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Exact diagonalization and other numerical studies of quantum spin systems are notoriously limited by the
exponential growth of the Hilbert space dimension with system size. A common and well-known practice to
reduce this increasing computational effort is to take advantage of the translational symmetry CN in periodic
systems. This represents a rather simple yet elegant application of the group theoretical symmetry projection
operator technique. For isotropic exchange interactions, the spin-rotational symmetry SU (2) can be used, where
the Hamiltonian matrix is block structured according to the total spin and magnetization quantum numbers.
Rewriting the Heisenberg Hamiltonian in terms of irreducible tensor operators allows for an efficient and
highly parallelizable implementation to calculate its matrix elements recursively in the spin-coupling basis.
When combining both CN and SU (2), mathematically, the symmetry projection technique leads to ready-to-use
formulas. However, the evaluation of these formulas is very demanding in both computation time and memory
consumption, problems which are said to outweigh the benefits of the symmetry-reduced matrix shape. We show
a way to minimize the computational effort for selected systems and present the largest numerically accessible
cases.
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I. INTRODUCTION

A typical system that possesses both spin-rotational as well
as translational symmetry is a Heisenberg spin ring [1–19],
which models, e.g., certain magnetic molecules or chains
with the following Hamiltonian, where periodic boundary
conditions are applied:

H∼ = −2J
N∑

i=1

�s∼i · �s∼i+1 , �s∼N+1 ≡ �s∼1 . (1)

The dot-product between the spin vector operators ensures
spin-rotational symmetry, since dot-products do not change
upon simultaneous rotations of both vectors. The same value
J of interactions between adjacent neighbors gives rise to
translational invariance, since the spin ring can be collectively
moved by one spacing without changing the Hamiltonian.

Both symmetries can be employed for various purposes.
One is, of course, the perception of fundamental properties
without even evaluating the energy spectrum: the energy
eigenvalues form multiplets, i.e., total spin S, and its magnetic
quantum number M are good quantum numbers. The same
holds for the momentum quantum number k = 0, . . . N − 1,
which also explains certain degeneracies, namely, between k
and N − k [7,20–24]. Together with the notion of bipartite-
ness, these quantum numbers can be assigned to, for instance,
the ground state, again without diagonalizing the Hamilto-
nian [25–27].
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The other application is the reduction of dimensionality
when diagonalizing the Hamiltonian. This is achieved by
block structuring the Hamiltonian matrix according to the
available quantum numbers, or in the language of group the-
ory, the available irreducible representations. This powerful
tool, that is heavily used in exact diagonalization studies, is the
topic of this investigation. In order to guide the reader to the
achievements and problems of combining full spin-rotational
symmetry with translational symmetry, we present important
precursors first.

For spin problems, where at least the total magnetization
M is a good quantum number, i.e., [H∼ , S∼

z] = 0, one can

subdivide the full Hilbert space H into the direct sum of all
eigenspaces H(M ) of S∼

z:

H =
+Smax⊕

M=−Smax

H(M ) . (2)

This is easily achieved by sorting the product basis
states | m1, m2, . . . , mN 〉 according to their total mag-
netic quantum number M = ∑N

i=1 mi, which yields basis
states | m1, m2, . . . , mN ; M 〉 in each orthogonal subspace
H(M ) [28]. This scheme is employed in many popular codes
for exact and approximate diagonalization, as, for instance, by
means of the density matrix renormalization group (DMRG);
compare, e.g., the ALPS package [29,30].

To marry the S∼
z symmetry with translational symmetry

is again rather easy, since the irreducible representations of
the translations can be constructed analytically starting from
states | m1, m2, . . . , mN ; M 〉. If T∼ denotes a translation of the
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chain by one site, i.e., the generating group operation of the
translation group CN , then

| m1, m2, . . . , mN ; M, k 〉

∝
N−1∑

ν=0

(ei2πk/N T∼ )ν | m1, m2, . . . , mN ; M 〉 (3)

is both an eigenstate of S∼
z and T∼ with eigenvalues M

and exp(−i2πk/N ), respectively, k = 0, . . . N − 1 being the
shift quantum number (lattice momentum). After consid-
ering that cyclic permutations of m1, m2, . . . , mN yield
the same | m1, m2, . . . , mN ; M, k 〉 and that some patterns
m1, m2, . . . , mN with additional symmetry do contribute only
to certain k, one can set up a very straightforward gener-
ation of the basis states in the subspaces H(M, k), whose
dimensions are about 1/N th of the respective dimensions of
H(M ) [7,31–34]. This scheme is also used in many programs,
among which SPINPACK is a freely available one [35]. Appli-
cation in DMRG seems to be restricted, since matrix-product
states are constructed according to positions of spins; there-
fore each state breaks translational invariance. Nevertheless,
very recently ideas have been developed as to how to incor-
porate translational symmetry into DMRG [36]. Then, what
is the problem with the combination of full spin-rotational
symmetry and translational symmetry?

The paper is organized as follows. In Sec. II we recapit-
ulate how spin-rotational and translational symmetry can be
applied simultaneously and discuss the numerical implica-
tions. Thereafter, in Sec. III we present some of the largest
numerically exact calculations for spin rings, followed by a
discussion in Sec. IV.

II. SPIN-ROTATIONAL AND
TRANSLATIONAL SYMMETRY

The major obstacle when combining spin-rotational and
translational symmetry is given by the fact that a trans-
lated eigenstate of �S∼

2 in general does not belong to the

same basis set as the original state, in contrast to the basis
{ | m1, m2, . . . , mN ; M 〉}, where translations yield just another
member of the same basis set. In order to understand this
better, we quickly repeat how spin-rotational symmetry—
SU (2)—can be realized. This is done by means of spin
coupling according to some arbitrary coupling scheme. The
basis states

| s1, s2, S12, s3, S123, . . . , sN , S, M 〉 (4)

are, e.g., generated by sequential coupling of spins along the
chain. They are by construction eigenstates of �S∼

2 and S∼
z.

If the Hamiltonian is then written in terms of irreducible
tensor operators that are connected to compound tensors
according to the same coupling scheme, matrix elements of
the Hamiltonian can be easily evaluated by recursive decou-
pling. A detailed description of this powerful method can be
found in Refs. [37–44]. The computer program MAGPACK, that
completely diagonalizes the Heisenberg Hamiltonian using
SU (2) symmetry, is freely available [45]. Also, for DMRG
SU (2) codes have been developed [46–51]. In other fields,
such as nuclear physics, this method was also adapted to
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FIG. 1. Coupling schemes can be represented as coupling trees.
The original sequential coupling (l.h.s.) is transformed into a se-
quential coupling that starts with the spin at position 2 (r.h.s.). The
intermediate spins are labeled with a different letter to denote the
different coupling scheme, although they acquire the original value,
i.e., J12 = S12.

model finite Fermi systems such as nuclei [52], as was the
case for Hubbard models, where one can actually exploit two
SU (2) symmetries [53–56]. Solutions for models with SU (N )
symmetry work along similar lines [46,57–60].

The construction of a new basis that is additionally an
eigenbasis of the translation operator T∼ involves the projection

operator already introduced in (3),

| α, S, M, k 〉 ∝
N−1∑

ν=0

(ei2πk/N T∼ )ν | α, S, M 〉 . (5)

Here α is now a short-hand notation for the full coupling
scheme s1, s2, S12, s3, S123, . . . , sN . To be used as a basis,
the states | α, S, M, k 〉 still need to be orthonormalized. The
application of T∼ in (5) generates a plethora of new states that

belong to different coupling schemes, i.e., to different basis
sets. Figure 1 demonstrates the action of T∼ on a coupling

scheme of a ring of four spins. The translation of all spins by
one unit modifies the whole coupling scheme, which is in stark
contrast to the action on product states | m1, m2, . . . , mN 〉,
where only a new member of the same basis set is produced.

In order to evaluate matrix elements of the Hamiltonian,
each state T∼

ν | α, S, M 〉 has to be represented in the original

basis, i.e.,

T∼
ν | α, S, M 〉 =

∑

α′
| α′, S, M 〉

× 〈α′, S, M | T∼
ν | α, S, M 〉 . (6)

Thanks to symmetry this needs to be done only for, e.g.,
M = S, but it nevertheless involves a huge
number of so-called recoupling coefficients
〈α′, S, M = S | T∼

ν | α, S, M = S 〉. Graph-theoretical methods

can be used to evaluate these coefficients [43,44,61,62],
which contain Wigner-6J symbols, phase factors, square
roots, as well as possible summations over additional
indices. The composition of these coefficients is crucial for
the computational costs of not only their calculation but
also the time and memory efficiency of the whole basis
symmetrization. Defining an equivalence relation

| α′, S, M 〉 ∼= | α, S, M 〉
⇔ ∃ν : 〈α′, S, M | T∼

ν | α, S, M 〉 �= 0 (7)
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enables us to distinguish orthogonal sets of projected states
which can be orthonormalized separately. The number and
size of these sets is closely related to the complexity of the re-
coupling coefficients, where simple coefficients lead to many
small sets. In the worst case, where all states are equivalent,
orthonormalization becomes cumbersome and one needs to
store an order of [dim(H(S, M = S))]2/N basis coefficients.
This prevents a general use, even for relatively small systems.

The complexity of the recoupling coefficients depends on
several circumstances, in particular, the point group used
and the employed coupling scheme [43,44]. The relevant
question is, therefore, whether coupling schemes exist that are
substantially less demanding than others. In an earlier publi-
cation it could be shown that if one chooses compatible point
groups and coupling schemes, only phase factors appear in the
recoupling coefficients [21]. Since especially low-symmetry
groups such as D2 or D4 often allow for the construction of an
appropriate coupling scheme [63–65], we wonder whether the
group of translations CN also can be combined with a clever
coupling scheme.

The mentioned graph-theoretical methods [43,44,61,62]
help to understand what one is looking for: recoupling coeffi-
cients without summations over additional indices and with
as few as possible Wigner symbols and square roots. The
ultimate goal—no sums, no symbols, no square roots—can be
achieved for chain lengths of N = 2n, n = 2, 3, 4, . . . . Then
the recoupling coefficients can be evaluated in the graph-
theoretical framework by spin exchange processes as depicted
in Fig. 2. Such processes generate only a phase, such as, for
example, in 〈 s1s2S | s2s1S 〉 = (−1)S−s1−s2 . For the example
shown on the right-hand side of Fig. 2 this yields (M = S
omitted)

〈 s1, s3, S13, s2, s4, S24, S | s2, s4, J13, s3, s1, J24, S 〉
= (−1)J24−s3−s1 (−1)S−J13−J24δS13J24δS24J13

= (−1)S−J13−s3−s1δS13J24δS24J13 . (8)

For chain lengths that are not powers of 2, it turns out that a
universal coupling strategy is to prime factorize the coupling
scheme, i.e., the chain length. N = 6, for instance, would be
coded as 2 · 3, and so on. The recoupling coefficients contain
more and more Wigner symbols as well as square roots the
larger the prime factors pi are. The maximum number of

s s s s41

T~S S2413

S

3 2 s s s

2413

S

14 32 s

J J

FIG. 2. Optimal coupling scheme for chain lengths of N = 2n

(l.h.s.). The translated scheme (r.h.s.) can be transformed back into
the old coupling scheme by spin exchange operations on the coupling
graph, leading to a very simple recoupling coefficient.

symbols per coefficient is given by

NWigner-6J =
Nprimes∑

i=1

(pi − 2) ·
Nprimes∑

j=i+1

p j . (9)

N = 2n fits into this scheme as the optimal case, since only
the smallest possible prime factors appear. This finding ex-
plains why a combination of spin-rotational and translational
symmetry is not easily possible for the majority of system
sizes—it turns into a prohibitive numerical effort to evaluate a
massive number of recoupling coefficients.

FIG. 3. Spectra and observables for an antiferromagnetic Heisen-
berg ring with N = 24, s = 1/2: energy spectrum vs total spin S, the
same spectrum but now vs k, the magnetization vs the applied field B
for various temperatures, as well as the specific heat vs temperature
T for various external fields (top to bottom).
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FIG. 4. Spectra and observables for an antiferromagnetic Heisen-
berg ring with N = 16, s = 1: energy spectrum vs k as well as the
specific heat vs temperature T for various external fields (top to
bottom).

III. NUMERICAL RESULTS

Finally we would like to present some of the largest cases
one can actually solve nowadays. We choose Heisenberg spin
rings with antiferromagnetic nearest-neighbor interaction as
examples.

The first example shows spectra and magnetic observables
for a spin ring with N = 24 sites of spins s = 1/2. The dimen-
sion of the total Hilbert space is dim(H) = 16 777 216, which
can be subdivided into subspaces H(S, M = S, k) as outlined
above. In particular, 24 = 2 ∗ 2 ∗ 2 ∗ 3. The dimension of the
largest subspace H(S, M = S, k) is 27,275; it occurs for S = 2
and even k �= 0, 12. Figure 3 shows from top to bottom the

FIG. 5. Specific heat vs temperature T for various external fields
for an antiferromagnetic Heisenberg ring with N = 8, s = 5.

energy spectrum vs total spin S, the same spectrum but now
vs k, the magnetization vs the applied field B for various
temperatures, as well as the specific heat vs temperature T
for various external fields. The figures merely serve as visual
proofs of the feasibility of the program than as sources for
specific curves. Readers interested in the spectra or specific
functions are welcome to contact the authors.

The second example presents the results for a spin ring of
N = 16 sites of spins s = 1. In this case the total dimension
assumes a value of dim(H) = 43 046 721, which reduces to
59 143 for the largest subspace H(S, M = S, k) occurring for
S = 3 and odd k. Figure 4 depicts the energy spectrum vs k as
well as the specific heat vs temperature T for various external
fields.

The final example of our selection deals with a fictitious
spin ring of N = 8 spins with single-spin quantum number
s = 5. Its main purpose is to demonstrate that the combined
use of spin-rotational as well as translational symmetry allows
one to reduce the staggering dimension of the full Hilbert
space of dim(H) = 214 358 881 to a rather moderate size of
the largest subspace H(S, M = S, k) of 77 970, which occurs
for S = 9 and odd k. Figure 5 shows the specific heat vs
temperature T for various external fields calculated from all
214 358 881 levels.

IV. DISCUSSION AND CONCLUSIONS

The outlined method provides a valuable tool in cases
where a complete and numerically exact diagonalization of
a large spin system provides additional benefits compared
to approximate methods. The knowledge of exact quantum
numbers such as S, M, and k provides such benefits, for
instance, in spectroscopic experiments such as, for instance,
inelastic neutron scattering (INS), where selection rules can
be inferred [66–68].

The method also complements other existing exact meth-
ods, in particular, Bethe ansatz methods. These work
for isotropic nearest-neighbor interactions of arbitrary spin
s [69–73], but only for certain linear combinations of pow-
ers of �s∼i · �s∼i+1. The most general isotropic nearest-neighbor

interaction for spin s is of the form ps(�s∼i · �s∼i+1), where ps

denotes a polynomial of degree 2s. For s = 1/2 the polyno-
mial is simply the proportional function, which means that the
Heisenberg spin-1/2 chain is integrable by Bethe ansatz. For
spin-1 chains the polynomial turns out as p1(x) = x ± x2 or
p1(x) = x2, which means that certain bilinear or biquadratic
chains can be solved by Bethe ansatz [74]. Generally, the
Bethe ansatz is not applicable to Heisenberg chains with
only bilinear terms for s > 1

2 . Here (and in many other
cases) our diagonalization scheme provides the exact spectra
and eigenfunctions, albeit for periodic chains of restricted
lengths.

Although the theoretical calculations appear straightfor-
ward, we showed that in many cases a vast number of
recoupling coefficients are generated which in the worst
cases yield dim(H(S, M = S)) coefficients for each of the
dim(H(S, M = S))/N states belonging to an irreducible rep-
resentation (S, M, k). This renders a practical use impossible.
Nevertheless, we could also outline for which system sizes a
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combined use of spin-rotational and translational symmetry
is feasible. It then delivers numerically exact results for both
spectra as well as observables.

Very recent numerical studies show that the range of appli-
cability of the method can be extended, at least somewhat, by
using DN combined with parity instead of CN symmetry [75].
Complex valued basis coefficients and matrix elements can
thereby be avoided at the cost of additional symmetry opera-
tions. This way, a complete diagonalization of a spin ring with
N = 27 and s = 1/2 becomes possible, for instance.
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