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Phonon localization in nanowires dominated by surface roughness

P. Markos

Department of Experimental Physics, Comenius University in Bratislava, 842 28 Bratislava, Slovakia

K. A. Muttalib
Department of Physics, University of Florida, Gainesville, Florida 32611-8440, USA

® (Received 11 December 2018; revised manuscript received 1 March 2019; published 30 April 2019)

Studies of possible localization of phonons in nanomaterials have gained importance in recent years in the
context of thermoelectricity where phonon-localization can reduce thermal conductivity, thereby improving the
efficiency of thermoelectric devices. However, despite significant efforts, phonon-localization has not yet been
observed experimentally in real materials. Here we propose that surface-roughness dominated nanowires are
ideal candidates to observe localization of phonons, and show numerically that the space and time evolution of
the energy generated by a heat-pulse injected at a given point shows clear signatures of phonon localization.
We suggest that the same configuration might allow experimental observation of localization of phonons. Our
results confirm the universality in the surface-roughness dominated regime proposed earlier, which allows us to
characterize the strength of disorder by a single parameter combining the width of the wire as well as the mean

height of the corrugation and its correlation length.
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I. INTRODUCTION

Anderson localization [1] has been studied most intensely
in electronic systems [2—4], where experiments have clearly
observed the metal-insulator transition in three dimensions
and the absence of true metallic behavior in one and two
dimensions as predicted by the scaling theory of localization
[5]. The corresponding problem of photon localization has
also been studied extensively [6], although it is only expected
to occur in artificially constructed dielectric microstructures
[7,8]. On the other hand, while artificially constructed elastic
networks [9] do show phonon localization, and numerical
studies of finite-size properties of inverse participation ratios
[10] and finite-time scaling [11] clearly indicate the pres-
ence of Anderson localization of acoustic phonons in mass-
disordered harmonic crystals, the absence of experimental
observations of phonon-localization in real materials indicates
that either the strength of bulk disorder required is impractical,
or that the experimental signature of localization is not clear,
or both.

The subject of phonon-localization in real materials, espe-
cially in low-dimensional nanostructures, has become a topic
of current interest because of the role it plays in the context
of thermoelectricity [12—15]. A good thermoelectric device
should have a large electrical but a small thermal conductivity,
an “electron-crystal and phonon-glass™ [12,16]. Indeed it was
shown in recent experiments [17-19] that crystalline silicon
nanowires with corrugated surfaces can have very small ther-
mal conductivity (reaching the amorphous limit for wires of
thickness d ~ 50 nm). It has been argued that such small
thermal conductivity can result generically from the pres-
ence of localized phonons in nanowires with rough surfaces
[20]. Subsequent numerical simulations [21] show that in
the surface-roughness-dominated case, there exists a universal
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regime where the disorder of the wire can be characterized by
a single combination of three different relevant parameters,
the width of the wire d, the mean height of surface corrugation
h, and the correlation length /. of the disorder.

While the effect of surface disorder on phonon transport
has been studied numerically using a variety of techniques
[22-33], in the present work we suggest that it should be
possible to experimentally observe the localization of phonons
in rough nanowires by systematically studying the frequency
and disorder dependence of the propagation of elastic waves
when a well-characterized pulse source is injected into the
material [34]. By numerically analyzing the time evolution
of the energy injected by the source inside surface-roughness
dominated nanowires of different disorder, we show that there
are several characteristic properties that can be used to iden-
tify phonons that have localization lengths much smaller than
the length of the wire. The basic idea is very simple; injecting
heat-pulses corresponding to various frequency regimes and
observing the energy E(x,t) at well-defined positions as a
function of time provides a reliable measure of energy lo-
calization. We show that for strong disorder, E(x,t = ty) at
a given time fy clearly shows long-lived resonances excited
at positions that vary depending on the frequency, which are
hallmarks of the existence of localized phonons. At the same
time E,(¢) defined as the energy remaining within a small
range around the site of injected heat-pulse remains inde-
pendent of time indicating localization of energy. In addition
we show that in this strong disorder regime an appropriately
defined mean displacement r?(¢) measuring the diffusion
of energy from the injection site also becomes essentially
independent of time after a transient period, the saturation
value ribeing smaller for larger disorder. In contrast, in a
weakly disordered regime we observe E(t) to decrease with
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time and r(¢) to either keep increasing or slowly saturating
at a value ry close to its maximum, indicating that energy
is transported easily, although not necessarily in a standard
diffusive manner. It should be possible to distinguish between
the two regimes experimentally, by carefully measuring the
energy profile across the wire, starting from the site of in-
jection of a well-defined heat-pulse. Moreover we confirm
that for a given length L of the nanowire, while the surface
roughness parameters 4 and /. as well as the diameter d of a
nanowire determine the strength of surface disorder, a single
combination
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characterizes the measure of disorder in the surface-roughness
dominated regime as proposed in [21]. Thus it should be
possible to study the effects of such disorder systematically
by preparing nanowires with similar z-values. We suggest
that the wires produced by Electroless Etching (ELE) in the
experiments of Hochbaum et al. [18] showing amorphous-like
thermal conductivity should be good candidates to observe
phonon-localization.
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II. OBSERVING LOCALIZED PHONONS

There are two possible reasons why the localization of
phonons has not yet been observed in real systems although
the localization of electrons has clearly been observed ex-
perimentally. We discuss the reasons and propose alternative
options in the following subsections.

A. Bulk vs surface disorder

Even in electronic systems, driving a metal to an in-
sulator by increasing the bulk disorder by, e.g., increasing
the density of impurities is not easy; the resistivity often
saturates when the mean free path becomes comparable to
the lattice spacing. The original solution was to dope the
material, where it was possible to observe metal-insulator
transition by systematically doping phosphorous in silicon
[35]. For phonons, obtaining localized states in a silicon wire
would presumably require replacing some of the silicon atoms
with “defect” atoms. However, as numerical simulations by
Monthus and Garel [10] show, adding defect masses twice
as heavy had only a minor effect and kept the system in the
weakly disordered regime. Indeed, the simulations required
defect masses almost twenty times as heavy to observe a
transition to localization in three dimensions. This would
mean that the random substitution of even the heaviest atoms
available will not be sufficient to localize phonons in a
silicon wire.

An alternative possibility is to consider surface disorder
in reduced dimensions. This will not allow us to explore the
critical nature of phonon localization transition since all states
are expected to remain localized in reduced dimensions. We
therefore do not attempt to study the localization transition;
instead our focus is on the existence and observation of
localization of acoustic phonons in surface-disorder domi-
nated nanowires. This is also more relevant in the context
of thermoelectricity, where a surface disorder will typically
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FIG. 1. Typical sample under study. The length of the system
in the x direction is L = 16000 (only a small part of the sample is
shown), the width d = 32, correlation length /. = 200, and disorder
h = 6, corresponding to z = 427. We consider absorbing boundary

conditions at ends of the wire.

affect the thermal conductivity of a nanowire more than the
corresponding electrical conductivity and is therefore more
suitable as a thermoelectric device. It is already known [18]
that thermal conductivity of surface disordered (but otherwise
crystalline) silicon nanowires of diameters d < 115 nm (pre-
pared by ELE) can have very low thermal conductivity, which
can reach the limiting amorphous limit for d ~ 50 nm. This
was attributed to the presence of localized phonons [21]. If
correct, it should be easier to achieve localization of phonons
in surface disordered nanowires.

One problem with surface disorder is that it requires several
parameters to characterize its strength. Consider Fig. 1, which
is a typical sample we use for our numerical simulations. First
of all, in addition to the length L of the wire, the diameter d
appears explicitly in characterizing the effective disorder since
obviously the same surface disorder would be more effective
in narrower wires than in wider wires. In addition, the strength
of disorder is not only given by the mean height of the
corrugation A, but also by the correlation length /.. All these
parameters are separately used in, e.g., characterizing the ELE
silicon nanowires used in the experiments of Hochbaum et al.
[18]. To do a systematic study of localization of phonons,
this is clearly too large a parameter space to explore experi-
mentally. However, recently it has been shown by numerical
simulations [21] that a single parameter z = [1/2d%/?/h, as
defined in Eq. (1), characterizes the effective disorder of the
wire in a regime where surface disorder dominates over any
bulk disorder and transport is dominated by diffusive phonons.
It is not clear if this characterization remains valid in the
strongly disordered systems dominated by the presence of
localized phonons. If true, this will clearly simplify the search
for phonon localization enormously.

B. Heat-pulse and energy evolution

The second complication with phonons is that while for
electronic systems the existence of a Fermi surface makes
sure that transport is dominated by electrons near the Fermi
energy, heat transport involves a sum over a band of phonon
frequencies, including very low frequencies that are hard to lo-
calize. If, e.g., states beyond a certain frequency are localized,
all other states below that frequency remain either diffusive
or ballistic and contribute to the transport. Therefore the
signature of the presence of these localized phonons are not
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obvious from transport measurements, except for a reduction
in thermal conductivity.

Majumdar [34] suggested that one can inject a heat pulse at
some given point on the wire and observe the time evolution
by observing the effect at various distances as a function of
time. Presumably the effect of the source pulse will reach
different distances at different times depending on if it en-
counters a localized phonon or not. Here we propose that in
such an experiment, it should be possible to study the energy
evolution E (x, t) (kinetic and potential) accumulated at time ¢
at a position 0 < x < L, which includes the total energy of all
atoms across the width d of the wire. The total energy in the
system is

E(t)= Y E(x.1). )

For a more detailed analysis, it is also useful to consider the
energy in a given region (for instance, in the neighborhood of
the source)

Et) = Z E(x,t), A~ 100a,

[x—xg| <A

3

where a is the lattice spacing. Clearly for a localized phonon,
this quantity should remain almost independent of time. As
for transport properties, a suitable parameter is the mean dis-
placement, r%(¢), which measures the diffusion of the energy
from the source

rz(t) =

1 (x — x;)?
Eo 2 o F@D X

X

Note that r2(¢) is normalized by factor of 12 so that the value
r? = 1 corresponds to the energy homogeneously distributed
along the sample. Thus a localized phonon would lead to a
saturation value of > « 1 after a transient time, the saturation
value being smaller for larger disorder.

Of course, the above quantities will depend on the specific
realization of disorder. For a more accurate analysis, it would
be useful to repeat the simulations for an statistical ensemble
of disordered samples and consider the mean values, which is
beyond the scope of our current investigation. Nevertheless,
we emphasize that while such ensemble averaging would pro-
duce a more smooth time-dependence of the above quantities,
the qualitative signatures of localized phonons as described
above in the overall time-dependence are not sensitive to the
sample to sample fluctuations.

III. MODEL AND NUMERICAL SIMULATIONS

Typical structure for a nanowire with surface disorder is
shown in Fig. 1. Atoms with mass My = 1 occupy a rectan-
gular square lattice. The distance between nearest-neighbor
atoms a = 1 defines the unit of length. The spring constant
k =1 measures the harmonic force between neighboring
atoms. For a square lattice, allowed frequencies fill the fre-
quency band 0 < w < 2+/2. The size of the sample is defined
by its width d and length L. The surface disorder is modeled
by the correlated disorder of mean corrugation height & and
correlation length /.. Beside the four length parameters d,
L, I., and h, the propagation of phonons depend on their

frequency w or period T = 27 /w. In our units, the speed of
long wavelength phonons ¢ = /k/M, = 1 so that the value of
period T equals to the wavelength, A = cT.

The sample is excited by a time-dependent force acting
on atoms in one column, usually at the center of the sample
x; = L/2:

(t —19)*
202

i|cos 2nt)T (®)]

s(t) = exp |:—

with 75 = 1500 and o = 500. The frequency of the source,
w = 27 /T is chosen from the acoustic band 0 < @ < 2+/2.

The energy, given by the external force, propagates through
the sample. In our model the energy is transmitted by scalar
acoustic waves propagating on the two-dimensional square
lattice. We solve numerically the wave equation

Bzu(x, y)
o = ub b ay) Fulx —a.y)

Fulx,y+a)+ulx,y—a)—4ulx,y). (6)
For each (x,y), Eq. (6) is an equation of motion of atom
interacting with its four nearest neighbors. Equation (6) is
formally the finite difference approximation of continuous
wave equation with Laplacian Au(x, y) substituted by the
expression on the right-hand side (r.h.s.) of Eq. (6). We apply
explicit numerical algorithm described in [36] with time step
8t =T/60 and set u =0 along the disordered horizontal
boundaries. Absorbing boundary conditions [37] are imple-
mented at the left (x = 0) and right (x = L) boundaries.

Neglecting phonon-phonon interaction in our model is
justified by experimental data for thermal conductivity « of
surface-roughness dominated silicon nanowires [17-19], e.g.,
synthesized by electroless etching (ELE). Phonon-phonon
interactions give rise to a 1 /7 temperature dependence of « at
high temperatures [38] in contrast to the power-law behavior
at low T, leading to a peak in «(7) at some intermediate
temperature. For bulk silicon this peak occurs at around 25 K,
but for ELE nanowires of thickness less than 115 nm this peak
is not observed up to 300 K, showing the dominance of surface
scattering even at high temperatures.

Typical time of simulation 7~ 3 x 10°. After the source
is applied, we calculate numerically the energy E(x,t) (ki-
netic and potential) accumulated at time ¢ in the “column” x.
Note that this is the energy of all atoms in the column x. In
what follows, we will present the time and space distribution
for the energy E(x,t) =100 x E(x,t)/Emn. normalized to
maximal energy observed throughout the simulation, E,, =
maxy {E (x, t)}.

IV. RESULTS

The first question we address is whether or not localized
phonon states exist in our system that can be excited by
the injection of a localized heat-pulse. The second question
we study is whether the existence of localized phonon states
imply localization of energy around the region where the
heat-pulse is injected. As we show below, the answer to both
is positive.
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FIG. 2. (a) Space and time evolution of normalized energy
E(x,t) in the weakly disordered sample of size 64 x 16000. Pe-
riod of the source T = 23. Three length parameters, (d, ., h) =
(64,200, 6) are given in the title, corresponding to z = 1206. A
set of resonances excited by the external source is clearly visible,
corresponding to localized phonons. (b) The space distribution of
the energy at time t = 5007, (zp = 555.55). Inset shows detail of
the resonance at x = 14635. (c) Time evolution of the energy at the
position of resonance at x = 14 635. (d) Snapshot of u(x, y) at time
t = 194400 offers another method to identify resonances showed in
panels (a) and (b). Please note different scale on the horizontal and
vertical axes.

A. Existence of localized phonon states

Figure 2 shows the evolution of the energy in time and
space along the sample for a period of the source 7' = 23.
A small number of long-lived resonances are clearly visible.
The energy propagates from the center of the lattice (position
of the source in this case) and excites resonances which
correspond to localized phonons. The lifetime of resonances
can be very long; some are excited at the beginning of the
simulation within time ~10*, and survive the entire time of
the simulation 7 ~ 10°. As shown in Fig. 2(c), the energy
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FIG. 3. Space and time evolution of normalized energy £(x, )
for the same sample as in Fig. 2 but with smaller periods of the source
T =10 and T = 3.5. Note that resonances exist at all frequencies
of the source and that their number increases when period 7' of the
source decreases. Also, resonances lie closer to each other and their
lifetimes are shorter.

localized at the resonance oscillates in time being transferred
to other resonances. This is confirmed by detailed analysis
of time evolution (not shown). Finally, Fig. 2(d) presents a
snapshot of the energy distribution in the sample for ¢ =
194400. Four resonances, identified also in Figs. 2(a) and
2(b), are clearly visible.

We verified (data not shown) that the positions of reso-
nances do not depend on the position of the source. This
means that they could really be associated with localized
eigenstates of the disordered structure. On the other hand,
changing the frequency of the source results in excitation of
different resonances localized at other positions of the sample.
As predicted theoretically [21], the number of resonances
increases when the frequency of the source increases. Since
their mutual distance decreases, their lifetime, defined by
overlap of eigenstates, is shorter. As an example, Fig. 3 shows
the time evolution of the energy for the same sample but at two
higher frequencies, 7 = 10 and T = 3.5. Note that the shorter
lifetime does not necessarily indicate a wider resonance, but
just that two nearby resonances has larger probability to
overlap. Clearly, this depends on the particular realization
of disorder and an averaging over ensembles with different
realizations of disorder will be needed to estimate the range
of T where one can expect localization.

We found that localized resonances are not necessarily
limited to small widths comparable to the mean corrugation
height 4. As an example, we show in Fig. 4 resonances
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FIG. 4. Space and time evolution of normalized energy £(x,t)
in sample 128 x 16000 with /. = 300 and & = 20 (z = 1253) for
periods (a) T = 10 and (b) T = 4. Note the similarity of panels for
the period 7 = 10 with that shown in Fig. 3.

observed in a system with d =128 and h =20. As we
show later, localization depends on a combination z of three
parameters of the wire d, h, and I, as well as the frequency w
of the source.

For small d and large disorder h, it might happen that
the width of the wire at some part of the sample becomes
smaller than the wavelength A of propagating phonons. One
example is shown in Fig. 5, where the energy of the source
is trapped in a narrow region in the center of the sample.
This is easy to understand: the phonon can propagate through
the wire with local width d(x) only if the phonon frequency
w > 27 /d. Indeed, phonons with higher frequency easily
propagate through the bottleneck region (data not shown).

Localization of the injected energy in a small region shown
in Fig. 5(a) enables us to demonstrate the existence of lo-
calized phonons. The energy trapped in the narrow region
around the source location tunnels to the left and excites the
resonance localized at x = 3645 [position of the resonance is
shown in Fig. 5(c)]. The resonance excites and de-excites with
the period ~10° [Fig. 5(b)] following the textbook formula for
double-well potential [39]

E(t) ~ sin? [‘”_‘”Rt}, )
2

where wg is the eigenfrequency of the resonance and

w = 27 /T . The effect is observable only for frequencies close

to wg. Note that the position of the resonance does not exhibit

(@) T=23 (32,12,8) 0.3 ‘ A —
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FIG. 5. (a) Localized phonon observed in a narrow and strongly
disordered sample. The size of the sample is 32 x 10240, disorder
h = 8 and correlation length /. = 12 (z = 78.8). Source is located
at x = 5120 and period of the source is 7 = 23. Small portion of
energy tunnels from bottleneck region and excites periodically the
resonance localized at x ~ 3645. (b) The time evolution at energy
E(x = 3645, t). White solid line is given by Eq. (7) with w — wg =
5.24 x 1073, (c) The detail of the structure. Here vertical dashed line
shows the position of the localized state and magenta arrow indicates
the region where the injected energy is trapped.

any special fluctuation of the surface disorder (in contrast to
the position of the “bottlenecks”).

B. Localization of energy and universality

In the previous subsection we showed that localized
phonon states do exist in wires with large surface disorder.
Now we want to show that the existence of these localized
states imply localization of energy injected into the sample.
To measure the effect of localization, we calculate the time
evolution of the energy E;(¢) defined in Eq. (3), the total
energy E(¢) around the region of the source, as well as the
mean displacement of energy r>(t) away from the source.
Time independence of these functions would imply that the
energy is not able to propagate away from a given region,
which we expect to be a reliable measure of the localization
of energy.

First, to verify the hypothesis of universality proposed in
[21], namely that the propagation of phonons with a given
frequency depends only on z = [!/2d%/ /h, not independently
on all the different length scales, we simulated large number
of various samples that differ in d, ., and & and found that
the transport of energy in various samples is similar if theses
samples possess similar values of the parameter z. As an
example, we show in Fig. 6 the time and space evolution
of the normalized energy £(x, t) for four disordered systems
with different width and disorder but similar values of z ~
1200. More quantitatively, we plot in Fig. 7 the quantity
r2(t) for various disordered samples. Our data show that
samples with a similar value of z exhibit similar time evolution
and similar saturation values r2. Also, r? increases when
z increases. This is consistent W1th the proposal that for a
given frequency, localization appears in samples with smaller
values of z.
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FIG. 6. Normalized energy £(x, t) for four systems with differ-
ent values of (d, I, h) but similar value of z = I/2d*/? /h ~ 1200.
Period of the source T = 4. Similarity of transport regimes in all four
samples is supported also by calculation of r*> shown in Fig. 7(a).

For a small value of z = 144, we show in Fig. 8 the
energy profile for the sample d =48,1. =12,h =8 for
various periods 7 of the source. Presented results indicate
that phonons are localized for any period. For large T = 23
(small frequency, left upper panel), the transport is suppressed
due to the bottleneck effects. This can be concluded from
the long vertical lines which indicate strong reflection of
waves at a given position. For higher frequencies, localization
appears due to large number of resonances. The localization
of phonons is confirmed also by the time evolution of the
displacement 7% (¢) which converges to rather small values for
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FIG. 7. r*(¢t) for various systems illustrating universality. Period
of the source T =4 for all samples [40]. Data confirm that the
limiting value of r? = lim,_,, 7> depends only on single parame-
ter z and decreases when z decreases. The universality is clearly
visible in (a) where 2 for four different systems with z &~ 1200
converge to the same limiting value. Similarly, in (b), z & 630 and in
(c) z &~ 420. Panel (d) show data for systems with much smaller
values of z which exhibit the phonon localization (dashed line
corresponds to system where bottleneck effect dominates to make
transmission more difficult).
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FIG. 8. Localization of phonons in strongly disordered system
48 x 16000, I, =12 and h =8 (z = 144). Panels (a)-(d) show
the normalized energy £(x,t) for periods 7 = 23, 10, 3.5 and 2.5.
(e) time evolution of r2, (f) the energy E, in the central region for
periods T = 10and T = 3.5.

any period 7" and by time evolution of the energy E; in the
central region of the sample which clearly does not decrease
with time.

In the opposite limit, weakly disordered samples with large
values of z exhibit fast decrease of the energy of the system.
An example is shown in Fig. 9.

Thus, as shown in Figs. 8 and 9, the time evolution of
the energy E,(t) as well as the mean displacement () are
good quantitative measures of localization. In the localized
regime, the energy does not propagate away from the re-
gion of the source. In the highly delocalized regime, E;(t)
decreases exponentially. This exponential decrease, Es(t) ~
e, is observed in various systems with large z, and the
exponent o decreases when z decreases. For smaller values
of «, it is difficult to distinguish between the exponential
and a power-law behavior. We expect that adding a weak
bulk disorder could make a power-law regime more robust,
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FIG. 9. (a) Normalized energy £(x, t) for the system with very
large value z = 3413. Period of the source T = 10. (b) Exponential
decrease of the energy from the central region.
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FIG. 10. Comparison of sample without and with bulk disor-
der Wyux = 0.1. Normalized energy E(x,t) for (a) Wy = 0 and
(b) Wouik = 0.1. (c) Bulk disorder changes the time dependence of
the energy E,(¢) from exponential decrease to the power law. This
suggests that diffusion is apparently more robust when bulk disorder
is present. (d) r? for system with and without bulk disorder.

indicating a diffusive-like regime. Indeed, bulk disorder is
always present in real samples, and it can be introduced easily
by considering a small amount of different atoms (say, with
mass M = 1.1M;). As shown in Fig. 10, this indeed generates
a clear power-law decrease of the energy E (7).

V. SUMMARY AND DISCUSSION

We argue that nanowires with rough surfaces are good
candidates to observe localization of phonons experimentally.
By studying numerically the space and time evolution of
energy E(x,t) across the length of a nanowire with surface
disorder after a heat pulse is injected at some position, we
show that it is possible to determine if localized phonons
are excited at various positions that might affect the nature
of energy transport in the wire. We confirm the universality
proposed earlier [21] that for a wire of a given length, surface
disorder is characterized by a single parameter z = 11/2d*/ /h
where d is the diameter, /. is the correlation length, and &
is the mean corrugation height, smaller z corresponding to
larger disorder. While the values of the individual disorder
parameters we choose for our simulation are not necessar-
ily realistic, the universality allows us to consider values
of the parameter z that are experimentally accessible. For
sufficiently small values of z, heat pulses (of frequencies
within the band) injected into the wire excites long-lived
resonances at various positions that depend on the frequency
of the heat pulse. By considering the time evolution of the
energy content E;(t) within a region near the pulse as well
as the mean displacement r2(t) away from the pulse we
show that energy remains localized for sufficiently large dis-
order. We show that as z increases, localized phonons start
to overlap and generate transport that is more diffusive-like.

(a)
— T T T T T T T T T 2
L VM/W\/’ 1000
0.5 fA'/‘/ . A4
0.4*‘\ = 500
L 1
1‘2 0.3n b Es
0.2 R
L ] 200
0.1 R

O 05 1 15 2 25 3 109~
time / 100000 :

0.5 1
time / 100000

FIG. 11. (a) r? calculated for four different samples which differ
by realizations of surface disorder. The size is 128 x 16000, /. =
200 and & = 30 (z = 682). Results give us some information about
the statistical properties of calculated quantities. (b) Time evolution
of the energy E;(¢) in the center behaves as E () ~ t~* with exponent
a ~ 0.32-0.37.

Adding a weak bulk disorder makes this transport regime
more robust.

Although the observation of individual localized phonons
might be difficult in experiment, since it requires very narrow
frequency pulse, we believe that the effect of localization is
experimentally observable if the time evolution of the injected
energy is measured along the sample.

As we indicated in the text, heat transport experiments have
observed very small thermal conductivity in surface disor-
dered silicon nanowires [18,19]. While they are suggestive of
the presence of localized phonons [21], it is not a direct ob-
servation of phonon localization. Here we note that the values
of the universal surface disorder parameter z that corresponds
to regimes where localized phonons are observed in our sim-
ulations are in the same range for the ELE silicon nanowires
as reported in Lim ef al. [19], where it varies from z = 390
for a wire characterized by (h,I.,d) = (4.3, 8.4, 69.7 nm)
to z = 883 for a wire with (h,[.,d) = (2.3,8.9,77.5 nm).
Thus we propose that similar ELE nanowires should be
good candidates for experimental studies of localization
of phonons.

We note that we have not done any ensemble averaging of
E(x,t) that requires considering a large number of samples
with different realizations of disorder. Clearly, it would be
useful to study such ensemble averaged quantities in order
to obtain a more accurate time dependence of the energy.
Figure 11 shows one example for an intermediate z = 682,
where sample to sample fluctuations are already significant.
Nevertheless, the qualitative features of the functions r2(t) or
E(t) are not sensitive to different realizations of disorder. For
example, the power-law decay of E;(¢) for all four samples
are similar, with exponent « that varies between o = 0.32 and
o = 0.37. Moreover, our analysis of different combinations
of length scales leading to similar values of z can be thought
of as one way of considering different realizations of disorder.
Since it involves significant computational time, we argue that
an extensive study of ensemble averaging is not necessary
for our current limited purposes. It would, of course, be
important if we need to obtain, e.g., the exact power law
in the diffusive transport regime or the values of z where
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a crossover from the localized to diffusive regime might
occur. This crossover is expected to depend on the frequency
of the heat pulse, and again, a careful ensemble averaging
would be needed to find any possible “phase boundary” in
this disorder-frequency space. We leave these interesting
questions for future considerations.
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