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Quantum dynamics of the small-polaron formation in a superconducting analog simulator
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We propose a scheme for investigating the nonequilibrium aspects of small-polaron physics using an array
of superconducting qubits and microwave resonators. This system, which can be realized with transmon or
gatemon qubits, serves as an analog simulator for a lattice model describing a nonlocal coupling of a quantum
particle (excitation) to dispersionless phonons. We study its dynamics following an excitation-phonon (qubit-
resonator) interaction quench using a numerically exact approach based on a Chebyshev-moment expansion of
the time-evolution operator of the system. We thereby glean heretofore unavailable insights into the process of
the small-polaron formation resulting from strongly momentum-dependent excitation-phonon interactions, most
prominently about its inherent dynamical timescale. To further characterize this complex process, we evaluate
the excitation-phonon entanglement entropy and show that initially prepared bare-excitation Bloch states here
dynamically evolve into small-polaron states that are close to being maximally entangled. Finally, by computing
the dynamical variances of the phonon position and momentum quadratures, we demonstrate a pronounced
non-Gaussian character of the latter states, with a strong antisqueezing in both quadratures.
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I. INTRODUCTION

Recent progress in superconducting (SC) circuits [1,2]
has enabled significant strides in the realm of analog quan-
tum simulation [3]. An overwhelming majority of propos-
als for simulating various physical systems using SC cir-
cuits is based on arrays of transmon qubits and microwave
resonators in state-of-the-art circuit quantum electrodynam-
ics (circuit-QED) setups [4,5]. Examples include simulators
of quantum spin- and spin-boson-type systems, interacting
fermions/bosons, topological states of matter, to name but
a few [6–8]. In particular, SC simulators of small-polaron
(SP) models [9–11] have proven superior to their counterparts
based on trapped ions [12,13], cold polar molecules [14,15],
and Rydberg atoms/ions [16]. Yet, the existing theoretical
proposals for simulating SP physics—not only those based on
SC circuits—solely address its static aspects.

The SP concept captures the physical situation often found
in narrow-band semiconductors and insulators, where the
motion of an itinerant excitation—an excess charge carrier
(electron, hole) or an exciton—may get hindered by a poten-
tial well resulting from the host-crystal lattice displacements
[17]. The ensuing SP formation [18], accompanied by the
phonon “dressing” of the excitation and an increase in its
effective band mass, represents the most striking consequence
of strong, short-ranged excitation-phonon (e-ph) coupling
[19]. Yet, some important issues—e.g., how long it takes
for a SP quasiparticle to form following an e-ph interaction
quench (i.e., a sudden switching-on of the e-ph interaction in
a previously uncoupled system)—remain ill-understood as of
this writing [20,21]. On the theoretical side, this fundamental
issue remains unresolved even in the simplest case of purely
local e-ph coupling captured by the time-honored Holstein

model [22–24]. On the experimental side, studies of the dy-
namics of polaron formation became possible with advances
in ultrafast time-resolved spectroscopies, typically yielding
formation times of less than a picosecond [25].

The compelling need to understand the microscopic mech-
anisms of charge-carrier transport in complex electronic ma-
terials, such as crystalline organic semiconductors [26,27],
semiconducting counterparts of graphene [28], or cuprates
[29,30], prompted investigations of models with strongly
momentum-dependent (nonlocal) e-ph interactions [31]. Such
interactions, whose corresponding vertex functions have ex-
plicit dependence on both the excitation and phonon quasi-
momenta, are exemplified by the Peierls-type coupling (also
known as Su-Schrieffer-Heeger or off-diagonal coupling [32])
that accounts for the dependence of effective excitation hop-
ping amplitudes upon phonon states [33,34]. Aside from their
significance for describing transport properties of materials,
such couplings have fundamental importance. Namely, they
do not obey the Gerlach-Löwen theorem, a formal result that
rules out the existence of nonanalytical features in the ground-
state-related single-particle properties for certain classes of
coupled e-ph models [35].

In this paper, motivated by the aforementioned dearth
of studies pertaining to the dynamics of SP formation, we
explore this complex phenomenon using an analog simulator
that consists of SC qubits and microwave resonators. Adjacent
qubits are coupled in this system through a coupler circuit that
contains three Josephson junctions (JJs). This system, based
on transmon qubits, was proposed in the past by one of us and
collaborators for the purpose of simulating static properties
of SPs that originate from nonlocal e-ph interactions [10].
Apart from transmons, this system can also be realized with
semiconductor-nanowire-based gatemon qubits [36–38].
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We analyze the time evolution of SP states ensuing from
initially prepared bare-excitation Bloch states with different
quasimomenta. We do so by combining exact numerical diag-
onalization of the effective e-ph Hamiltonian of the system
and the Chebyshev-propagator method [39,40] for comput-
ing its dynamics. We determine how the SP formation time
after an e-ph interaction quench depends on the initial bare-
excitation quasimomentum and the e-ph coupling strength.
We then further characterize SP formation by evaluating the
e-ph entanglement entropy and showing that at the onset of the
SP regime it reaches values close to those of maximally entan-
gled states. In addition, we evaluate the dynamical variances
of the phonon position and momentum quadratures in SP
states and demonstrate their pronounced non-Gaussian char-
acter, with a substantial antisqueezing in both quadratures.
Our findings can be verified in the proposed simulator—once
realized—by measuring the photon number and the attendant
squeezing in the resonators.

The remainder of this paper is organized as follows. In
Sec. II we present the layout of our analog simulator and
its underlying Hamiltonian. Section II B is set aside for the
effective e-ph Hamiltonian of the system, followed by a dis-
cussion of typical parameter regimes and the salient features
of the SP ground state of the system. In Sec. III we provide
a brief outline of the strategy that we employ to study the
system dynamics and introduce some relevant timescales in
the problem at hand. In Sec. IV we present the obtained results
for the SP formation time, as well as those found for the
e-ph entanglement entropy and the dynamical variances of
the phonon position and momentum quadratures. We sum-
marize the paper and conclude with some general remarks
in Sec. V. Some involved mathematical derivations, as well
as a description of basic aspects of the numerical method
used and our own implementation thereof, are relegated to
Appendices A–C.

II. SYSTEM AND ITS HAMILTONIAN

A. Layout of the analog simulator

The proposed simulator, depicted in Fig. 1, consists of SC
qubits (Qn) with the energy splitting εz, microwave resonators
(Rn) with the photon frequency ωc, and coupler circuits (Bn)
with three JJs (n = 1, . . . , N). Through the Jordan-Wigner
mapping [41] the pseudospin-1/2 degree of freedom of qubits,
represented by the operators σn, plays the role of a spinless-
fermion excitation; photons in the resonators, created by the
operators a†

n, mimic dispersionless phonons. The nth repeating
unit of this system is described by the Hamiltonian Hn =
H0

n + HJ
n . Its noninteracting part H0

n reads

H0
n = εz

2
σ z

n + h̄ωca†
nan. (1)

The Josephson energy of the coupler circuit Bn [42], a gener-
alization of a SQUID loop, is given by

HJ
n = −

3∑
i=1

Ei
J cos ϕi

n, (2)

FIG. 1. Schematic diagram of the analog-simulator circuit con-
taining SC qubits Qn (with charging and Josephson energies Es

C

and Es
J , respectively), resonators Rn, and coupler circuits Bn with

three Josephson junctions (n = 1, . . . , N). φl
n and φu

n are total fluxes
threading the lower and upper loops of Bn, respectively. Qubit Qn

interacts with its neighbors through circuits Bn−1 and Bn.

where ϕi
n are the respective phase drops on the three JJs and

Ei
J their corresponding Josephson energies; we henceforth

assume that E1
J = E2

J ≡ EJ and E3
J = EJb �= EJ .

The qubit and resonator degrees of freedom are coupled
through the flux of the resonator modes that pierces the upper
loops of coupler circuits. The Josephson-coupling energy of
the latter circuits, as demonstrated in what follows, can be
expressed as an XY -type (flip-flop) coupling between adjacent
qubits with the coupling strength that dynamically depends
on the resonator (i.e., photon) degrees of freedom. As a
result, this indirect inductive-coupling mechanism effectively
gives rise to a qubit-resonator interaction. In addition, coupler
circuits are also driven by a microwave radiation (ac flux)
and subject to an external dc flux. The required ac fluxes
can be generated by microwave-pumped control wires situated
in the vicinity of the respective loops, while the dc flux can
be supplied through currents in appropriately placed separate
control wires.

Let φu
n and φl

n be the respective total magnetic fluxes in
the upper and lower loops of Bn (cf. Fig. 1), both expressed
in units of �0/2π , where �0 ≡ hc/(2e) is the flux quantum.
The upper-loop flux φu

n includes the ac-driving contribution
π cos(ω0t ) and one that stems from the resonator modes, i.e.,

φu
n = π cos(ω0t ) + φn,res, (3)

where φn,res is given by

φn,res = δθ [(an+1 + a†
n+1) − (an + a†

n)]. (4)

Here δθ = [2eAeff/(h̄d0c)](h̄ωc/C0)1/2, where Aeff is the ef-
fective coupling area, C0 the capacitance of the resonator,
and d0 the effective spacing in the resonator [43]. The lower-
loop flux φl

n also comprises an ac contribution given by
−(π/2) cos(ω0t ), with the same frequency as the ac part of
φu

n but a different amplitude. In addition, it includes a dc part
φdc—apart from ω0 the only tunable parameter in the system
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and its main experimental knob. Thus, φl
n is given by

φl
n = −π

2
cos(ω0t ) + φdc. (5)

It should be stressed that the amplitudes of the two ac-driving
terms are chosen in such a way as to ensure that the phase
drops ϕ3

n on the bottom JJs do not have an explicit time
dependence [10].

The time dependence of the ac-driving terms makes it
natural to carry out further analysis in the rotating frame of
the drive. While this change of frames leads to a shift in the
phonon frequency (ωc → δω ≡ ωc − ω0), it also renders the
Josephson-coupling term time dependent. Yet, it can easily be
shown that this time dependence can be neglected due to its
rapidly oscillating character. The remaining part of that term
reads

H̄J
n = −2

[
tr − 1

2 EJJ1(π/2)φn,res
]

cos(ϕn − ϕn+1). (6)

Here ϕn is the gauge-invariant phase variable of the SC island
of the nth qubit [1], Jn(x) are Bessel functions of the first
kind, and tr = (EJb/2)(1 + cos φdc), where EJb is chosen to
be given by 2EJJ0(π/2).

In the regime of relevance for transmon/gatemon
qubits (Es

J � Es
C , where Es

C and Es
J are the charging

and Josephson energies of a single qubit, respectively)
cos(ϕn − ϕn+1) can be expanded up to the second or-
der in ϕn − ϕn+1. By switching to the pseudospin oper-
ators σn, it can be recast (up to an immaterial additive
constant) as δϕ2

0 [σ+
n σ−

n+1 + σ−
n σ+

n+1 − (σ z
n + σ z

n+1)/2]. Here
δϕ2

0 ≡ (2Es
C/Es

J )1/2, hence δϕ2
0 ∼ 0.15 for a typical trans-

mon (Es
J/Es

C ∼ 100) and δϕ2
0 ∼ 0.28 for a typical gatemon

(Es
J/Es

C ∼ 25).
While the original proposal for simulating SP physics with

strongly momentum-dependent e-ph interactions (Ref. [10])
envisioned the use of transmons—the most widely used type
of SC qubits, with superior coherence properties—it is worth-
while to stress that the system under consideration can also
be realized with gatemon qubits [36–38]. The gatemon is
a superconductor–normal-metal–superconductor-type device
where an electrostatic gate depletes carriers in a semiconduct-
ing weak-link region. This allows one to tune the energy of
its JJ, and in turn control the qubit frequency [36]. Because
it does not require an external-flux control, this gate-voltage-
controlled counterpart of the transmon has a reduced dissipa-
tion by a resistive control line and is particularly suitable for
use in an external magnetic field.

Both types of SC qubits under consideration have some
advantages with regard to their use in the proposed analog
simulator. On the one hand, the fact that gatemons do not
require external-flux control makes them the prefferred choice
for our present purposes, where the use of external mag-
netic fluxes is essential (recall Sec. II above). On the other
hand, some other aspects, e.g., their larger anharmonicity (see
Sec. IV B below) and slightly better coherence properties (for
a comparison of coherence properties of various SC-qubit
types, see Ref. [2]) favor the use of transmons. For the sake of
completeness, it is worthwhile to add that analog simulators
of nonlocal e-ph couplings based on other types of SC qubits,
e.g., flux qubits that have large anharmonicities, can also

be envisaged, as previously proposed for the local-coupling
Holstein model [11].

B. Effective coupled excitation-phonon Hamiltonian

It is pertinent to switch at this point to the spinless-fermion
representation of the qubit (pseudospin-1/2) degrees of free-
dom. The underlying Jordan-Wigner transformation implies
that [41]

σ z
n → 2c†

ncn − 1,

σ+
n σ−

n+1 + σ−
n σ+

n+1 → c†
ncn+1 + H.c. (7)

As a consequence, the noninteracting (free) part Hf of the
effective system Hamiltonian, to be denoted as Heff = Hf +
He-ph in the following, includes the excitation-hopping and
free-phonon terms

Hf = −t0(φdc)
N∑

n=1

(c†
ncn+1 + H.c.) + h̄δω

N∑
n=1

a†
nan, (8)

where t0(φdc) ≡ 2δϕ2
0 tr (φdc) is the φdc-dependent bare-

excitation-hopping integral. (Note that the σ z
n terms from H0

n
and H̄J

n are omitted as they correspond to a constant band-
energy offset for spinless fermions.) Similarly, the interacting
part of Heff captures two different mechanisms of nonlocal
e-ph interaction and is given by

He-ph = gh̄δωl−1
0

N∑
n=1

[(c†
ncn+1 + H.c.)(un+1 − un)

− c†
ncn(un+1 − un−1)], (9)

where g is the dimensionless coupling strength and un ≡
l0(an + a†

n) the local Einstein-phonon displacement at site n,
with l0 being the phonon zero-point length. The first term of
He-ph corresponds to the Peierls e-ph coupling mechanism,
which captures the lowest-order (linear) dependence of the
excitation hopping amplitude between sites n and n + 1 on
the difference un+1 − un of the respective phonon displace-
ments [34,44]. The other one is the breathing-mode term [30],
a density-displacement-type mechanism which accounts for
the antisymmetric coupling of the excitation density c†

ncn at
site n with the phonon displacements on the adjacent sites
n ± 1. In other words, it captures a nonlocal phonon-induced
modulation of the excitation’s on-site energy (by contrast to
Holstein coupling which describes the local phonon-induced
modulation of the same energy).

By transforming the e-ph coupling Hamiltonian to its
generic momentum-space form

He-ph = N−1/2
∑
k,q

γe-ph(k, q)c†
k+qck (a†

−q + aq), (10)

it is straightforward to verify that its corresponding vertex
function is given by

γe-ph(k, q) = 2igh̄δω[sin k + sin q − sin(k + q)], (11)

where quasimomenta are expressed in units of the inverse lat-
tice period. Because this vertex function depends on both the
excitation (k) and phonon (q) quasimomenta the Hamiltonian
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Heff does not belong to the realm of validity of the Gerlach-
Löwen theorem [35]. As demonstrated in Ref. [10] its ground
state displays a level-crossing-type sharp transition at a critical
value of the effective coupling strength λeff ≡ 2g2h̄δω/t0.
While for λeff < λc

eff the ground state is the (nondegenerate)
K = 0 eigenvalue of the total quasimomentum operator

Ktot =
∑

k

kc†
kck +

∑
q

qa†
qaq, (12)

for λeff � λc
eff it is twofold degenerate and corresponds to

K = ±Kgs (where Kgs �= 0 and saturates at π/2 for suffi-
ciently large λeff). In this regime the single-particle dispersion
corresponding to the SP Bloch band has mutually symmetric
minima at two nonzero quasimomenta, which are here incom-
mensurate with the period of the underlying lattice, a rare
occurrence in other physical systems [45].

Aside from a nonanalyticity in the ground-state energy of
the system, the aforementioned sharp transition is manifested
by analogous features in the ground-state quasiparticle residue
(spectral weight) Zgs ≡ Zk=Kgs , where Zk ≡ |〈k|ψk〉|2 is the
module squared of the overlap between the bare-excitation
Bloch state

|k〉 = c†
k |0〉e ⊗ |0〉ph (13)

and the (dressed) Bloch state |ψk〉 of the coupled e-ph system
corresponding to the same quasimomentum (K = k). [Note
that |0〉e and |0〉ph on the right-hand side (RHS) of the
last equation stand for the excitation and phonon vacuum
states, respectively.] Another quantity characterizing the SP
ground state, which shows a nonanalyticity at λeff = λc

eff,
is the phonon-number expectation value in the ground state
|ψgs〉 ≡ |ψK=Kgs〉:

N̄ph = 〈ψgs|
N∑

n=1

a†
nan|ψgs〉. (14)

The system at hand has another peculiar property, namely,
it is straightforward to demonstrate that the k = 0 bare-
excitation Bloch state |k=0〉 [cf. Eq. (13)] is an eigenstate
of Heff for an arbitrary λeff, a direct consequence of the fact
that the e-ph vertex function [cf. Eq. (11)] has the property
that γe-ph(k = 0, q) = 0 for any q. In particular, for λeff < λc

eff
this state represents the ground state of Heff.

The relation between the dimensionless coupling strength
g and the system-specific parameters reads

gh̄δω = δϕ2
0EJJ1(π/2)δθ. (15)

It is worthwhile to notice that g does not depend on the tunable
system parameters (ω0, φdc) and we specify it by fixing the
product of δϕ2

0 and EJ on the RHS of the last equation:
δϕ2

0EJ/2π h̄ = 100 GHz. Given that the typical magnitude of
δϕ2

0 is twice as large for gatemons compared to transmons, in a
transmon-based realization of this system EJ should be taken
twice as large to retain the same coupling strength and make
further discussion completely general. Unlike g, λeff inherits
its dependence on φdc from t0 and is therefore externally
tunable:

λeff(φdc) = g
J1(π/2)δθ

J0(π/2)(1 + cos φdc)
. (16)

For a typical resonator δθ ∼ 3.5 × 10−3. Likewise, for δω we
take δω/2π = 200–300 MHz. Consequently, for δω/2π =
200 MHz (300 MHz) we obtain λc

eff ≈ 0.83 (0.72).

III. DYNAMICS OF SMALL-POLARON FORMATION

A. Interaction quench and initial-state preparation

We study the system dynamics after an e-ph (qubit-
resonator) interaction quench at t = 0, assuming that the
system was initially prepared in the bare-excitation Bloch
state |k=k0〉 with quasimomentum k0. Given that an abrupt
change from a bare excitation to a heavily dressed one here
takes place for λeff = λc

eff, a variation of φdc from slightly
below its critical value to slightly above it is equivalent to an
interaction quench in this system.

The initial bare-excitation states can be prepared using a
general protocol based on an external driving and the Rabi
coupling between the vacuum state and the desired Bloch state
[9]. The corresponding preparation time is given by τprep =
π h̄/(2βp), where βp is the microwave-pumping amplitude.
(Note that an analogous result holds in the case of preparing
dressed Bloch states, e.g., a SP ground state, except that
in that case the last expression for τprep requires another
multiplicative factor of Z−1

gs .) For a typical pumping ampli-
tude βp/(2π h̄) = 10 MHz, we obtain τprep = 25 ns, which
is a three orders of magnitude shorter time than currently
achievable decoherence times T2 of the relevant classes of SC
qubits [2].

B. Relevant quantities and timescales

In accordance with the discrete translational symmetry
of the system under consideration, its effective Hamilto-
nian commutes with the total quasimomentum operator [cf.
Eq. (12)], i.e., [Heff, Ktot] = 0. Therefore, the system evolves
within the eigensubspace of Heff that corresponds to the eigen-
value K = k0 of Ktot. We compute its state |ψ (t )〉 at time t
for a simulator with N = 9 qubits by combining Lanczos-type
exact diagonalization [46] of Heff in a symmetry-adapted basis
of the truncated Hilbert space of the system (for details, see
Appendix A) and the Chebyshev-propagator method [39,40].
The latter relies on expansions of time-evolution operators
into finite series of Chebyshev polynomials of the first kind
(for general details of this approach and our numerical imple-
mentation thereof, see Appendix C).

The knowledge of the state |ψ (t )〉 of the system at time t
allows us to evaluate quantities characterizing the ensuing po-
laronic character of the dressed excitation. One such quantity
is the probability for the system to remain in the initial state
|k=k0〉 at time t , given by

Pk0 (t ) = |〈ψ (t )|k=k0〉|2. (17)

This quantity, more precisely the matrix element
〈ψ (t )|k=k0〉, is closely related (up to a Fourier transform to
the frequency domain) to the momentum-frequency resolved
spectral function, a dynamical response function that can be
extracted in systems of the present type using a generalization
of the Ramsey interference protocol [10]. Another relevant
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FIG. 2. Expected phonon number after an e-ph interaction
quench at t = 0 for k0 = π/2. Inset: the probability to remain in the
initial bare-excitation Bloch state.

quantity is the expected total phonon number:

nph(t ) = 〈ψ (t )|
N∑

n=1

a†
nan|ψ (t )〉. (18)

This observable provides a direct quantitative characterization
of the dynamical dressing of an excitation by virtual phonons.
In our analog simulator, nph(t ) is amenable to measurement
by extracting the photon number on the resonators (for details,
see Sec. IV B below).

It is judicious to express the evolution time in units of
a timescale closely related to the bare-excitation hopping
amplitude t0(φdc). Because the latter here depends on the
experimental knob φdc by design, we choose this timescale to
be set by the critical value φc

dc = 0.972π of φdc for δω/2π =
300 MHz. Thus, the chosen characteristic timescale is τe,c ≡
h̄/t0(φc

dc) ≈ 0.44 ns.
One of the most important characteristics of the SP forma-

tion process, yet often elusive in solid-state systems exhibiting
polaronic behavior [25], is its associated dynamical timescale
τsp. It is pertinent to define it as the time at which the
phonon dressing (i.e., the phonon-number expectation value)
of an initially bare excitation becomes equal to that of the
corresponding SP ground state. In other words, τsp is defined
by the condition

nph(t = τsp) = N̄ph, (19)

where N̄ph was defined in Eq. (14) above. This ground-state
phonon number is in the range 3.9–5.1 (1.8–2) for δω/2π =
200 MHz (300 MHz).

IV. RESULTS AND DISCUSSION

A. Time dependence of nph and Pk0=π/2

Typical results of our numerical calculations of nph(t ) and
Pk0=π/2(t ) are presented in Fig. 2. They reflect the fact that
the system was initially prepared in the |k0=π/2〉 state, which
is not an eigenstate of the system Hamiltonian Heff after the
quench. In fact, for the concrete choice of parameter values
used, this state is a superposition of a multitude of eigenstates

FIG. 3. SP formation time τsp for varying initial bare-excitation
quasimomenta k0 within the Brillouin zone and different choices of
values for φdc and δω.

of this Hamiltonian, among which the SP ground state with
Kgs = π/2 has a weight of only around 0.16. This explains
the presence of dynamical recurrences at later times, i.e., a
complex oscillatory behavior resulting from the interference
of the quantum evolutions of all these eigenstates.

It is instructive to add, for completeness, that our ground-
state calculations show that for λeff = λc

eff, i.e., at the onset
of strong-coupling regime in the system under consideration,
there are three discrete states (at each K) below the one-
phonon continuum, while for a larger λeff one can find up to
five such states. As a reminder, the one-phonon continuum
in a coupled e-ph system with gapped (optical-like) phonon
modes, such as, e.g., Einstein-like phonons in the system
at hand, originates from the onset of the inelastic-scattering
threshold at the energy Egs + h̄ωph (the minimal energy that a
dressed excitation ought to have in order to be able to emit a
phonon), where Egs is the ground-state energy of the coupled
system and h̄ωph the energy of one phonon (in our simulator
ωph → δω) [19]. The width of this continuum equals the
width of the resulting SP Bloch band. Importantly, the discrete
(bound) states below the one-phonon continuum feature as the
coherent part, i.e., sharp peaks in the momentum-frequency
resolved spectral function [10]. While some details of the
dynamics certainly depend on the concrete form of e-ph
coupling involved, the increasing number of such discrete
(split-off from the continuum) states upon increasing coupling
strength results in more complex system dynamics.

B. Small-polaron formation time

The dependence of the SP formation time τsp on the initial
bare-excitation quasimomentum k0 is illustrated in Fig. 3
(for symmetry-related reasons, it suffices to consider only
quasimomenta in one half of the Brillouin zone, i.e., for 0 �
k0 � π ). τsp clearly shows an upturn for small k0, consistent
with the fact that it ought to diverge (τsp → ∞) as k0 → 0
because the k0 = 0 bare-excitation Bloch state is an exact
eigenstate of Heff. Another important feature that can be
inferred from the obtained results is that τsp depends rather
weakly on k0 for π/2 � k0 � π . This can be contrasted with
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FIG. 4. Dependence of the SP formation time τsp on the effective
coupling strength λeff, shown for δω/2π = 200 MHz and different
initial quasimomenta k0.

the Holstein-polaron case [20], where the analogous dynam-
ical timescale strongly depends on the initial bare-excitation
quasimomentum.

The obtained dependence of τsp on the effective coupling
strength λeff is displayed in Fig. 4. While it may seem sur-
prising that τsp saturates for λeff above a threshold value, this
actually mimics the behavior of the SP indicators (quasipar-
ticle residue, average phonon number) in the ground state. In
that case a regime of saturation also sets in for λeff slightly
above its critical value at which a nonanalyticity occurs in
all ground-state-related quantities [10]. Such a behavior is
in stark contrast with that of the momentum-independent
Holstein coupling, for which the same quantities change
monotonously with the coupling strength.

The variation of the SP formation time—defined by the
condition in Eq. (19)—with the effective coupling strength
λeff (shown in Fig. 4) results from two competing tendencies.
Namely, with increasing λeff phonon dressing of an initially
bare excitation becomes faster. However, the average ground-
state phonon number N̄ph also becomes larger. In Ref. [20],
where the dynamics of the Holstein-polaron formation were
investigated, a regime was observed where the formation time
grows with λeff (for weak coupling, i.e., small λeff) and the one
where it decreases (strong coupling, i.e., large λeff). Despite
the completely different type of e-ph interaction in the system
at hand, we also find such regimes. For our typical system
parameters, the case with δω/2π = 200 MHz (cf. Fig. 4)
corresponds to the latter regime, while the case with δω/2π =
300 MHz (results not shown here) is characterized by a slow
growth of τsp with increasing λeff.

The obtained SP formation times τsp ∼ (1–10) τe,c justify
a posteriori our choice of τe,c as the characteristic timescale
for the system dynamics. These times are of the order of a
few nanoseconds and can be verified in this system through
photon-number measurements. This is done by adding an
ancilla qubit (far-detuned from the resonator modes), which
couples—but exclusively during the measurement itself—to a
resonator [9]. The photon number on that resonator can then
be extracted by means of a standard quantum non-demolition-
measurement readout, which is effectively carried out by

measuring the transition frequency of the qubit [47]. The total
photon number can then be obtained by adding up those found
on individual resonators.

An important issue to address in the context of measuring
the photon states in the resonators is the one pertaining to the
anharmonicity α ≡ E12 − E01 of SC qubits, where Ei j is the
energy difference between states j and i of a single qubit.
The anharmonicity determines the minimal pulse duration
tp ∼ h̄/|α| required to avoid leakage into noncomputational
single-qubit states. For instance, for a typical transmon with a
negative anharmonicity of around 200 MHz, even microwave
pulses with durations on the scale of a few nanoseconds
are known to be sufficiently frequency selective that one
can neglect leakage into higher excited energy levels of the
transmon and effectively treat it as a two-level system [5]. For
gatemons, whose anharmonicity is slightly smaller than that of
transmons [38], similar measurements should also be possible
for all but the very shortest SP formation times found.

C. Dynamical variances of the phonon position
and momentum quadratures

It is plausible to expect that nonlocal e-ph correlations
in this system are reflected through fluctuations within the
phonon subsystem, which can be observed via microwave
photons in the resonators. To this end, we consider the phonon
position and momentum quadratures at an arbitrary, say rth,
site (in our system represented by the photon mode on the
rth resonator), defined by the operators xr ≡ (ar + a†

r )/
√

2
and pr ≡ −i(ar − a†

r )/
√

2, respectively. We compute their
respective dynamical variances Sx(t ) and Sp(t ), given by

Sx(t ) = 〈ψ (t )|x2
r |ψ (t )〉 − 〈ψ (t )|xr |ψ (t )〉2,

Sp(t ) = 〈ψ (t )|p2
r |ψ (t )〉 − 〈ψ (t )|pr |ψ (t )〉2. (20)

(Note that, owing to the discrete translational symmetry of
the system, the latter quantities should not depend on r.)
The explicit expressions for these variances in our chosen
symmetry-adapted basis are provided in Appendix B.

Our numerical evaluation of these dynamical variances
shows that Sx dominates over Sp at all times. For instance, in
the weakest-coupling case that yields SP ground state in the
system at hand, with δω/2π = 300 MHz, and φdc = 0.972π

(shown in Fig. 5, which corresponds to k0 = π/2), one finds
the maximum of Sx(t ) to be around 12. The corresponding
antisqueezing is as large as 13.8 dB.

What can be inferred from Fig. 5 is that the product
Sx(t )Sp(t ) of the two dynamical quadrature variances is con-
sistently much larger than 1/4, which illustrates a pronounced
non-Gaussian character of fluctuations within the phonon
subsystem. This can be ascribed to the nonlocal character of
e-ph interaction in this system, with its attendant retardation
effects [32].

D. Dynamics of the excitation-phonon entanglement buildup
after the quench

It is worthwhile to complement our discussion of the
dynamics of SP formation by evaluating the corresponding
e-ph entanglement entropy. This quantity proved to be very
useful in characterizing ground-state properties of SPs, most
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FIG. 5. Typical time dependence of the dynamical variances
Sx (t ) and Sp(t ). The parameter values are indicated in the plot.

prominently the onset of sharp SP transitions at a critical
e-ph coupling strength, in models with strongly momentum-
dependent e-ph interactions [34]. This motivates us to use the
same quantity in our present investigation of the SP formation
dynamics.

Given that the initial bare-excitation states are of simple-
product (separable) character, the e-ph entanglement entropy
starts its growth from zero at t = 0. The density matrix of our
composite (bipartite) e-ph system at time t is given by

ρe-ph(t ) = |ψ (t )〉〈ψ (t )|. (21)

The reduced (excitation) density matrix, which has the dimen-
sion N × N , is obtained by tracing ρe-ph(t ) over the phonon
basis:

ρe(t ) = Trph[ρe-ph(t )]. (22)

The corresponding e-ph entanglement entropy is defined in
terms of this last reduced density matrix as

SE(t ) = −Tre[ρe(t ) ln ρe(t )]. (23)

The matrix elements of ρe(t ) are computed using Eq. (B25)
(for a detailed derivation of those matrix elements, see Ap-
pendix B 2). The e-ph entanglement entropy in Eq. (23)
can equivalently be expressed in terms of the eigenval-
ues ξn(t ) (n = 1, . . . , N ) of ρe(t ) (note that ξn > 0 and∑N

n=1 ξn = 1):

SE(t ) = −
N∑

n=1

ξn(t ) ln ξn(t ). (24)

Generally speaking, the maximal value that can be reached by
this quantity is

Smax-ent = ln N, (25)

obtained when ξn = N−1 for each n (maximally entangled
states).

Our explicit evaluation of the e-ph entanglement entropy
is illustrated in Figs. 6 and 7, where it is depicted for φdc =
0.975π and two different initial bare-excitation quasimo-
menta (k0 = π/2, π/4) and phonon frequencies (δω/2π =
200, 300 MHz). In particular, Fig. 6 illustrates that the growth

FIG. 6. Time dependence of the e-ph entanglement entropy for
φdc = 0.975π and different choices of values for k0 and δω.

of this entanglement entropy from zero at t = 0 starts with
an abrupt increase in timescales of the order of a few τe,c.
This short-time behavior of the entropy is depicted separately
in Fig. 7, from which we can infer that at short times SE(t )
depends on k0, but is essentially independent of δω. The
abrupt increase of SE(t ) is followed by oscillations at later
times. Those oscillations, which are much more pronounced
for k0 = π/4 than for k0 = π/2, are another manifestation of
the late-time recurrences, akin to those found in nph(t ) and
Pk0=π/2(t ) (recall Sec. IV A).

Another important feature of the e-ph entanglement en-
tropy, which can be inferred from the obtained results, is
that at times t ≈ (2–3)τe,c, coinciding with the corresponding
SP formation times τsp, this quantity indeed reaches values
close to those characterizing maximally entangled states (note
that for N = 9, we have Smax-ent = 2.197). For instance, the
respective maximal values of SE(t ) obtained for the above case
of k0 = π/2 are 2.141 for δω/2π = 200 MHz and 2.115 for
300 MHz. This is consistent with the results of an earlier study
that reached the conclusion that typical SP ground states are
essentially maximally entangled [34].

FIG. 7. Short-time behavior of the e-ph entanglement entropy for
φdc = 0.975π and different choices of values for k0 and δω.
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V. SUMMARY AND CONCLUSIONS

To summarize, in this work we explored the dynamics
of small-polaron formation in the presence of two different
mechanisms of nonlocal excitation-phonon interaction within
the framework of an analog simulator. In this simulator, which
is based on an array of coupled superconducting qubits (trans-
mons or gatemons) and microwave resonators, the pseudospin
degree of freedom of qubits plays the role of spinless-fermion
excitation, while photons in the resonators mimic dispersion-
less phonons. By employing a numerically exact approach—
diagonalization of the effective system Hamiltonian com-
bined with the Chebyshev-propagator method for computing
its dynamics—we determined the formation time of small
polarons that ensue from initially prepared bare-excitation
Bloch states following an excitation-phonon (qubit-resonator)
interaction quench.

We analyzed how this important dynamical timescale de-
pends on the initial bare-excitation quasimomentum and the
effective coupling strength. We then further characterized
the system dynamics by evaluating the excitation-phonon
entanglement entropy and demonstrated its growth from zero
(before the interaction quench) to values close to those inher-
ent to maximally entangled states. Finally, by computing the
dynamical variances of the phonon position and momentum
quadratures we also demonstrated the non-Gaussian character
of small-polaron states resulting from the quench, with a
strong antisqueezing in both quadratures.

The present work constitutes a systematic theoretical study
of the quantum dynamics of small-polaron formation result-
ing from strongly momentum-dependent excitation-phonon
coupling. Such couplings, in their own right, are of utmost
importance for understanding charge-transport mechanisms
in several classes of electronic materials. The advanced mea-
surement capabilities of the proposed superconducting analog
simulator should allow an accurate verification of our quan-
titative predictions. To make contact with previous studies
of the same phenomenon involving other types of polarons,
we compared and contrasted our findings with those per-
taining to the small-polaron formation dynamics in the pres-
ence of purely local (momentum-independent) Holstein-type
excitation-phonon interaction [20,21]. We found, for instance,
that in the system at hand, where excitation-phonon coupling
itself is strongly momentum-dependent, the small-polaron
formation time shows a weaker dependence on the initial
bare-excitation quasimomentum than in the Holstein-polaron
case.

Several directions of future work can be envisioned. Firstly,
the proposed simulator can be utilized for investigations
of further nonequilibrium aspects of small-polaron physics,
which have so far also been discussed only for Holstein-
type excitation-phonon interaction [48–51]. Examples of such
aspects include the small-polaron dynamics in the presence of
an external electric field [48], as well as the dynamics fol-
lowing a strong oscillatory pulse [49]. Furthermore, while the
proposed system serves as a simulator for a one-dimensional
excitation-phonon model, the continuously improving scal-
ability of superconducting-qubit systems should allow one
to fabricate, in the not-too-distant future, a two-dimensional
counterpart of this simulator. Such a system could be used

for studying the effects of dimensionality on the formation
of small-polaron-type quasiparticles; analogous effects have
proven to be quite interesting in the case of Holstein polarons.
Finally, a different type of qubit-resonator arrays, featuring
effective XXZ-type coupling between qubits [52], would al-
low an investigation of intersite bipolarons [53], quasiparticles
closely related to small polarons. Experimental realization of
the proposed system is keenly anticipated.
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APPENDIX A: SYMMETRY-ADAPTED BASIS
AND DETAILS OF EXACT DIAGONALIZATION

The Hilbert space of the coupled e-ph system is spanned
by states |n〉e ⊗ |m〉ph, where |n〉e ≡ c†

n|0〉e corresponds to the
excitation localized at the site n, while

|m〉ph =
N⊗∏
n=1

(b†
n)mn

√
mn!

|0〉ph, (A1)

where m ≡ (m1, . . . , mN ) are the phonon occupation numbers
at different sites. We restrict ourselves to the truncated phonon
Hilbert space that includes states with the total number of
phonons m=∑N

n=1 mn not larger than M, where 0�mn�m.
Accordingly, the total Hilbert space of the system has the
dimension D = DeDph, where De = N and Dph = (M + N )!/
(M!N!).

The dimension of the Hamiltonian matrix to be diago-
nalized can be further reduced by exploiting the discrete
translational symmetry of the system, whose mathematical ex-
pression is the commutation [Heff, Ktot] = 0 of operators Heff

and Ktot . This permits diagonalization of Heff in Hilbert-space
sectors corresponding to the eigensubspaces of Ktot, where
the dimension of each of those K sectors of the total Hilbert
space coincides with that of the truncated phonon space, i.e.,
DK = Dph. To this end, we utilize the symmetry-adapted basis

|K, m〉 = N−1/2
N∑

n=1

eiKn Tn(|1〉e ⊗ |m〉ph), (A2)

with Tn being the (discrete) translation operators whose action
ought to comply with the periodic boundary conditions. The
last equation can be recast as

|K, m〉 = N−1/2
N∑

n=1

eiKn |n〉e ⊗ T ph
n |m〉ph, (A3)

where the operators T ph
n represent the action of discrete

translations in the phonon Hilbert space. Note that, if |m〉ph

is defined by a set of occupation numbers

|m〉ph = |m1, m2, . . . , mN 〉ph, (A4)
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then T ph
n |m〉ph ≡ |T ph

n m〉 is given by∣∣T ph
n m

〉 = |mN−n+1, mN−n+2, . . . , mN−n〉ph. (A5)

In general, in terms of the original phonon occupation num-
bers, the rth occupation number in |T ph

n m〉 is given by ms(r,n),
where the site index s(r, n) is defined by

s(r, n) ≡
{

N − n + r, for r � n
r − n, for r > n.

(A6)

Regarding the ground-state calculations, we follow an
established phonon Hilbert-space truncation procedure [23]
whereby the system size (N) and the maximum number of
phonons retained (M) are increased until the convergence
for the ground-state energy and the phonon distribution is
reached. Our adopted convergence criterion is that the relative
error in the ground-state energy and the phonon distribution
upon further increase of N and M is not larger than 10−4. The
adopted criterion is here satisfied for the system size N = 9
(with periodic boundary conditions) and requires the total of
M = 10 phonons.

APPENDIX B: MATRIX ELEMENTS
AND EXPECTATION VALUES

1. Derivation of the matrix elements of relevant observables

In what follows, we first derive the expressions for the
expectation values of a generic observable with respect to
the state |ψ (t )〉 of the system at time t . In view of our use
of the symmetry-adapted basis [cf. Eq. (A2)], we do so by
deriving the matrix elements of the same observables in that
basis. We then specialize to the relevant observables for our
present work, the total phonon (photon) number [defined by
Eq. (18)], as well as the variances of the phonon position
and momentum quadratures corresponding to an arbitrary site
[defined by Eq. (20)].

We start from the decomposition of the state |ψ (t )〉 in the
symmetry-adapted basis [defined in Eq. (A2) above]

|ψ (t )〉 =
∑

m

CK
m(t )|K, m〉, (B1)

where the expansion coefficients CK
m(t ) can be obtained

through our computation of the state evolution. For an arbi-
trary observable A we then have

〈ψ (t )|A|ψ (t )〉 =
∑
m,m′

CK∗
m′ (t )CK

m(t )〈K, m′|A|K, m〉, (B2)

which, with already known expansion coefficients, leaves
us with the task of calculating the matrix elements
〈K, m′| A |K, m〉 for the relevant observables.

Assuming, as is the case for our relevant observables, that
A depends only on phonon operators, it is straightforward to
show, using Eq. (A3), that

〈K, m′| A |K, m〉 = 1

N

N∑
n=1

〈
T ph

n m′∣∣ A
∣∣T ph

n m
〉
, (B3)

where in deriving this last result we made use of the fact that
e〈n′|n〉e = δnn′ . Before embarking on further derivations it is

useful to note that 〈T ph
n m′|T ph

n m〉 is independent of n and
equals 1 if the two sets of phonon occupation numbers, m and
m′, are completely the same, otherwise it evaluates to zero. In
other words, 〈

T ph
n m′∣∣T ph

n m
〉 = δm,m′ . (B4)

In the simplest case, for A = a†
r ar , we first note that

a†
r ar

∣∣T ph
n m

〉 = ms(r,n)

∣∣T ph
n m

〉
, (B5)

where s(i, n) is defined by Eq. (A6). By inserting the last result
into Eq. (B3) and making use of Eq. (B4) we then easily obtain
that

〈K, m′|a†
r ar |K, m〉 = δm,m′

N

N∑
n=1

mn, (B6)

where, owing to the discrete translational symmetry of the
system, the RHS of the last equation does not explicitly
depend on r. [In writing the last equation, we made use
of the fact that

∑N
n=1 ms(r,n) ≡ ∑N

n=1 mn.] By extension, for
A = ∑N

r=1 a†
r ar (total photon number), we get

〈K, m′|
N∑

r=1

a†
r ar |K, m〉 = δm,m′

N∑
n=1

mn. (B7)

Upon inserting the last result into the general equation (B2),
we obtain the desired expectation value

〈ψ (t )|
N∑

r=1

a†
r ar |ψ (t )〉 =

∑
n,m

mn

∣∣CK
m(t )

∣∣2
. (B8)

For A = ar , we first notice that

ar

∣∣T ph
n m

〉 = √
ms(r,n)|T ph

n m(r,−1)〉, (B9)

where |T ph
n m(r,−1)〉 is the vector obtained by changing the rth

occupation number in |T ph
n m〉 from ms(r,n) to ms(r,n) − 1. This

implies that 〈
T ph

n m′∣∣ar

∣∣T ph
n m

〉 = √
ms(r,n) (B10)

provided that the two sets (m and m′) have the same oc-
cupation numbers except at site s(r, n) where m′

s(r,n) should

be equal to ms(r,n) − 1; otherwise, 〈T ph
n m′|ar |T ph

n m〉 = 0. The
desired matrix element 〈K, m′|ar |K, m〉 is obtained by com-
bining Eq. (B10) and the general result in Eq. (B3).

In an analogous fashion, for A = a†
r we obtain〈

T ph
n m′∣∣a†

r

∣∣T ph
n m

〉 = √
ms(r,n) + 1 (B11)

if the two sets (m and m′) have the same occupation numbers
except at site s(r, n) where m′

s(r,n) should be equal to ms(r,n) +
1; otherwise, 〈T ph

n m′| a†
r |T ph

n m〉 = 0. The matrix element
〈K, m′| a†

r |K, m〉 sought for is easily obtained by inserting the
expression in Eq. (B11) into the general equation (B3).

By combining the derived expressions for 〈K, m′|ar |K, m〉
and 〈K, m′|a†

r |K, m〉, we can easily obtain the desired results
for 〈K, m′|xr |K, m〉 and 〈K, m′|pr |K, m〉.

When A=x2
r = (a†

r +ar )2/2 or A= p2
r =−(a†

r −ar )2/2,
we first note that

x2
r ≡ 1

2

[
2a†

r ar + 1 + (a†
r )2 + a2

r

]
, (B12)
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p2
r ≡ 1

2

[
2a†

r ar + 1 − (a†
r )2 − a2

r

]
. (B13)

Repeating the above procedure, to compute the desired matrix
elements 〈K, m′|(a†

r )2|K, m〉 and 〈K, m′|a2
r |K, m〉, we have to

first determine 〈T ph
n m′|(a†

r )2|T ph
n m〉 and 〈T ph

n m′|a2
r |T ph

n m〉. It
is straightforward to show that, for instance,〈

T ph
n m′∣∣(a†

r )2
∣∣T ph

n m
〉 = √

[ms(r,n) + 1][ms(r,n) + 2] (B14)

provided that the two sets (m and m′) have the same oc-
cupation numbers except at site s(r, n) where m′

s(r,n) should
be equal to ms(r,n) + 2; otherwise, 〈K, m′|(a†

r )2|K, m〉 = 0.
Similarly, we have that〈

T ph
n m′∣∣a2

r

∣∣T ph
n m

〉 = √
ms(r,n)[ms(r,n) − 1] (B15)

if the two sets (m and m′) have the same occupation numbers
except at site s(r, n) where m′

s(r,n) should be equal to ms(r,n) −
2; otherwise, 〈T ph

n m′|a2
r |T ph

n m〉 = 0.
With the aid of the expressions for the matrix elements

obtained thus far, and using the general expression in Eq. (B2)
with the coefficients CK

m(t ) obtained from the computation
of the system dynamics, one can straightforwardly obtain
the variances Sx(t ) and Sp(t ) of the position and momentum
quadratures [cf. Eq. (20)].

2. Derivation of the matrix elements of the reduced
density matrix

In what follows, we derive expressions for the matrix ele-
ments of the reduced density matrix assuming that the system
under consideration evolves starting from a bare-excitation
Bloch state with quasimomentum k0 at t = 0.

We make use of our standard symmetry-adapted basis
[cf. Eq. (A3)] for K = k0:

|K = k0, m〉 = N−1/2
N∑

n=1

eik0n|n〉e ⊗ T ph
n |m〉ph (B16)

and start by expanding the state |ψ (t )〉 of the system at time t
with respect to this basis:

|ψ (t )〉 =
∑

m

Ck0
m (t )|k0, m〉. (B17)

The density matrix of our composite (bipartite) e-ph system
at time t is given by Eq. (21) and, using the expansion in
Eq. (B17), can be expressed as

ρe-ph(t ) =
∑
m,m′

Ck0∗
m′ (t )Ck0

m (t )|k0, m〉〈k0, m′|. (B18)

By now making use of Eq. (A3), i.e., its special case for
K = k0, we further obtain

ρe-ph(t ) = N−1
∑
m,m′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× |n〉〈n′| ⊗ ∣∣T ph
n m

〉〈
T ph

n′ m′∣∣. (B19)

The reduced excitation density matrix is obtained by trac-
ing the last density matrix over the phonon basis [cf. Eq. (22)].
Let m′′ be the dummy index for the phonon basis states, i.e.,

the set of all phonon occupation-number configurations. Then
we have

ρe(t ) =
∑
m′′

〈m′′|ρe-ph(t )|m′′〉, (B20)

which, by inserting ρe-ph(t ) from Eq. (B19), becomes

ρe(t ) = N−1
∑

m,m′,m′′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× 〈
T ph

n′ m′∣∣m′′〉〈m′′∣∣T ph
n m

〉|n〉〈n′|. (B21)

We now note that∑
m′′

〈
T ph

n′ m′∣∣m′′〉〈m′′∣∣T ph
n m

〉 = 〈
T ph

n′ m′∣∣T ph
n m

〉
, (B22)

where we made use of the completeness relation in the phonon
Hilbert space ∑

m′′
|m′′〉〈m′′| = 1. (B23)

Using the result in Eq. (B22), the expression for ρe(t ) in
Eq. (B21) now simplifies to

ρe(t ) = N−1
∑
m,m′

N∑
n,n′=1

eik0(n−n′ )Ck0∗
m′ (t )Ck0

m (t )

× 〈
T ph

n′ m′∣∣T ph
n m

〉|n〉〈n′|. (B24)

From the last equation we readily read off the final expression
for the matrix elements of the reduced excitation density
matrix:

(ρe)nn′ (t ) = N−1eik0(n−n′ )
∑
m,m′

Ck0∗
m′ (t )Ck0

m (t )
〈
m′∣∣T ph

n−n′m
〉
,

(B25)

where we made use of the fact that 〈T ph
n′ m′|T ph

n m〉 ≡
〈m′|T ph

n−n′m〉. It is also useful to note that the final result in
Eq. (B25) can more succinctly be recast as

(ρe)nn′ (t ) = N−1eik0(n−n′ )〈ψ (t )|T ph
n−n′ |ψ (t )〉. (B26)

In order to evaluate the matrix element 〈m′|T ph
n−n′m〉,

it is useful to recall Eqs. (A5) and (A6). Note that
〈T ph

n′ m′|T ph
n m〉 = 1 if all the corresponding phonon occupa-

tion numbers in |T ph
n m〉 and |T ph

n′ m′〉 are the same, otherwise
this matrix element evaluates to zero.

APPENDIX C: CHEBYSHEV-PROPAGATOR
METHOD FOR DYNAMICS

In the following, we briefly recapitulate the essential as-
pects of the computational technique utilized in the present
work, the Chebyshev-propagator method (CPM) [39], fol-
lowed by some basic details of our concrete implementation
thereof. A more detailed introduction into the CPM is pro-
vided in Ref. [40].
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1. Basics of the CPM

For a system described by the Hamiltonian H , the
time-evolution operator U (t + δt, t ) = U (δt ) = e−iHδt can be
expanded in a finite series of NC Chebyshev polynomials of
the first kind Tp(x) = cos(p arccos x) [39,40]:

U (δt ) = e−ibδt

⎡
⎣c0(aδt ) + 2

NC∑
p=1

cp(aδt )Tp(H̃ )

⎤
⎦. (C1)

Here H̃ = (H − b)/a is a rescaled Hamiltonian of the system,
where Emin (Emax) is the minimal (maximal) eigenvalue of H ,
b = (Emax + Emin)/2, and a = (Emax − Emin + ε)/2, with ε =
αc(Emax − Emin) being introduced to ensure that the rescaled
spectrum lies well inside [−1, 1]. The expansion coefficients
are given by

cp(aδt ) =
∫ 1

−1

Tp(x)e−ixt

π
√

1 − x2
dx = (−i)pJp(aδt ), (C2)

where Jp(aδt ) is the pth-order Bessel function of the first
kind. In cases where the system Hamiltonian does not depend
explicitly on time, these expansion coefficients also depend
only on the time step δt (but not explicitly on time t), thus it
is sufficient to compute them only once.

The recurrence relations for the Chebyshev polynomials
[39] can be used to simplify the computation of the state
evolution |ψ (t + δt )〉 = U (δt )|ψ (t )〉 from one point on a time
grid to the next one. The problem is effectively reduced to the
iterative evaluation of vectors |vp〉 ≡ Tp(H̃ )|ψ (t )〉 using the
recursive relation

|vp+1〉 = H̃ |vp〉 − |vp−1〉, (C3)

where |v0〉 = ψ (t ) and |v1〉 = H̃ |v0〉. Evolving the state vec-
tor |ψ (t )〉 from one time step to the next one requires NC

matrix-vector multiplications of a given complex vector with a
sparse Hamiltonian matrix, a step that for the system evolution
from t = 0 to t = t f has to be performed t f /δt times.

Given that the CPM requires only the knowledge of two ex-
tremal eigenvalues of the system Hamiltonian, it is convenient
to combine it with Lanczos-type diagonalization for sparse
matrices [46]. The CPM has by now proven to be superior to
other direct or iterative integration schemes, in terms of both
computational cost and accuracy [54].

2. Implementation details and numerical consistency checks

The results obtained for the system dynamics in this work
were based on calculations performed for a system with N =
9 qubits, with up to M = 20 phonons in the truncated phonon
Hilbert space. Thus, the resulting maximal dimension of the
truncated phonon Hilbert space (as discussed in Appendix A,
this is also the dimension of any K sector of the full Hilbert
space) was D ≈ 107 and to make the storage of the nonzero
matrix elements possible we used the sparse-matrix form.
Reaching the numerical convergence in our dynamics cal-
culations typically required us to use between NC = 9 and
NC = 14 Chebyshev polynomials in the expansion given by
Eq. (C1). In addition, the smallest time step required for
numerical convergence was δt = 0.05τe,c, i.e., up to 20 time
steps were used within the period that corresponds to the
physically meaningful (excitation-hopping) timescale τe,c ≈
0.44 ns. Our runs included those with the total evolution times
t f as large as 100τe,c, i.e., with up to 2000 such time steps.
In our calculations, ε was kept at the fixed value of 10−3

(cf. Appendix C 1).
We carried out our CPM-based dynamics calculations on

an 8-core, 3.5 GHz Intel Xeon CPU E5-1620 machine, with a
total of 32 GB of main memory. The runs that were required
to obtain all the results presented in this paper consumed less
than 250 CPU hours.

The results were checked for consistency whenever it was
possible. In particular, testing for unitarity turned out to be
a good measure of convergence of the CPM. Namely, at
each iteration step the norm of the evolving state vector was
calculated and any deviation from unity larger than 10−4 was
considered a surefire sign that a higher precision (i.e., either
a shorter time step or a larger NC) is needed. Despite the fact
that we maintained this unitarity margin of error to be much
lower than 10−4 throughout our calculations, this was not
always sufficient and additional convergence tests, performed
by increasing computational precision and confirming the
stability of the results, were carried out.

As another internal consistency check, we used the math-
ematical relation between the expectation values of x2

r , p2
r ,

and the phonon-number operator a†
r ar that stems from the

identity x2
r + p2

r = 2a†
r ar + 1. This relation was satisfied by

our data at 10−7 precision, which is a highly nontrivial test as
the expectation values of x2

r and p2
r on one hand, and that of

a†
r ar on the other, were evaluated by completely different and

mutually independent means.
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M. Vanević, ibid. 81, 041408(R) (2010).

[29] O. Rösch and O. Gunnarsson, Phys. Rev. Lett. 92, 146403
(2004).

[30] C. Slezak, A. Macridin, G. A. Sawatzky, M. Jarrell, and T. A.
Maier, Phys. Rev. B 73, 205122 (2006).
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