ĉ-axis measurements.

105× �L/L GdCoIn5 (â) GdRhIn5 (â) GdCoIn5 (ĉ)

Spontaneous (exp.) 2.5 3.4 −1.2
Spontaneous (calc.) 2.0 2.6 −4.7
Forced (exp.) 2.0 4.9 0.9
Forced (calc.) 2.0 4.9 0.9
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FIG. 4. Different magnetic arrangements and main exchange
couplings. The small single headed arrows indicate the magnetic
moment of the Gd3+ ions, the double headed arrows indicate the
exchange couplings Ji between the magnetic moments. (a) Ferro-
magnetic chains along the â axis with the spins parallel to the same
axis (C-AFMaa ). (b) Ferromagnetic chains along the â axis with
the spins parallel to the b̂ axis (C-AFMab) and ĉ axis (c) C-AFMac.
(d) Analogous to (a) with the chains and the spins along the b̂ axis
(C-AFMbb).

energies exchange couplings between Gd3+ ions were deter-
mined. Quantum Monte Carlo calculation of the magnetic
susceptibility and specific heat using those couplings agree
with the corresponding experimental results on GdRhIn5 and
GdCoIn5 [7,14]. The exchange interactions up to the fifth
nearest neighbor are presented in Fig. 4. These couplings do
not determine unambiguously the magnetic ground state as
the energy only depends on the relative orientation of the
magnetic moments. Figure 4 presents four different magnetic
moment arrangements having the same exchange energy.

The exchange couplings Ji, shown on Fig. 4, are modified
when the lattice is distorted

Ji(δa, δb, δc) � Ji + dJi

da
δa + dJi

db
δb + dJi

dc
δc, (1)

where δa, δb, and δc are uniform lattice distortions along
the â, b̂, and ĉ axes, respectively. The magnetic exchange
interaction between magnetic moments �Si at the Gd3+ ions
can be written as

HE =
∑
〈i, j〉

Ji, j (δa, δb, δc) �Si · �S j, (2)

where the Ji, j couplings are equal to J0 for first nearest
neighbors, J1 for second nearest neighbors, etc.

Although this interaction and its dependence with the
lattice distortions is the largest, it is not enough to explain the
observed ground-state configuration, nor the magnetoelastic
data or the magnetic anisotropy. For example, the Hamiltonian
given by Eq. (2) leads to the same energy for the C-AFMaa and
the C-AFMac configurations. As we show below, the dipolar
interactions break this degeneracy.

B. Dipolar interactions

The dipolar interactions have an explicit dependence with
the distance between spins:

HD = 16.8 K
∑
i, j

a3
B

r3
i j

(
�Si · �S j − 3

r2
i j

(�Si · �ri )(�S j · �r j )

)
, (3)

where K is Kelvin scale unit, aB is the Bohr radius, ri is the
position of the ith spin and ri j = |�ri −�r j |.1 Note that here
and in what follows we take kB = 1 and use K for the energy
units. HD introduces a magnetic anisotropy. Since the distance
between nearest-neighbor spins is larger along the ĉ axis than
along the â or b̂ axis, the dipolar configurations with the
lowest energy have the spins in the a-b plane. Still those states
remain highly degenerate as a continuum of configurations
with in-plane second nearest neighbors antiparallel have the
same exchange and dipolar energies [see e.g., in Figs. 4(a),
4(d), and 6]. The experimentally observed order are however
the ones shown in Figs. 4(a) and 4(d). The first state, Fig. 4(a),
becomes the lowest lying state under a distortion a → a + δa
and b → b + δb such that the lattice parameters a and b
become different (orthorhombic distortion).

The uniaxial magnetic anisotropy along the ĉ axis intro-
duced by the dipolar interaction is however larger than what is
inferred from the value of B� (see Appendix A). An additional
source of magnetic anisotropy, which is due to crystal-field
effects, needs to be considered to explain the value of B�.

C. Crystal-field effects

The Gd3+ ion is, according to Hund’s rules, in a 4f7 state
with L = 0. The spin-orbit

∑
i �σi.�li coupling, however, mixes

this L = 0, S = 7/2 state with a higher energy multiplet with
L = 1, S = 5/2, and J = 7/2 (see Appendix B for details),
which is affected by the tetragonal crystal field. As a conse-
quence crystal field (CF) effects, although small, are present
and need to be considered.

The total crystal-field effect can be written as

HCF =
∑

i

B2S2
ic + A(δa − δb)

[
S2

ia − S2
ib

]
, (4)

where Si� is the component of the ith spin along the �̂ axis. The
first term in Eq. (4) is the intrinsic CF [10] and the last term is
induced by distortions between the a and b lattice parameters
(see Ref. [25]). The contribution due to c deformations is

1The value of 16.8 K comes from the universal constants combina-
tion

g2μ0μ2
B

4πa3
B

, where g = 2 is the gyromagnetic factor for Gd3+.
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TABLE II. Coupling parameters.
dJ a

0
da corresponds to the rate of

change of J0 due to a lattice distortion parallel to the coupling while
dJ a

0
db corresponds to a distortion in the perpendicular direction on the

a-b plane.

Parameter GdCoIn5 GdRhIn5

J0 1.31 K 1.21 K
J1 1.65 K 1.74 K
J2 0.47 K 1.43 K
J3 0.05 K − 0.10 K
J4 − 0.11 K − 0.15 K
dJ a

0
da 0.61 K/Å − 2.4 K/Å

dJ a
0

db − 1.39 K/Å − 2.9 K/Å
dJ1
da 0.265 K/Å 0.066 K/Å

A 0.49 K/Å 1.26 K/Å
B2 − 0.058 K − 0.019 K
dJ1
dc − 1.0 K/Å –

negligible with respect to the intrinsic contribution B2S2
c . The

negative sign of B2 is expected as the compound TbRhIn5

has a strong c-axis anisotropy, mostly dominated by a B2

term (see Ref. [26]). We also estimate the magnitude of this
coefficient as the crystal field present on TbRhIn5 can be
translated to GdRhIn5 (see an example of this procedure in
Ref. [27]). Using that procedure the resulting intrinsic crystal
field for Gd3+ on GdRhIn5 is mainly given by the second order
term with B2 ∼ −8.4 mK. The precise value for GdRhIn5 and
GdCoIn5 (see Table II) was obtained fitting the experimental
magnetostriction results (its main effect is to determine B�

when combined with the dipolar contribution).

D. Elastic energy

The elastic energy for a uniform distortion can be approxi-
mated as

Hel = 1
2Cab

el (δa2 + δb2) + 1
2Cc

elδc2 (5)

where the elastic constants Cab
el ∼ Cc

el ∼ Cel = 70 000 K/Å
2

are estimated from the elastic properties of materials of the
same family of compounds [28,29] and density functional
theory (DFT) results (see Appendix C).

IV. NUMERICAL SIMULATIONS

The total Hamiltonian of the system is obtained combining
Eqs. (2)–(5):

H = Hel + HD + HE + HCF . (6)

To evaluate this energy, we approximate the large S = 7/2
spins on the Gd3+ ions with classical magnetic moments (for
our case with J1/J0 > 1, we do not expect this approximation
to change the ground-state correlations, see Ref. [30] for a
related system). We consider a lattice of L × L × L sites. We
find that L � 12 is enough to obtain L-independent results.

C-AFMaa

C-AFMbb

2

1

0.5

0.25

0.1

-2×10−3 -1×10−3 0 1×10−3 2×10−3
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-1×10−3

0

1×10−3

2×10−3

δb
(Å

)

FIG. 5. Total energy (in degrees Kelvin) relative to the C-AFMaa

configuration energy (Eaa) as a function of the changes in the lattice
parameters δa and δb.

We minimize the energy considering uniform deformations
δa, δb, δc, and spin rotations restricted to magnetic orders that
preserve the eight-site magnetic unit cell of Fig. 4.

The coupling parameters used in the simulations of
GdCoIn5 and GdRhIn5 are presented in Table II. The ex-
change coupling parameters were obtained from DFT calcu-
lations [14]. The remaining parameters were obtained fitting
the magnetostriction and the magnetic susceptibility. Refer-
ence values for the rate of change of the exchange coupling
with the lattice parameter changes were obtained from DFT
calculations (for details see Ref. [31])

A. Ground state for zero magnetic field (B = 0)

The total energy as function of δa and δb is shown on
Fig. 5. Two degenerate minima are obtained with magnetic
orders C-AFMaa (see Fig. 4) and C-AFMbb, which is related to
C-AFMaa by a rotation of the lattice by 90◦ around the ĉ axis.
In the C-AFMbb configuration the spins and the spin chains
are along the b̂ axis. The distortions associated with these
minima satisfy δaaa �= δbaa and δaaa = δbbb, δbaa = δabb.
The fact that in our simulations δaaa �= δbaa indicates that the
ground-state crystal symmetry is reduced from tetragonal to
orthorhombic.

From here on we model the real system by assuming that it
is composed by a mixture of these two states and consider the
average of both distortions [6,16]

δ̄a = (δaaa + δabb)/2, (7)

δ̄b = (δbaa + δbbb)/2 (8)

to compare with the experimental results. The situation should
be quite similar to YBaCu3O6+x and a large amount of domain
states should spread throughout the crystal to minimize the
elastic energy [32,33]. Assuming a homogeneous distortion
of the lattice, we have �La/La = δ̄a/a. In the zero-field case
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TABLE III. Calculated distortions δa, δb for the B = 0 and
2 T (field parallel to the â axis) cases. The Lattice parameter a is
4.568(3)Å for GdCoIn5 and 4.651(8)Å for GdRhIn5 (see Ref. [6]).

B GdCoIn5 GdRhIn5

δaaa 0 −4.4×10−4 Å −4.8×10−4 Å
δabb 0 6.2×10−4 Å 7.2×10−4 Å
δbaa 0 6.2×10−4 Å 7.2×10−4 Å
δbbb 0 −4.4×10−4 Å −4.8×10−4 Å
105×�L/L 0 2.0 2.6
δaac 2 T −2.5×10−4 Å −0.2×10−4 Å
δabb 2 T 6.2×10−4 Å 7.2×10−4 Å
δbac 2 T 4.4×10−4 Å 1.3×10−4 Å
δbbb 2 T −4.4×10−4 Å −4.8×10−4 Å
105×�L/L 2 T 4.0 7.5

(B = 0), we have δ̄a/a ≡ δ̄b/b, which corresponds to the
spontaneous MS, since the model does not consider nonmag-
netic distortions. These distortions are presented in Table III
and show a good agreement with the experimental results
(see Table I). The magnitude of this orthorhombic distortion
for GdRhIn5 ( |b−a|

a = 2.6 × 10−4), is comparable to the es-
timated upper limit obtained from XRD experiments[ |b−a|

a =
2 × 10−4] [6].

B. Magnetostriction

To analyze the effect of an external magnetic field on the
striction, we include the Zeeman coupling

HZ =
∑

i

−gμB�Si · �B. (9)

Under a magnetic field along the â axis, the energy of the
C-AFMaa spin configuration remains unchanged while the
energy of the C-AFMbb configuration [see Fig. 4(d)] is re-
duced. A large energy barrier separates however these two
configurations. To change from C-AFMaa to C-AFMbb at zero
field, the distortions need to be interchanged δa ↔ δb, the
spins rotated 90◦ interchanging nearest-neighbor correlations
from antiferromagnetic along the â axis to ferromagnetic,
and vice versa along the b̂ axis. Although the C-AFMac

order has a larger energy than C-AFMbb, it is much closer in
configuration space to C-AFMaa. The spin-spin correlations
do not change and the distortions are only slightly modified as
they are determined to a large extent by these correlations. The
exchange coupling only depends on the relative orientation of
the spins. Our numerical results show that for a field B > B�

the configuration CAFMac has a lower energy than CAFMaa

and a transition between these two metaestable phases should
occur. The critical field B� is determined by the dipolar energy
and the intrinsic crystal field parametrized by B2. For these
compounds the CF reduces the critical field as it lowers the
energy of the CAFMac configuration. At B = B� an energy
barrier separates the C-AFMbb and the C-AFMac configura-
tions.

In our scenario, the regions of the sample which at
zero field were in the C-AFMaa configuration, with
distortions δaaa, δbaa have, at B = B�, a sudden change
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FIG. 6. Total energy of the system relative to the C-AFMaa

configuration energy for a path in configuration space joining the
C-AFMaa, C-AFMac, and C-AFMbb phases. The spins are tilted
uniformly by an angle as indicated in the figure. Different lines
correspond to different values of the external magnetic field parallel
to the â axis (B = 0, 0.5, 0.75, 0.85, and 1 T).

to the C-AFMac spin configuration with different
distortions δaac and δbac (see Table III). The regions
of the sample in the C-AFMbb configuration, however,
remain in it and the field only tilts the spins slightly in
its direction. This leads to a forced MS at a field B > B�

given by �La(B, T = 0)/La − �La(B = 0, T = 0)/La =
[δaac(B) + δabb(B) − δaaa(B = 0) + δabb(B = 0)]/(2La),
which is presented in Table I for GdCoIn5 and GdRhIn5 at
B = 5 T.

For low fields, B < B�, only the deformations associated
with the C-AFMbb order change. This is reflected on a small
change of the total deformation. Around the critical field, there
is a sudden change of the deformations following the change
of the magnetic order from C-AFMaa to CAFMac.

Figure 6 presents the energy of the system for a path in the
space of spin configurations that passes through the C-AFMaa,
C-AFMac, and C-AFMbb phases. To go from one configura-
tion to the other, each spin is rotated by the same angle and
the energy is minimized with respect to distortions δa, δb, and
δc. In the absence of an external field, there are two degenerate
minima for the C-AFMaa and C-AFMbb configurations. While
the energy Eaa of the C-AFMaa configuration does not depend
on the magnetic field, both the C-AFMac and C-AFMbb lower
their energy with increasing magnetic field. At a field B� ∼
0.85 T the C-AFMaa configuration becomes unstable and
there is a transition to the C-AFMac phase. This transition
has a very small hysteresis loop of width ∼0.01 T, which is
not observed in the experiments. Even for fields B ∼ 16 T
a barrier separates the C-AFMac and C-AFMbb phases. We
present in Appendix A, a minimal model that captures the
main physical ingredients and allows to obtain the model
parameters from the experimental results.

The magnetostriction with the magnetic field parallel to the
ĉ axis is simpler to understand because, in this case, there is
no spin-flop transition. As the magnetic field is increased, the
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local spins tilt in the ĉ direction. This leads to a change in the
spin-spin correlations of antiparallel spins

δ〈�Si · �S j〉 ∼ −S2

2

(
M(B)

MS

)2

, (10)

where M(B) � MS is the uniform magnetization along the
ĉ axis and MS is its saturation value. Since M(B) ∝ B, this
results, to leading order, in a c lattice parameter change
δc ∝ B2.

V. SUMMARY AND CONCLUSIONS

We analyzed the magnetoelastic properties of GdCoIn5

and GdRhIn5. We measured the thermal expansion and the
longitudinal magnetostriction on single crystals using a high-
resolution capacitive dilatometer. The observed data have
been accounted from a first-principle model.

These compounds present a number of intriguing prop-
erties. The observed magnetic order below TN is a C-type
antiferromagnet which has a lower point symmetry than the
lattice, but the expected tetragonal to orthorhombic distor-
tion is not observed with high-resolution XRD experiments
in zero applied field. The in-plane dilation presents a sud-
den change at a field B� ∼ 1 T and temperatures below the
Néel transition which is not observed along the ĉ axis (for
fields along the same axis). A similar behavior is seen in
sligthly Cd-doped samples. Contrary to expectations for a
spin-flop transition [34,35], no hysteresis effects are ob-
served at B�. Although crystal-field effects are expected to
be negligible in the Hund’s rule ground-state multiplet of the
Gd3+ ion, a magnetic anisotropy is clearly observed in these
compounds.

To understand the observed magnetic structure and repro-
duce the magnetostriction and magnetic susceptibility data,
we find it necessary to consider the spin-spin exchange in-
teractions and their dependence on the lattice distortions, the
dipolar interactions, and the crystal-field effects due to the
mixing of the terms 8S and 6P as a consequence of the spin-
orbit coupling.

The exchange couplings and their dependence on lattice
distortions were estimated from first-principles DFT based
calculations, while the crystal-field model and parameters
were obtained from second-order perturbation theory. The
final model parameters were obtained for each compound
through a fitting procedure of the magnetostriction and mag-
netic susceptibility data. As a consistency check of the model
parameters, we estimated the change in the Néel temperature
with an applied hydrostatic pressure which shows and ex-
cellent agreement with the expected value from Ehrenfest’s
thermodynamic equations (see Appendix D).

Our model can fully account for the observed experi-
mental data in GdCoIn5 and GdRh(In1−xCdx )5 (x = 0 and
0.025), including the observed spin-flop transition and the
absence of evidence of tetragonal symmetry breaking in these
compounds. The main assumption is that the magnetically
ordered state is a spatially inhomogeneous mixture of the
two possible degenerate ground states. This assumption is
needed to explain the absence of asymmetry, in the magnetic
susceptibility and magnetostriction, between the â-axis and

the b̂-axis measurements. Further experiments are needed
to verify the mixed states hypothesis in these compounds.
For instance, it would be interesting to measure the depen-
dence of the spin polarization with the applied magnetic
field.

Interestingly, there are other examples in the literature of
tetragonal Gd-based compounds that show a similar behavior,
i.e., antiferromagnetic order with magnetic anisotropy below
TN and a sudden change of the forced magnetostriction under
a moderate magnetic field: GdNi2B2C (Refs. [5,15]), GdAg2
(Ref. [36]), and GdRu2Si2 (Ref. [37]) among others. The
model discussed here could apply also to these cases.
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APPENDIX A: SIMPLIFIED MODEL

In this Appendix, we solve, at the mean-field level, a sim-
plified model that captures the main magnetoelastic properties
of the system in the ordered phase. We focus the analysis
on the modifications of the lattice parameters in the a-b
plane, which present sudden changes when a strong enough
longitudinal magnetic field is applied. In the absence of an
external magnetic field and assuming a C-AFM correlated
state, the model reads

F = γ1S2
c + γ2(δa − δb)

(
S2

a − S2
b

)
(A1)

+ β1(δa − δb) + β2(δa + δb) (A2)

+ C

2
(δa2 + δb2) − λ

(
S2

a + S2
b + S2

c − 1
)
. (A3)

Here, the first two terms stem from the crystal field and the
dipolar interaction. The third and fourth terms are due to
the dependence of the exchange interactions on the lattice
parameters. The fifth term is the elastic energy and in the
last term, λ is a Lagrange multiplier included to enforce the
spin normalization |�S|2 = 1. The parameters of the model are
given by

γ1 =
(

δED

S2
+ B2

)
> 0, (A4)

where δED = ED(C-AFMac) − ED(C-AFMaa) ∼ 0.74 K, is
the difference in dipolar energy between the C-AFMac and C-
AFMaa phases. γ2 = A is given by the variation of the crystal
field with lattice distortions [see Eq. (4)]. β1 = ( dJa

0
da + dJa

0
db )S2

and β2 = dJ1
da S2 are given by the variation of the nearest

neighbor and in-plane diagonal magnetic couplings with the
lattice distortions.

There are four sets of distortions and spin projections that
satisfy ∂F/∂� = 0 for all � ∈ {δa, δb, Sa, Sb, Sc, λ}:
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Magnetic order Sa Sb Sc δa δb Energy

C-AFMaa 1 0 0 − 1
C (γ2 + β1 + β2) 1

C (γ2 + β1 − β2) − 1
2C [(γ2 + β1)2 + β2

2 ]

C-AFMbb 0 1 0 1
C (γ2 + β1 − β2) − 1

C (γ2 + β1 + β2) − 1
2C [(γ2 + β1)2 + β2

2 ]

C-AFMac 0 0 1 − 1
C (β1 + β2) 1

C (β1 − β2) γ1 − 1
2C [β2

1 + β2
2 ]

C-AFMbc 0 0 1 1
C (β1 − β2) − 1

C (β1 + β2) γ1 − 1
2C [β2

1 + β2
2 ]

The ground state is doubly degenerate (C-AFMaa and
C-AFMbb) while C-AFMac and C-AFMbc are degenerate
higher energy states since γ1 > 0 and γ2β1 > 0. C-AFMac

(C-AFMbc) is however unstable with respect to a tilt of the
spins, increasing Sa (Sb) . This fact preserves the spin-spin
correlations (see Fig. 6 in the main text):

d2F
dS2

a

∣∣∣∣
ac

= −4β1γ2

C
− 2γ1 < 0 (A5)

A magnetic field along the â axis produces a magnetization
Mâ in the states C-AFMbb, C-AFMac and C-AFMbc by tilting
the spins along the same axis. This leads to a reduction of the
energy of these states by ∼B2

a/TN compared to the C-AFMaa

state, which remains unchanged. At fields larger than

B� ∼ √
TN

√
γ1 + 1

2C

[
γ 2

2 + 2γ2β1
] �

√
TNγ1, (A6)

the energy of the C-AFMac state becomes lower than the
energy of the C-AFMaa state. Additionally the C-AFMaa state
becomes unstable with respect to an increase in Sc:

d2F
dS2

c

∣∣∣∣
ac

= 4β1γ2

C
+ 2γ1 − 2B2

a

TN
∼ 2

[
(B�)2 − B2

a

]
/TN . (A7)

This explains the transition between the metastable states C-
AFMaa and C-AFMac at B = B�.

APPENDIX B: THE GROUND STATE OF Gd3+

According to the Hund rules, the state of maximum total
angular momentum projection M = 7/2 of the ground-state
multiplet 8S7/2 is

|0, 7/2, 7/2, 7/2〉 =
3∏

m=−3

f †
m↑|0〉, (B1)

where f †
lσ creates a 4f electron with orbital angular momen-

tum projection l and spin σ . The notation of the states is
|L,S, J, M〉, where L (S) is the total orbital angular momen-
tum (spin), and J and M are the total angular momentum and
its projection, respectively. The other states of the multiplet
are obtained using repeatedly the lowering operator

J− = L− + S−,

L− =
∑

σ

3∑
m=−2

a(m) f †
m−1σ fmσ ,

S− =
3∑

m=−3

f †
m↓ fm↑,

a(m) =
√

12 − m(m − 1). (B2)

The spin-orbit interaction

Hλ = λ
∑

i

Li · Si = λ

2

[ 3∑
m=−2

a(m)( f †
m↓ fm−1↑ + H.c.)

+
∑

m

m( f †
m↑ fm↑ − f †

m↓ fm↓)

]
(B3)

conserves the components of the total angular momentum J
but modifies L and S .

We obtain

Hλ|0, 7/2, 7/2, M〉 = V |1, 5/2, 7/2, M〉,
V =

√
14λ. (B4)

The result is independent of M as can be easily shown using
the fact that J commutes with Hλ. We obtain the ground-state
multiplet |g, M〉 of Gd3+ solving a 2 × 2 matrix (the same for
each M ) (

0 V
V E

)
, (B5)

where E is the energy difference between the multiplets 6P7/2

and 8S7/2 for λ = 0. Then, from the lowest lying state of
Eq. (B5), we obtain with u, v > 0 and u2 = 1 − v2

|g, M〉 = u|0, 7/2, 7/2, M〉 − v|1, 5/2, 7/2, M〉,
v2 = 1

2
− E

4
√

(E/2)2 + V 2
., (B6)

From optical experiments (Fig. 8 of Ref. [38]), we estimate
E � 32 000 cm−1. From the same reference, averaging the
total spin-orbit splitting � = Jmax(Jmax + 1)λ/(4S) between
Jmax = 6 and Jmin = 0 for the 7F terms (L = S = 3) of Eu3+

(configuration 4f6) and Tb3+ (configuration 4 f 8), we estimate
� = 5500 cm−1, which implies λ � 1571 cm−1 � 0.19 eV.
This gives v2 = 0.0307. The value of λ is similar to λ �
1508 cm−1 reported by Carnall et al. for Gd doped LaF3 [39].
The effect of lattice distortions on the crystal-field is discussed
on Ref [31].

APPENDIX C: ESTIMATION OF THE
ELASTIC CONSTANTS

To obtain estimations for the elastic constants of GdRhIn5

and GdCoIn5, we used a combination of experimental results
for related materials and density functional theory (DFT)
calculations.

High-pressure x-ray diffraction (XRD) experiments on
CeRhIn5 and CeCoIn5 report K ∼ 78 GPa for the bulk mod-
ulus of both materials [28]. This leads to an elastic energy per
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atom

Eel (δa, δb, δc) = 1

2
E

(
c δa2 + c δb2 + a2

c
δc2

)
.

Here, E = 3K (1 − 2ν) is the Young modulus assuming an
isotropic material where ν is Poisson’s ratio. This results in
anisotropic elastic constants along the â-b̂ and ĉ axes, Cab

el =
Ec and Cc

el = Ea2/c, respectively. Using ν ∼ 0.22 (see be-

low), we obtain Ca
el ∼ 71 000 K/Å

2
and Cc

el ∼ 27 000 K/Å
2
.

The DFT calculations were performed using a supercell of
2 × 2 × 2 unit cells. In Fig. 7, we show the change on the
total energy as one of the unit cell lattice parameters (a or
c) is changed. The quadratic behavior allows us to obtain the
young modulus in both situations resulting

Ca
el = 52 000K/Å2 and Cc

el = 8000K/Å2.

We have also computed the Poisson’s ratio [see Fig. 7(b)]
resulting in ν ∼ 0.22.

APPENDIX D: PREDICTED EFFECT OF PRESSURE ON TN

As a consistency check of the model parameters we
calculate here the change of TN with external pressure.
We find a good agreement between the model results
and the inferred from Ehrenfest’s thermodynamic equa-
tions (approximately 0.8 and 1.2 K/GPa, respectively, see
below).

An external hydrostatic pressure P produces changes
δb/b = δa/a = δc/c = −P/E on the lattice parameters. This
modifies the Néel temperature for the C-AFM order

TN = J (J + 1)

3kB
(4J1 + 2J2 − 8J4), (D1)

through the exchange coupling constants Ji dependence on
the lattice parameters. For our model parameters (Table II), we
find that the changes in TN are dominated by the dependence
of J1 on the lattice parameters

δTN ∼ −4P
J (J + 1)

3kB

(
2a

1

E

dJ1

da
+ c

1

E

dJ1

dc

)
. (D2)

For an isotropic Young modulus of 131 GPa (see Ap-
pendix C), we obtain

δTN

P
∼ 0.8K/GPa. (D3)

Ehrenfest’s equations allow to relate the specific heat and
the lattices changes on a second order transition

dTN

dP
= VmTN

�αV

�cP
. (D4)

For GdCoIn5, using Vm = 155.85 Å
3
, the lattice parameters

of Table III, and the changes of specific heat and dilation
reported in Ref. [7], we obtain

�αV ∼ 6 × 10−6 K−1, �cP ∼ 15
J

mol K
, (D5)

which results in
�TN

dP
∼ 1.2K/GPa. (D6)
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