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It is shown that truncating the cluster expansion of the energy of alloys gives rise to renormalized effective
cluster interactions that are explicit functions of the configurational variables. Such a dependence of the
renormalized cluster interactions is in addition to their dependence on the volume of the alloy and on other
structural parameters. The physical picture that emerges is different from the commonly used representation of
the configurational energy by means of a generalized Ising-like model, which follows from the assumption that
the contributions of the effective cluster interactions can be neglected beyond a relatively small cluster size.
The physical picture is one in which the sum of the effective interactions contributes over long distances but the
expected “near-sightedness” of the energy is preserved by the renormalized interactions. Furthermore, the cluster
expansion is implemented by simultaneously fitting the volume- and configuration-dependent energy function to
the zero-pressure values of the energies of formation, volumes, bulk moduli, and pressure derivatives of the bulk
modulus of a set of ordered compounds. As an example of this formulation of the cluster expansion, we apply
the methodology to the Cu-Au system for different types of cell-internal and cell-external relaxations.
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I. INTRODUCTION

The cluster expansion (CE) method has been extensively
used to describe the configurational energy of disordered
alloys in terms of effective cluster interactions (ECIs), which,
in turn, can be extracted from ab initio calculations of the total
energies of a set of ordered compounds [1–6]. The consensus
in the materials modeling community is that, in general, the
method provides a satisfactory approximation to the energy
of disordered alloys with any degree of chemical short-range
order. Thus, the CE method effectively complements other
approaches in alloy theory such as the single-site coherent
potential approximation (CPA) [7], the generalized pertur-
bation method (GPM) [8], and the quasirandom structures
method [9].

In most implementations of the CE, it is implicitly assumed
that the decay of the ECIs with the number of points and size
of the cluster is sufficiently rapid so that their contributions
to the configurational energy can be neglected beyond a
maximum cluster size. The description that emerges from
such a truncation criterion is a generalized version of the
Ising model that can be conveniently used to calculate a
variety of thermodynamic quantities, including temperature-
composition phase diagrams [10–27]. We note that, in addi-
tion to a large number of bulk material systems, the CE has
also been used to describe thermodynamic properties of thin
films, surfaces, nanoparticles, and adsorbates [28–32].

Despite the apparent success of the many and diverse ap-
plications of Ising-like models to describe the configurational
energy of alloys, it has been pointed out that such an approach
amounts to a zeroth-order approximation of the CE formal-
ism. In particular, it has been shown that the convergence
of the CE can be improved significantly by allowing for a
concentration dependence of the ECIs [5,6]. Here we show
that, by considering a different criterion for truncating the
CE, based on the size and range of the correlation functions

describing the short-range order in the alloy rather than on the
range of the bare effective interactions, the ECIs are naturally
renormalized into effective interactions that depend not only
on concentration but also on the full state of short-range
order of the alloy. As it is shown for the Cu-Au system,
such renormalized cluster interactions result in significant
improvements in the convergence, accuracy, and predictive
capability of the CE.

The paper is organized as follows. In the next section,
we briefly review the general formalism of the CE in order
to set the terminology and notation necessary to develop, in
Sec. III, the new truncation criterion. A different approach,
also leading to the conclusion that the effective interactions
are functions of short-range order, is followed in Sec. IV
by noting that the correlation functions are specific versions
of extensive thermodynamic variables which, due to Euler
homogeneous functions theorem, imposes restrictions on the
functional dependence of the effective interactions. The effect
of both cell-internal and cell-external relaxations is the subject
of Sec. V. The computation of the ECIs, which requires the
inversion of a CE in which the ECIs are functions of the
correlations, is addressed in Sec. VI.

II. CLUSTER EXPANSION

A key concept behind the theory of the CE is the existence
of sets of orthogonal and complete basis functions which are
defined on clusters of lattice sites and depend on occupation
or spinlike variables. In particular, the lattice averages of
such basis functions give rise to a set of configurational
variables, commonly referred to as correlation functions, that
provide a full description of the state of short- and long-
range order of the alloy. These multisite correlation functions
were initially introduced to calculate phase diagrams of proto-
type alloy systems using phenomenological Ising-like models
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for the configurational energy [33–38]. The same multisite
correlation functions were subsequently used by Connolly and
Williams [39] to fit Ising-like models to the total energies of
ordered compounds, obtained within density functional theory
(DFT), thus suggesting an approach that could bridge ab initio
energy calculations with the configurational thermodynamics
theory of alloys.

The formal theory of the CE establishing the orthogonality
and completeness of a particular basis set was developed by
Sanchez et al. in 1984 [1]. In what follows, we will refer to
such basis as the SDG basis. Subsequently, an infinite number
of orthogonal and complete basis sets were introduced in
order to conveniently capture the concentration dependence
of the ECIs [2–5]. Although there are advantages in using
different basis sets to carry out the CE, we note that most
implementation of the CE to date have almost exclusively
used the correlation functions in the SDG basis [5,6].

In what follows, we limit our discussion to binary systems
in which two types of atoms decorate a periodic lattice of N
sites p. In general, the reference undecorated lattice can be
described by a set of unit cell vectors and, in the case of a
nonprimitive unit cell, by an additional set of base vectors. We
will denote the structural parameters defining the undecorated
lattice by auc. The configuration of the lattice is then deter-
mined by a set of spinlike operators σp that take values +1 for
A or −1 for B atoms and, therefore, a given configuration is
described by one of 2N vectors in configurational space of the
form σ = {σp1 , σp2 , . . . , σpN }. Furthermore, for a given phase
of the alloy, we assume that atomic displacements relative
to the undecorated lattice can be described by a set of N
vectors u = {�u1, �u2, . . . , �uN }. Thus, in general, any physical
property of a binary alloy, such as the energy of formation,
will depend on a full set of structural and configurational
variables {auc, u, σ}.

To proceed with the CE we construct, for a given un-
decorated lattice, a set 2N distinct clusters of lattice points
p ranging from the empty cluster to the largest cluster that
includes all N points in the lattice. Elements of the set of
2N clusters will be denoted by α. In turn, each α will be
characterized by an index η that labels both the number of
points and geometry of the cluster, the position of the cluster
in the lattice, e.g., the point p in the lattice associated to the
center of mass of the cluster, and an index ν that labels the
“orientation” or orbit of the cluster; i.e., α = {η, p, ν}. The
fundamental idea of the CE is to describe any function of the
2N configurations σ in terms of a set of 2N functions φx

α(σ)
defined for each possible cluster α of lattice sites. In their
most general form, the basis functions are given by φx

0 (σ) = 1
for the empty cluster (α = 0) and, for the remaining 2N − 1
clusters, by

φx
α(σ) =

∏
p∈α

(σp − x)√
1 − x2

, (1)

where the parameter x can take any value −1 < x < 1. There-
fore, varying x gives rise to an infinite number of closely
related configurational basis sets. In particular, x = 0 corre-
sponds to the SDG basis, for which the mapping {σ} → {α} is
the well-known Hadamard transformation [5,40].

For a given value of x, the scalar product between two
generic functions of configuration f (σ) and g(σ) is defined
as

〈 f , g〉x =
∑

σ

K(x, σ ) f (σ)g(σ ), (2)

where K(x, σ ) is given by

K(x, σ ) = xNA(σ)
A xNB (σ)

B , (3)

with xA = 1 − xB = (1 + x)/2, and where NA(σ) and NB(σ)
are, respectively, the number of A and B atoms in configura-
tion σ. Under the definition of the scalar product of Eq. (2),
orthogonality and completeness of the basis functions are
expressed as∑

σ

K(x, σ )φx
α(σ)φx

β(σ) = δα,β (orthogonality), (4)∑
α

K(x, σ )φx
α(σ)φx

α(σ ′) = δσ,σ ′ (completeness). (5)

From the completeness of the basis functions, it follows that
the basis sets for different values of x are related by a linear
transformation of the form

φx
α(σ) =

∑
β

Bx,x′
α,β

φx′
β (σ), (6)

where Bx,x′
α,β

= 〈φx
α, φ

x′
β 〉x′ . The coefficients Bx,x′

α,β
relating a

basis for a given value of x to a different basis x′ are given
in Ref. [5].

With the above formalism, we can write the configurational
energy E (auc, u, σ ), defined on a fixed undecorated lattice, as

E (auc, u, σ ) =
∑

α

jx
α(auc, u)φx

α(σ), (7)

with the ECIs given by the projection of E (auc, u, σ ) onto the
basis functions φx

α(σ):

jx
α(auc, u) = 〈

E (auc, u, σ ), φx
α

〉
x. (8)

The notation in Eq. (7) is purposely chosen to emphasize
the fact that, in principle, a CE requires that the energies used
to determine the ECIs be for configurations of the system
on a fixed lattice. Thus, for example, if the volume of the
undecorated lattice changes, a different set of energies will
be required to calculate the ECIs at the volume in question
which, obviously, translates into a volume dependence of the
ECIs. The same is true if the undecorated lattice is subject to
other cell-external or cell-internal relaxations.

We point out that, provided all 2N clusters α are included
in the sum, Eq. (7) for the configurational energy is exact
and, furthermore, for a rigid undecorated lattice the ECIs
given by Eq. (8) are constant (i.e., they do not depend on
concentration and/or other configurational variables). Thus,
at a fixed volume and in the absence of other relaxations, it
follows that an Ising-like model that includes interactions for
all clusters α is an exact representation of the energy of the
alloy. However, since for real alloys the structural parameters
auc and u will in general depend on concentration and other
configurational variables, the Ising-like model representation
with constant ECI will necessarily break down. In the next
section, we show that the Ising-like representation of the
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energy also breaks down if the expansion is truncated beyond
a given set of clusters.

III. TRUNCATED CLUSTER EXPANSION

The argument commonly used to justify the truncation of
the CE is that the coefficients jx

α in Eq. (7) decay sufficiently
quickly with cluster size so that they can be neglected for clus-
ters larger than a judiciously chosen maximum cluster and/or
characteristic distance. While there is evidence that the ECIs
indeed decay with size and/or distance, the effect of their sum
over a total number of clusters of the order of 2N is important
and cannot be dismissed a priori. As shown below, the correct
criterium to truncate a CE is to include only those correlations,
or equivalently configurational dependences, that arise from
the basis functions of a set of relatively small clusters. Such
an approach results in approximations to the configurational
energy in terms of rapidly decaying renormalized effective
interactions. Importantly, the approach avoids making ad hoc
assumptions about the decay of the Ising-like interactions.
In reference to the success of the commonly used Ising-like
model, we note that the contributions of higher order ECIs
can be masked by fitting the energies of a relatively small
number of structures, which is generally achieved with a
relatively small number of parameters (or ECIs). However,
the contributions to the energy of the Ising-like interactions
for large clusters become evident as the number of structures
included in the CE increases, as has been shown previously
for the Mo-Ta system [6]. We note that the same behavior
is observed in the Cu-Au system. In particular, a previous
application of the Ising-like model to the Cu-Au system
was shown to achieve a good fit to a relatively small set
of training structures with a few ECIs [41,42]. However, as
shown in Sec. VII, the Ising-like model is expected to have
poor predictive capabilities. Thus, using a small set of training
structures actually masks the deficiencies of the Ising-like
model and, furthermore, incorrectly suggests a fast decay of
the bare ECIs.

In order to explore the effect of truncating the CE, we
consider the representation of the energy of Eq. (7) in the SDG
basis and on a rigid undecorated lattice. To simplify the
notation, we do not include in what follows the dependence
of the energy, or of the ECIs, on the structural parameters auc

and u. Furthermore, we split Eq. (7), which is exact, into a
sum over a set {α}s of “small” clusters, which includes all
clusters in the truncated CE, and a sum over the set of “large”
clusters {β}l . By definition, the set {β}l is such that (i) it does
not included any cluster in {α}s and (ii) the union of the sets
{α}s and {β}l contain all distinct 2N clusters in the lattice. The
set {α}s contains a set of maximum clusters {αmax}s, plus all
their subclusters, and includes the empty cluster. Thus, Eq. (7)
can be written as

E (σ) =
∑

α∈{α}s

j0
αφ

0
α(σ) +

∑
β∈{β}l

j0
βφ

0
β(σ). (9)

Note that the number of clusters in the set {α}s, which will be
denoted by Ms, is of order N , while the number of clusters in
the set {β}l is of the order 2N . Thus, the assumption that the
contribution of the second sum in Eq. (9) can be neglected is
not immediately obvious.

To elucidate the nature of the second sum in Eq. (9), we
note that the basis function φβ(σ) for any of the clusters in the
set {β}l can be written as a product of basis functions φα(σ)
corresponding to clusters in the set {α}s:

φ0
β(σ) =

∏
α∈{α}s

φ0
α(σ). (10)

In general, and depending on the cluster β, the product in
Eq. (10) involves two or more clusters in the set {α}s.

We next introduce the operation of joining two clusters α

and α′, denoted by α ∗ α′, that produces a cluster formed by
the union of both clusters but eliminates all sites belonging
to the intersection of α and α′; i.e., α ∗ α′ is the complement,
with respect to α ∪ α′, of α ∩ α′.

With this definition, and using Eq. (10), the second sum in
Eq. (9) can be written as∑

β∈{β}l

j0
βφ

0
β(σ)

=
∑

α∈{α}s

φ0
α(σ)

⎡⎢⎢⎢⎣ ∑
α′ ∈ {α}s

α ∗ α′ ∈ {β}l

j0
α∗α′φ0

α′ (σ)

⎤⎥⎥⎥⎦ + · · · . (11)

We emphasize that the first sum on the right-hand side of
Eq. (11) is carried out over all clusters α belonging to the set
{α}s, while the second sum is carried out, for each cluster α,
over all distinct clusters α′ such that the cluster α ∗ α′ belongs
to the set {β}l . Contributions to the sum over the set {β}l

arising from joining three or more clusters in {α}s are not
explicitly shown in Eq. (11).

The evaluation of the sums on the right-hand side of
Eq. (11) represent a problem of significant complexity. How-
ever, for our purposes, and since the effective interactions in
the CE are obtained by fitting the energies of a set ordered
compounds, it is sufficient to note that (i) the sums in question
are carried out only over clusters that belong to the set
of “small” clusters {α}s and (ii) that such sums effectively
renormalize the long-range bare interactions for the “large”
clusters into short-range effective interactions for the “small”
clusters that are to be kept in the truncated expansion. Thus,
Eq. (11) can be written as∑

β∈{β}l

j0
βφ

0
β(σ) =

∑
α∈{α}s

� j0
α(σ)φ0

α(σ), (12)

with

� jα(σ) =
∑

α′ ∈ {α}s

α ∗ α′ ∈ {β}l

j0
α∗α′φ0

α′ (σ) + · · · . (13)

Therefore, the expansion of the configurational energy,
Eq. (9), becomes

E (σ) =
∑

α∈{α}s

j0
α(σ)φ0

α(σ), (14)

with j0
α(σ) = j0

α + � j0
α(σ). Note that, for the empty cluster,

� j0
0 (σ) = 0.
Although the configurational dependence of the ECIs in a

truncated CE was derived using the SDG basis, the result is
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equally valid for any configurational basis since the different
basis sets are related by the linear transformation {Bx,x′

α,β
} [5].

In particular, the ECIs in a basis for any value of x �= 0 can be
obtained from those in the SDG basis (x = 0) as follows:

jx
α(σ) =

∑
β

j0
β(σ)B0,x

β,α
, (15)

which allow us to write the truncated CE of the energy in any
basis as

E (σ ) =
∑

α∈{α}s

jx
α(σ)φx

α(σ). (16)

The results expressed by Eqs. (9)–(16) explicitly show
that the truncation of the CE renormalizes the original ECIs
into interactions that now depend on the full state of order
of the system including, of course, the concentration of the
alloy. In the spirit of the CE, which ultimately fits the ECIs
to the energies of a set of ordered compounds, we are not
particularly interested in the exact form of the renormalized
ECIs, beyond the fact that they are unknown functions of the
system’s configuration.

The physical picture that emerges is quite different from
that assumed by generalized Ising-like representations of the
energy, or from the assumption that the interactions jx

α can
be neglected for large clusters. The new physical picture is
that the interactions jx

α contribute over long distances, but the
“near-sightedness” of the energy is preserved by assuming
that the energy is a function of the correlations functions up
to a maximum cluster size. As we show in the next section,
this physical picture is consistent with the basic fact that the
total configurational energy is an extensive function of the
configurational variables.

IV. CLUSTER EXPANSION FOR PERIODIC SYSTEMS

The next step toward deriving a useful form of the CE is
to introduce the space group symmetry of the undecorated
lattice. In particular, we note that for a rigid lattice, i.e., in
the absence of any type of relaxations, the ECIs for clusters
related by a symmetry operation of the space group of the
undecorated lattice are equal [5]. This particular property of
the ECIs on a rigid lattice allows us to rearrange the CE
expansion sum of Eq. (16) by collecting all the basis functions
for those clusters with the same ECIs. Thus, the sum of
Eq. (16), which is over clusters of the form α = {η, p, ν}, can
be written as

E (auc, u, zx ) =
∑

η∈{η}s

ωηJx
η (auc, u, zx )zx

η. (17)

The sum is carried out over a “small” set of clusters {η}s

indicating a truncated CE. Furthermore, we have reintroduced
the structural dependence on auc and u into the notation and
introduced the correlation functions zx = {zx

η} given by

zx
η = 1

Nωη

N∑
p=1

ωη∑
ν=1

φx
{η,p,ν}(σ), (18)

where ωη is the number of clusters of type η per lattice point.
For the empty cluster, zx

0 = 1 and ω0 = 1. Also, as shown
in Sec. III, the ECIs depend on the same set of correlation
functions zx included in the truncated CE. As is the case for the

basis functions φx
α(σ) [see Eq. (6)], the correlation functions

in different basis are also related by a linear transformation:

zx
η =

∑
η′∈{η}s

Bx,x′
η,η′zx′

η′ . (19)

The form of the matrix {Bx,x′
η,η′}, in terms of the {Bx,x′

α,β } defined
in Eq. (6), is given in Ref. [5].

It follows from Eq. (18) that the set of correlation functions
{zx

η} are specific versions of a set of extensive variables X x =
{X x

η } = {Nzx
η}. It also follows from Eq. (17) that the total

configurational energy, EN = NE (auc, u, zx ), is an extensive
function of the extensive variables {X x

η } and therefore must
be a homogeneous function of degree 1 in these variables.
Thus, from Euler’s homogeneous functions theorem, the total
configurational energy will be a homogeneous function of
degree one if and only if EN (auc, u, X x ) is given by

EN (auc, u, X x ) =
∑

η∈{η}s

(
∂EN

∂X x
η

)
X x

X x
η , (20)

which implies that the ECIs in Eq. (17) are related to the Euler
derivatives of the total configurational energy as follows:

Jx
0 (auc, u, zx ) =

(
∂EN

∂N

)
X x

, (21)

ωηJx
η (auc, u, zx ) =

(
∂EN

∂X x
η

)
X x

=
(

∂E

∂zx
η

)
zx

for η �= 0. (22)

The simple mathematical and physical arguments leading to
Eqs. (21) and (22) reinforce the main conclusion of Sec. III,
namely that the ECIs of a truncated CE are functions of all
the configurational variables included in the CE and therefore
underscore a major conceptual shortcoming of Ising-like rep-
resentations of the energy that use both truncated expansions
and constant ECIs. Irrespective of the ability of such Ising-like
models to fit the energies of a set of ordered structures, the
model carries with it the implicit and untenable assumption
that the configurational energy, which presumably is a com-
plex function of the correlation functions, is such that all its
derivatives with respect to the configurational variables are
constant for all possible degrees of short- and/or long-range
order in the system.

V. CLUSTER EXPANSION OF RELAXED STRUCTURES

In order to address structural relaxations, we begin by
pointing out that the formalism of the CE strictly applies to
the description of the energies of alloys for arbitrary con-
figurations that are obtained by rearranging different atomic
species on a reference lattice (undecorated) with a given and
fixed space group symmetry. Note that volume relaxations
preserve the space group symmetry of the undecorated lattice
and, therefore, such relaxations can be described accurately
within the CE formalism. On the other hand, cell internal
and/or cell external relaxations will in general destroy the
symmetry of the reference lattice and, therefore invalidate
the invariance of the ECIs to the space group symmetry
operations of the undecorated lattice. We note that is precisely
such symmetry of the ECIs that allows the transition from a
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FIG. 1. Parameters for the Murnaghan’s equation of state for the unrelaxed structures: (a) energies of formation, (b) volumes per atom,
(c) bulk moduli, and (d) pressure derivatives of the bulk modulus.

functional dependence of the energy on the basis functions
φx

α(σ), Eq. (16), to a dependence of the energy on the cor-
relation functions zx, Eq. (17). Thus, using the correlation
functions zx of the undecorated lattice to describe the energy
of relaxed structures with a different symmetry than that of the
undecorated lattice introduces an additional approximation
that is not generally justified within the strict formalism of
the CE. In particular, such an approximation to the CE is
not expected to work for structures that deviate significantly
form the undecorated reference lattice. It follows from these
observations that using the CE to perform ground-state anal-
yses and/or to predict ground-state structures will not work
reliably if the reference lattice of the true (and unknown)
ground states deviate significantly from the reference lattice
used to calculate the correlation functions {zx

η}.
Nevertheless, the development of approximations to the

CE capable of describing the configurational energy of dis-
ordered alloys that include small static and/or dynamic
displacements relative to the reference lattice remains an
issue of particular interest. For such relaxed structures, the
parameters auc and u will adopt configuration dependent
“equilibrium” values ãuc(zx ) and ũ(zx ). Thus, in principle,
the effect of small structural relaxations can be approxi-
mately incorporated into a dependence of the ECIs on the
alloy’s configuration, which is in addition to that arising from
truncation; i.e., the ECIs Jx

η (auc, u, zx ) in Eq. (17) become
Jx
η (ãuc(zx ), ũ(zx ), zx ) = J̃x

η (zx ). As we show in Sec. VII, the
additional approximation of using the correlation functions
zx of the unrelaxed structures to describe the energies of
relaxed structures can be controlled by eliminating from the
CE those relaxed structures for which the spread in bond
lengths, relative to the characteristic lengths in the unrelaxed
structures, exceeds a predetermined threshold.

A truncated CE of the energy of a relaxed structure,
Ẽ (zx ) = E (ãuc(zx ), ũ(zx ), zx ), can then be approximated as

Ẽ (zx ) ≈
∑

η∈{η}s

ωηJ̃x
η (zx )zx

η. (23)

We note that the the coefficients J̃x
η (zx ) in Eq. (23) are far

removed from the projections of the configurational energy
onto the basis functions defined by Eq. (8). The coefficients
in question are best interpreted as the Euler derivatives of
the total configurational energy of the fully relaxed structure,
which, of course, is an extensive and homogeneous function of
degree 1 in the configurational variables {Nzx

η}. In that context,
we re-emphasize that the approximation introduced into the
CE to describe relaxed structures consists in using correlation
functions with the symmetry of the parent lattice instead of
the correlation functions with the symmetry of the relaxed
structures.

VI. STRUCTURE INVERSION

The usual implementation of the CE consists of fitting the
ECIs for a predetermined set of m clusters to the energies of a
set of n ordered compounds. The energies of the compounds
are typically calculated at their equilibrium volume at zero
pressure using some version of DFT. Here, we adopt an
approach that consists of fitting the configurational energy
E (v, zx ), properly parametrized as a function of the volume
v and of the correlation functions zx, to the four quantities
that define the Murnagham [43] equation of state, i.e., the
energy of formation (�E (i)

0 ), the equilibrium volume (v(i)
0 ),

the bulk modulus (B(i)
0 ), and the pressure derivative of the

bulk modulus (B′(i)
0 ) at zero pressure, for a set of ordered
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FIG. 2. Difference between the energies of formation at zero pressure of (a) the cell-internal relaxed structures minus that of the unrelaxed
structures and (b) the fully relaxed structures minus that of the unrelaxed structures.

compounds. We will refer to these four quantities as the
“observables” to be fitted by the function E (v, zx ).

The parametrization of the configurational energy, E (v, zx ),
is carried out by means of a Taylor expansion of the energy
about a reference state for which all the correlation functions
vanish identically. Note that in a configurational basis {φx

α(σ)},
as defined by a given value of the parameter x, such reference
state corresponds to the random alloy with an atomic con-
centration given by cA − cB = x. For example, if the CE is
carried out in the SDG basis, the reference state for the Taylor
expansion is the random alloy at 50:50 concentration since, in
that basis, the correlation functions in the random state are
given by z0

η = (z0
1 )|η|, with |η| being the number of points

in the cluster η, and at the 50:50 concentration z0
1 = cA −

cB = 0.

In general, the Taylor expansion of the configurational
energy is given by

E (v, zx ) = Ex
0 (v) +

∑
η �=0

(
∂E
∂zx

η

)
v,0

zx
η

+ 1

2

∑
η �=0,η′ �=0

(
∂2E

∂zx
η∂zx

η′

)
v,0

zx
ηzx

η′ + · · · , (24)

where, at T = 0 K , the derivatives in Eq. (24) depend only on
the volume per atom of the alloy.

From Eq. (24), it follows that a Taylor expansion in the
SDG basis to first order in the correlation functions {z0

η} in
which, furthermore, the volume dependence of the coeffi-
cients of the Taylor expansion is neglected, reduces the energy
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FIG. 3. Generalized Ising-model approximation. (a) Contour plots for constant cross-validation scores; (b) energies of formation of the
training structures (black symbols) compared to the energies predicted by the Ising-like model (red symbols); and (c) ECIs for pairs (red),
triangles (green), and tetrahedra (blue). Not shown are the ECIs for the empty cluster (38.4 meV), the point cluster (17.7 meV), and the
nearest-neighbor pairs (33.9 meV). (d) Energies of formation for the test structures (black symbols) compared to the energies predicted by the
Ising-like model (red symbols).
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FIG. 4. Results of the CE with volume-dependent interactions. Corrections due to truncation of the CE are not included. The minimum
value of the cross-validation score for the energy of formation of 0.74 meV is found for n2 = 13, n3 = 8 and n4 = 3. Black and red symbols
are, respectively, the calculated values shown in Fig. 1 and those obtained with the CE.

of formation to an Ising-like model with constant ECIs. Thus,
the commonly used Ising-like representation, or Connolly-
Williams method, is strictly equivalent to a Taylor expansion
of the energy to first order in the correlation functions in the
SDG basis about the random state at 50:50 concentration. In
this context, the Ising-like model for the energy of alloys is a
zeroth-order approximation of the CE method.

In order to parametrize of the energy of formation, the co-
efficients of the Taylor expansion are written as polynomials
of degree mv in the volume v. Thus, the set of coefficients
defining such polynomials, which we will collectively call Kx,
fully define the function E (v, zx ) and, therefore, they are the
model parameters to be fitted to the observables O. We note
that for each compound i with correlation functions zx

i and
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FIG. 5. Cluster expansion with volume-dependent and renormalized interactions due to truncation. The minimum value of the cross
validation score for the energy of formation of 0.87 meV is found for n2 = 6, n3 = 4, and n4 = 0. Black and red symbols are, respectively, the
calculated values shown in Fig. 1 and those obtained with the CE.
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TABLE I. Comparison of the different approximations of cluster expansion of structures with only volume relaxations. The columns labeled
CVS, rms, and max. error give, respectively, the cross-validation score, the root-mean-square error, and the maximum fitting error of each of
the parameters in the Munagham equation of state for the 265 structures in the training set. The last two columns give the root-mean-square
error and maximum fitting error for the 40 structures in the test set. Units for �E , V0, and B0 are meV/atom, Å3/atom, and GPa, respectively.
The column labeled no. of ECIs gives the number of pairs, triangles, and tetrahedra used in the expansion, which correspond to the minimum
in the cross-validation score.

CVS (training) rms (training) Max. err. (training) No. of ECIs rms (test) Max. err. (test)
Method �E0/V0/B0/B′

0 �E0/V0/B0/B′
0 �E0/V0/B0/B′

0 {n2, n3, n4} �E0/V0/B0/B′
0 �E0/V0/B0/B′

0

ATAT 4.6/—/—/— 2.9/—/—/— 23.9/—/—/— {53, 50, 3} 7.8/—/—/— 33.0/—/—/—
J[cte] 4.2/—/—/— 2.5/—/—/— 22.1/—/—/— {54, 50, 2} 7.8/—/—/— 33.8/—/—/—
J[v] 0.74/0.004/0.35/0.04 0.68/0.004/0.29/0.02 3.2/0.01/1.2/0.00 {13, 8, 3} 0.40/0.003/0.3/0.03 1.3/0.01/1.1/0.1
J[v, z] 0.87/0.008/0.65/0.09 0.56/0.004/0.29/0.021 2.2/0.02/0.93/0.05 {6, 4, 0} 0.53/0.008/0.54/0.07 1.6/0.03/1.2/0.23

zero-pressure volume v
(i)
0 , the four observables to be fitted can

be expressed in terms of E (v, zx ) and its first three volume
derivatives as follows:

E (i)
0 = E

(
v

(i)
0 , zx

i

)
, (25)

P = E ′(v(i)
0 , zx

i

) = 0, (26)

B(i)
0 = v

(i)
0 E ′′(v(i)

0 , zx
i ), (27)

B′(i)
0 = −1 − v

(i)
0

E ′′′(v(i)
0 , zx

i

)
E ′′(v(i)

0 , zx
i

) , (28)

where the primes stand for derivatives of the energy function
with respect to volume.

In general, the relationships between the observables and
the parametrized energies of formation of the compounds can
be cast as a linear relation of the form

O = Mx · Kx, (29)

where the vector O contains the observables for the n struc-
tures, the vector Kx collects the unknown coefficients of the
polynomials of order mv defining each of the coefficients of
the Taylor expansion of Eq. (24), and where the matrix Mx is
fully determined by nv and by the correlation functions of the
compounds.

Typically, the inversion of Eq. (29) is accomplished via a
least-squares fit of the unknown parameters Kx to the observ-
ables O. The least-squares fit, or 	2 minimization problem,

has a unique solution provided the matrix Mx is full rank;
otherwise, the number of solutions is infinite. When the matrix
Mx is not full rank, which typically occurs when a large
number of parameters are required to obtain a sufficiently
accurate fit, it is possible to obtain a unique solution by
including in the 	2 minimization a regularization term that
penalizes “undesirable” properties of the ECIs. We note that
regularization is also a useful technique to avoid overfitting,
which is a commonly encountered issue in 	2 minimiza-
tion. However, regularization introduces assumptions about
the ECIs, such as minimum norm of the interactions, fast
decay, etc., that cannot be easily justified a priori. Thus,
unless explicitly indicated, we will avoid introducing such
regularization schemes. Instead, the preferred approach is to
increase the number of structures used in the fitting (training
set), or to invert Eq. (29) by minimizing the difference in
absolute values |Mx · Kx − O|. This 	1 minimization scheme
can be formulated as a linear programming problem and it
may offer some advantages over 	2 minimization, such as
providing unique solutions when Mx is not a full rank matrix,
avoiding the common problem of overfitting, and finding
sparse solutions to the optimization problem, although such
solutions are not expected in the CE of the energies of alloys.
However, a properly implemented 	2 minimization that avoids
overfitting is computationally more convenient and it will be
used in the next section to carry out the cluster expansion
of the Cu-Au system under different approximations and
relaxation conditions.
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FIG. 6. (a) Pair length distribution due to cell-internal relaxations for a structure in the training set, for first (red), second (blue), and third
(green) nearest neighbors in the unrelaxed structure. The pair distances are normalized to the first neighbor distance in the unrelaxed structure
at the same volume as the relaxed structure. (b) Percent maximum change in the first neighbor bond lengths, relative to the unrelaxed structure,
for all 265 structures in the training set.
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TABLE II. Comparison of the different approximations of the cluster expansion for relaxed structures. Set 1 is the same training set of 265
structures used for the cluster expansion of the unrelaxed structures. Set 2 consists of structures for which the maximum change in the length
of nearest neighbors, relative to the unrelaxed structures, is 10% or less. �Ecvs, �Erms, and �Emax, are, respectively, the cross-validation score,
the root-mean-square error, and the maximum fitting error in units of meV/atom for the structures in the training set. The last two columns
give the root-mean-square error and maximum fitting error for the structures in the test set. The column labeled no. of ECIs gives the set of
pairs, triangles, and tetrahedra used in the expansion, which correspond to the minimum in the cross-validation score.

Method �Ecvs �Erms �Emax No. of ECIs �E (test)
rms �E (test)

max

Volume and cell internal relaxations
J[v, z] (set 1) 3.5 1.9 6.6 {5, 4, 2} 5.5 22.0
J[v, z] (set 2) 3.5 2.3 9.1 {4, 1, 3} 3.7 7.5
Fully relaxed
J[v, z] (set 1) 4.6 2.7 11 {4, 4, 3} 8.61 38.4
J[v, z] (set 2) 5.9 4.5 14.9 {3, 0, 2} 4.1 8.1

The standard procedure to select the correlations to be
included in the CE consists of determining a set of clusters
that minimizes the cross-validation score [14–16]. In the case
of the Cu-Au system, to be discussed in the next section,
we limit the search for the minimum cross-validation score
to clusters consisting of two, three, and four points, arranged
hierarchically by the number of points in the cluster and, for
clusters with the same number of points, by a measure of
compactness defined as the sum of the distances between any
two points in the cluster.

As mentioned in previous sections, truncation of the CE
and/or structural relaxations introduces a dependence of the
ECIs on the configuration of the alloy. To address such config-
uration dependence, we refer to the fact that the ECIs are the
Euler derivatives of the energy of formation [see Eqs. (21) and
(22)]. Therefore, assuming we have an analytical expression
for the energy of formation as a function of volume and the
correlation functions, say E (v, zx ), the ECIs for nonempty
clusters follow directly from Eq. (22),

Jx
η (v, zx ) = 1

ωη

(
∂E
∂zx

η

)
v,zx

, (30)

while the ECI for the empty cluster is given by Euler’s
homogeneous function theorem:

Jx
0 (v, zx ) = E (v, zx ) −

∑
η �=0

(
∂E
∂zx

η

)
v,zx

zx
η

= E (v, zx ) −
∑
η �=0

ωηJx
η (v, zx )zx

η. (31)

As will be shown in Sec. VII, for the Cu-Au system, a
significant improvement over the Ising-like model, or zeroth-
order approximation, can be achieve by using a Taylor ex-
pansion about the random state at 50:50 concentration up
to second order in the correlation functions in the SDG
basis. Carrying out the Taylor expansion to at least second
order brings into evidence the concentration and configuration
dependence of the effective interactions that arise naturally
from the truncation of the CE and/or relaxations of the lattice.
However, a potential shortcoming is the expected slow conver-
gence of the Taylor expansion for dilute alloys or compounds
with concentrations that deviate significantly from 50:50. In
fact, the approach should break down for the pure elements

for which the absolute values of all correlations {z0
η} are equal

to 1 and, therefore, the Taylor expansion of Eq. (24) does not
converge. Thus, the pure elements will be excluded from the
set of training structures.

Although it will not be implemented here, it is expected
that expanding the energy in powers of the correlation
functions {zx

η} in the so-called variable basis cluster expan-
sion [5,6] (VBCE) should address the issue of describing
the configurational energy for concentrations that deviate

TABLE III. Coordinates of the clusters used with the method
J[v] described in Sec. VII 2 and Table I. The positions of
each point in the clusters are given in Cartesian coordinates
by �r(n1, n2, n3) = 1

2 [n1, n2, n3]. The column labeled ωn gives the
degeneracy of each cluster.

Cluster Cluster
no. type ωn n1,n2, n3 n1,n2,n3 n1,n2,n3 n1,n2,n3

1 Empty 1
2 Point 1 0,0,0
3 Pair 1 6 0,0,0 0, 1, 1
4 Pair 2 3 0,0,0 0, 0, 2
5 Pair 3 12 0,0,0 1, 1, 2
6 Pair 4 6 0,0,0 0, 2, 2
7 Pair 5 12 0,0,0 0, 1, 3
8 Pair 6 4 0,0,0 2, 2, 2
9 Pair 7 24 0,0,0 1, 2, 3
10 Pair 8 3 0,0,0 0, 0, 4
11 Pair 9 12 0,0,0 1, 1, 4
12 Pair 10 6 0,0,0 0, 3, 3
13 Pair 11 12 0,0,0 0, 2, 4
14 Pair 12 12 0,0,0 2, 3, 3
15 Pair 13 12 0,0,0 2, 2, 4
16 Triangle 1 8 0,0,0 1, 0, −1 1, 1, 0
17 Triangle 2 12 0,0,0 0, 0, 2 0, 1, 1
18 Triangle 3 24 0,0,0 1, −1, −2 1, 0, −1
19 Triangle 4 6 0,0,0 0, 1, 1 0, 2, 2
20 Triangle 5 24 0,0,0 2, −1, −1 2, 0, 0
21 Triangle 6 24 0,0,0 1, 1, −2 1, 2, −1
22 Triangle 7 24 0,0,0 0, 1, 1 0, 1, 3
23 Triangle 8 48 0,0,0 2, 0, −2 2, 1, −1
24 Tetrad 1 2 0,0,0 1, 1, 0 1,0, 1 0, 1, 1
25 Tetrad 2 12 0,0,0 0, 0, 2 0, −1, 1 1, 0, 1
26 Tetrad 3 12 0,0,0 1, −1, 0 1, 0, 1 0, 1, 1
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FIG. 7. Volume dependence of the coefficients Kn[v] of the Taylor expansion to first order in the correlation functions, normalized by the
degeneracy ωn of the corresponding cluster. The clusters are labeled following Table III.

significantly from x = 0. In the VBCE, the value of x in
Eq. (1), which defines the basis to be used in the CE, is
chosen to be equal to the difference in concentrations of A
and B atoms in the alloy, i.e., x = cA − cB. Thus, different
basis sets {φx

α(σ)} are used to describe alloys of different con-
centrations. In this approach, the standard state for the Taylor
expansion is the random alloy at concentration x, for which all
correlations zx

η for the nonempty clusters vanish identically.
Furthermore, the correlation functions of the pure elements
for η > 0 are also equal to zero, i.e., zx

η → 0 when x → ±1,
thus eliminating from the functional form of the energy the
fictitious dependence of the energy of the pure elements on
the correlations functions seen in Ising-like models.

VII. IMPLEMENTATION OF THE CE: THE Cu-Au SYSTEM

In order to illustrate the results developed in previous
sections, we begin by applying different versions of the CE to

unrelaxed structures in the Cu-Au system. The training set for
the unrelaxed structures consists of 265 binary compounds,
which includes all 135 structures with up to 6 atoms per
unit cell, with the remaining ones chosen at random from
structures with 7, 8, and 12 atoms per unit cell. A set of
test structures, consisting of 40 compounds chosen at random
from structures with 10 atoms per unit cell, will be used to
validate different approximations to the CE.

The energies of formation were calculated using the VASP

implementation [44,45] of the projected augmented wave
(PAW) method [46] with the exchange-correlation functional
in the generalized gradient approximation (GGA) (PW 91
in VASP) [47]. The energy cutoff was fixed at 550 eV and,
in all cases, the k mesh was determined by varying the
number of k points until a relative convergence of 1 meV was
achieved. The energies of formation of the compounds were
determined for (i) structures with only volume relaxations,
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FIG. 8. Effective cluster interactions for pair clusters used with the method J[v] described in Sec. VII 2 and Table I. The coordinate of the
clusters are given in Table III. The symbols correspond to the ECIs in the state of order of the compounds used in the training set, while the
solid line gives the ECIs in the random state as a function of concentration.

i.e., structures for which the shape of the unit cell of the
undecorated face-centered cubic (fcc) lattice and the relative
ionic positions are kept constant, (ii) structures for which only
volume and relative ionic positions are allowed to relax, and
(iii) fully relaxed structures for which volume, unit cell shape
and ionic positions are allowed to relax. We note that allowing
only cell-internal relaxations of the fcc undecorated lattice is
consistent with the fact that the main objective of the CE is
to describe the configurational energy of the Cu-Au system
in the disordered fcc phase, in which small displacements
are implicitly included. The resulting approximation to the
CE should also apply to the L12 phases in Cu-Au since that
phase shares the same undecorated lattice with the disordered
fcc phase. However, the approximation is expected to be
less reliable for the description of the L10 phase of the Cu-
Au system for which the undecorated lattice should include
tetragonal distortions. Thus, a CE applicable to the L10 phase
requires that the ECIs be determined as a function of volume
and c/a ratio on a tetragonal undecorated lattice.

The energies for both the unrelaxed and relaxed structures
were calculated at different volumes and fitted to a Mur-
naghan equation of state [43]. The four parameters in the
Murnagham equation of state are shown in Fig. 1 for the
unrelaxed structures. For the relaxed structures, the values
at zero pressure of the volume, bulk modulus, and pressure
derivatives of the bulk modulus do not change significantly
relative to those of the unrelaxed structures. However, the
changes in the energies of formation at zero pressure due to
relaxations are significant and they are shown, relative to the

energies of the unrelaxed structures, for the structures with
only cell internal relaxations [Fig. 2(a)] and for the structures
that are fully relaxed [Fig. 2(b)].

1. Generalized Ising-like models

In order to establish a baseline for comparison with the
truncated CE developed in Sec. III, we begin by fitting a
generalized Ising-like model to the energies of formation of
the unrelaxed Cu-Au structures. The cluster expansion for
the relaxed structures will be addressed later in this section.
The clusters included in the expansion consist of two-, three-,
and four-point figures that are arranged hierarchically by the
number of points in the cluster and, for clusters with the same
number of points, by a measure of compactness defined as the
sum of the distances between pairs of points in the cluster.
In all cases, we search for the minimum of the leave-one-out
cross validation score for the full set of 256 training structures
and ensure that the solution to the 	2 minimization is unique.

The results of the fitting procedure for the Ising-like ap-
proximation, which we will label J[cte], are shown in Fig. 3.
The cross validation scan of Fig. 3(a) shows a minimum
occurring at n2 = 54 pairs, n3 = 50 triangles, and n4 = 2
tetrahedra, which is within the region where the matrix M
is full rank, and where the solution to the 	2 minimization
procedure is unique. The next panel, Fig. 3(b), compares the
input energies of formation in the training set (black symbols)
to those obtained with the Ising-like model (red symbols).
Also shown in the figure are the energy of formation of the
random alloy as a function of concentration (green line) and
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FIG. 9. Effective cluster interactions for nonpair clusters used with the method J[v] described in Sec. VII 2 and Table I. The coordinate of
the clusters are given in Table III. The symbols correspond to the ECIs in the state of order of the compounds used in the training set, while
the solid line gives the ECIs in the random state as a function of concentration.

the convex hull connecting the ground states (blue line). The
following two panels show the constant ECIs for the Ising-like
model [Fig. 3(c)], and the energies of the test set (black
symbols) compared to the energies predicted by the Ising-like
model (red symbols) [Fig. 3(d)]. For the key parameters mea-
suring the quality of the fit, we obtain a cross validation score
of 4.2 meV/atom, a root-mean-square error of 2.5 meV/atom,
and a maximum error for the training set of 22.1 meV/atom.
We note that in most applications of the CE such values would
be considered acceptable although the maximum error of 22.1
meV/atom is somewhat high given the relative accuracy of
the DFT calculations. The situation is less satisfactory when
it comes to the ability of the Ising-like model to reproduce the
energies of formation of the 40 structures in the test set. For
the test set, we obtain a root-mean-square error and a maxi-
mum error of, respectively, 7.8 and 33.8 meV/atom. The same
results were obtained by carrying out the cluster expansion us-
ing the Alloy-Theoretic Automated Tool Kit (ATAT) [14–16].
The ATAT package gives an Ising-like model with n2 = 53
pairs, n3 = 50 triangles, and n4 = 3 tetrahedra, and a cross-
validation score of 4.6 meV/atom, root-mean-square error of
2.9 meV/atom, and maximum error of 23.9 meV/atom. For
the test set, the root-mean-square and maximum errors are,
respectively, 7.8 and 33.0 meV/atom. Thus, the ATAT software
package and the minimization of the cross-validation scheme
used here give essentially the same results with regard to the
quality of the fit of the training structures, and both approaches
show that the Ising model fails to predict the energies of the
test set with acceptable accuracy.

2. Volume and truncation effects

We next consider the effect of volume relaxations without
including corrections due to the truncation of the expansion.
In this approximation, which we will label J[v], the energy
of formation is given by a Taylor expansion to first order in
the correlation functions around the random state at 50:50
concentration. Thus, the expansion is the same as that used for
the Ising-like model approximation described in Sec. VII 1,
except that we now include an explicit volume dependence
in the Taylor expansion coefficients K. These coefficients are
parametrized by a polynomial of degree 5 in the volume.
For the set of training structures, the model is fitted to the
four parameters of the Murnagham equation of state shown in
Fig. 1. As before, the clusters included in the expansion are
given by the set of n2 pairs, n3 triangles, and n4 tetrahedra that
minimize the cross-validation score for energy of formation.
The minimum of such cross-validation score is 0.74 meV and
occurs for n2 = 13, n3 = 8, and n4 = 3. The results of the
fitting are shown in Fig. 4. We note that, since volume relax-
ations preserve the space group symmetry of the undecorated
lattice, the only effect that is not being explicitly addressed
in this approximation is the truncation of the CE discussed in
Sec. III.

The next level of approximation of the CE for structures
with only volume relaxations can be achieve by explicitly
including a volume and a configurational dependence in the
ECIs. We will label this approximation J[v, z]. As discussed
in Sec. III, this configurational dependence emerges from
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FIG. 10. Volume dependence of the first-order coefficients Kn[v] of the Taylor expansion of the energy in the method J[v, z]. The
coefficients are normalized by the degeneracy ωn of the corresponding cluster, and the clusters are labeled following Table IV.

the renormalization of the ECIs due to the truncation of the
expansion. The fitting parameters are then the coefficients
of a Taylor expansion of the energy about the random state
at 50:50 concentration which, to differentiate it from the
previous case (J[v]), should be of order greater than 1 in
in the correlation functions in the SDG basis. As in the
previous case, the ECIs are given by the Euler derivatives of
the resulting energy function. In the present case, the energy
is expanded to second order in the correlation functions and
the volume dependence of coefficients of the Taylor expan-
sion is also parametrized with polynomials of degree 5. The
minimum cross validation for the energy of formation equals
0.87 meV/atom and is found for n2 = 6, n3 = 4, and n4 = 0.
Figure 5 shows the comparison of the results of the cluster
expansion in the J[v, z] approximation to the calculated zero
pressure values of �E , V0, B0, and B′

0 for all the structures in
the training set. We note that since the Taylor series does not
converge for |zη| → 1, we have excluded the pure elements
from the fitting procedure.

The results obtained with the different approximations are
summarized in Table I. Clusters, coefficients of the Taylor
expansions as a function of volume, and the resulting ECIs
are given in the Appendix for both methods labeled J[v] and
J[v, z] in Table I. As shown in Table I, there is a significant
decrease in the range of interactions when going from the
J[cte] approximation that place the minimum in the cross-
validation score at {n2 = 54, n3 = 50, n4 = 2} to the J[v, z]
approximation with the minimum located at {n2 = 6, n3 =
4, n4 = 0}. Furthermore, we see that both the J[v] and J[v, z]

methods reproduce the calculated values of the Murnagham
equation of state for the structures in the test set with the same
level of accuracy obtained for the structures in the training set.
On the other hand, the Ising-like approximation (J[cte]) gives
less than acceptable errors for the test structures.

The following observations are in order with regard to the
significant difference in the range of effective interactions
for the approximations used here, namely J[cte], J[v], and

TABLE IV. Coordinates of the clusters used with the method
J[v, z] described in Sec. VII 2 and Table I. The positions of
each point in the clusters are given in Cartesian coordinates by
�r(n1, n2, n3) = 1

2 [n1, n2, n3]. The column labeled ωn gives the degen-
eracy of each cluster.

Cluster no. Cluster type ωn n1, n2, n3 n1, n2, n3 n1, n2, n3

1 Empty 1
2 Point 1 0,0,0
3 Pair 1 6 0,0,0 0, 1, 1
4 Pair 2 3 0,0,0 0, 0, 2
5 Pair 3 12 0,0,0 1, 1, 2
6 Pair 4 6 0,0,0 0, 2, 2
6 Pair 5 12 0,0,0 0, 1, 3
6 Pair 6 4 0,0,0 2, 2, 2
7 Triangle 1 8 0,0,0 1, 0, −1 1, 1, 0
8 Triangle 2 12 0,0,0 0, 0, 2 0, 1, 1
9 Triangle 3 24 0,0,0 1, −1, −2 1, 0, −1
10 Triangle 4 6 0,0,0 0, 1, 1 0, 2, 2
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FIG. 11. Volume dependence of the second-order coefficients Kn,m[v] of the Taylor expansion of the energy in the method J[v, z] for all
pairs used in the approximation. The coefficients are normalized by the degeneracies

√
ωnωm of the corresponding clusters and the clusters are

labeled following Table IV.

J[v, z]. The long range of interactions observed for the case
J[cte] is a direct consequence of the fact that, although the
ECIs decay with distance and complexity, their decay is not
sufficiently fast to justify the commonly used approach of
neglecting the contribution of an exceedingly large number
of clusters which, as mentioned, is of the order of 2N . The
existence of nonlocal interactions in the energy further ensures
the nonconvergence of the Ising-like model. For example,
it has been shown that the standard CE does not converge
if the function being expanded contains nonlinear depen-
dences in concentration [5]. Such nonlinear dependences are
commonly encountered in many models, ranging from the
regular solution model to approaches such as the Friedel
model for transition-metal alloys, the CPA and the GPM.

Furthermore, such nonlinear dependences in concentration
arise from nonlocal terms in the energy. In the case of the Cu-
Au system, it has been shown that using a semilocal exchange-
correlation functional results in significant improvement in the
calculated energies of formation of Cu-Au compounds [48].
Thus, nonlocal contributions arising from nonlocal exchange-
correlation functionals might further contribute to the slow
convergence of Ising-like models. Also, as mentioned, most
applications of the CE use a relatively small number of train-
ing structures, thus masking the deficiencies of the Ising-like
model and incorrectly suggesting a fast decay of the ECIs.
The end result is very poor predictability of the Ising-like
model. Improvements in convergence and predictability are
obtained by allowing the ECIs to depend on the volume of
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FIG. 12. Effective cluster interactions for pair clusters used with the method J[v, z] described in Sec. VII 2 and Table I. The coordinate of
the clusters are given in Table IV.

the alloy, which itself is a function of the degree of order.
This somewhat obvious volume dependence of the ECIs is, of
course, absent in the Ising-like model. Thus, the improvement
observed using the J[v] method is strictly due to the fact the
the model used to fit the training structures is a more accurate
description of the configurational energy of real alloys. As
can be seen in the Appendix, Figs. 8 and 9, the ECIs depend
strongly on concentration and, to a lesser degree, on pair and
higher order correlations. Introducing truncation effects by
allowing for an explicit dependence of the ECIs on the degree
of order, i.e., using the method labeled J[v, z], further reduces
the range of interactions. The ECIs are now renormalized
and contributions due to larger clusters are incorporated into
smaller clusters. Comparing the ECIs for the case J[v] in
Figs. 8 and 9 with those for the case J[v, z] in Figs. 12 and

13, we see that there is a stronger configurational dependence
for the latter case.

3. Relaxation effects

As mentioned in Sec. V, the expansion of relaxed struc-
tures in terms of the correlation functions of the unrelaxed
structures introduces an additional approximation into the
CE method. The approximation arises from the fact that,
in general, relaxation changes the space group symmetry
of the undecorated lattice, and therefore for each cluster
in the unrelaxed structures there will be a distribution of
related but distorted clusters in the relaxed structures. These
distorted clusters will in turn give rise to different ECIs and
the critical step of going from the expansion in terms of the
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FIG. 13. Effective cluster interaction for nonpair clusters for the method J[v, z] described in Sec. VII 2 and Table I. The coordinate of the
clusters are given in Table IV.

basis functions {φα(σ)} [Eq. (16)] to that in terms of the
correlations functions {zη} [Eq. (17)] cannot be carried out.
Different approaches have been introduced in order to control
this approximation [49]. Here, we use a simple approach
that eliminates from the CE those structures for which the
relaxation results in a distribution in bond lengths with a width
exceeding a certain threshold relative to the bond lengths in
the unrelaxed structures (at the same volume). Figure 6(a)
shows the distribution of distances in one structure in the
training set due to cell-internal relaxations for the first three
pair distances in the unrelaxed structure. The relative maxi-
mum percent change in the nearest neighbor distances for all
structures in the training set is shown in Fig. 6(b), where we
see that the relative change in bond lengths due to cell-internal
relaxations can be as large as 50%. Thus, the correlation
functions of the unrelaxed structures are not expected to be

a good set of configurational variables to describe a large
number of relaxed structures in the training set, as it is usually
assumed in most implementations of the CE.

To illustrate this point, we carried out a cluster expansions
with the ECIs functions of volume and correlations functions
(i.e., the approximation referred as J[v, z]) for the structures
with volume plus cell-internal relaxations and for fully relaxed
structure for two different conditions: (i) using all 265 struc-
tures in the training set (set 1) and (ii) with a reduced training
set consisting of relaxed structures for which the maximum
relative change in first neighbor distance is less than 10%
(set 2). The results are summarized in Table II.

We see from Table II that the quality of the fit for both sets
1 and 2 are comparable and, as expected due to the additional
approximation used in the expansion of relaxed structures,
somewhat less accurate than the CE of unrelaxed structures
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discussed previously. However, a significant difference be-
tween the two expansions is their ability to predict the energies
of the structures in their corresponding test sets. For set 1, the
root-mean-square and maximum errors for the energies of the
test set are significantly larger than the same quantities for
the set of training structures. On the other hand, for the test
structures in set 2, the root-mean-square and maximum errors
are comparable to the same quantities obtained for the training
set.

Thus, eliminating structures with large relaxations from
the training set results in a more accurate representation of
the configurational energy of alloys that, on average, have the
structure of the undecorated lattice. It follows from this obser-
vation that the CE is not particularly well suited to do ground-
state analyses which, typically, use the CE Hamiltonian to
rank the energies of a large number of configurations (or
ordered structures). In fact, the actual (and unknown) ground
states may undergo large cell-internal and cell-external relax-
ations relative to the undecorated lattice and, in principle, their
energies cannot be accurately described by the correlation
functions defined on a significantly different lattice. On the
other hand, a judicious selection of the training structures,
i.e., structures for which the relaxations are small relative
to the undecorated lattice, results in a CE that provides an
acceptable approximation to the configurational energy of
disordered alloys with small static or dynamic displacements
from a lattice that has the same structure as the undecorated
lattice.

VIII. SUMMARY AND CONCLUSIONS

The implementation of the CE, which at present requires
the fitting of the configurational energy to that of a set of
ordered compounds, has been reformulated on two important
aspects. First, we have shown that, while the orthonormality
and completeness of the cluster functions {φα(σ)} provide a
rigorous framework for determining the configurational vari-
ables, the assumption that the ECIs can be neglected beyond
a certain maximum cluster size is generally a poor approx-
imation for real systems. Our main result is that the bare
cluster interactions obtained by projecting the energy onto
the basis functions can be renormalized into configuration-
dependent short-range effective interactions. The renormal-
ized interactions are related in a straightforward manner to
the Euler derivatives of the configurational energy, which is
a homogeneous function of degree 1 in the correlation func-
tions. Second, in the absence of cell-internal and cell-external
relaxations (other than volume), we developed an approach
for the CE that simultaneously fits a parametrized form of the
configurational energy to the DFT calculated zero-pressure
values of the energy of formation, volume, bulk modulus, and
pressure derivative of the bulk modulus of a set of ordered
compounds. The approach is applied to the Cu-Au system to
develop a representation of the energy in terms of short-range
interactions that, at the same time, has significantly improved
predictive capabilities relative to the commonly used Ising-
like model. Finally, we proposed an approximate scheme
to carry out the CE for relaxed structures, which consists
in controlling the maximum degree of deformation of the
ordered compounds included in the training set used to fit the

renormalized effective interactions. The approach is proposed
to underscore the fact the using the correlations functions
obtained by decorating a fixed reference lattice to describe
structures that undergo significant relaxations is not justified
in the context of the CE. A corollary of this observation is that
the CE is not very well suited to carry out general ground-state
analyses since the such ground states may undergo significant
relaxations relative to the reference lattice which, in turn,
introduces large errors and/or uncertainties into the energy of
formation predicted by the CE.

Finally, we note that the introduction of volume- and
configurational-dependent ECIs poses an additional compli-
cation for most statistical thermodynamics applications of
the CE. In particular, Monte Carlo (MC) simulations using
concentration- and configurational-dependent ECIs will re-
quire the calculations to be carried out self-consistently. In
principle, the approach could start with ECIs for a given
configuration (e.g., random or T � 0), which will produce a
set of ECIs, and carry out the MC simulations to equilibrium.
With the new state of order, the ECIs can be reset and
calculations repeated until convergence (or self-consistency)
is achieved.

ACKNOWLEDGMENTS

The author acknowledges the Texas Advanced Computing
Center (TACC) at the University of Texas at Austin for
providing high-performance computing resources that have
contributed to the research results reported within this paper.

APPENDIX

Table III lists the clusters used to fit the Murnagham
parameters using the method labeled J[v] in Table I. A total
of 26 clusters are required to minimize the cross-validation
score. Thus, in this method, the fitting parameters are 26
functions of volume v, which correspond to the coefficients
of a Taylor expansion of the energy, at volume v, to first
order in the correlation functions. The Taylor expansion is
carried out around the random state at 50:50 concentration.
The coefficients of the Taylor expansion, denoted by Kn[v],
are shown in Fig. 7. As noted in Sec. VII, the functions Kn[v]
are parametrized by a polynomial of degree 5 in the volume.
The corresponding ECIs, defined by Eqs. (30) and (31), are
shown in Figs. 8 and 9 for the state of order of the compounds
in the training set (symbols) and for the random state (solid
line).

For the case J[v, z], the Taylor expansion of the energy is
carried out to second order in the correlation functions. The
range of the renormalized interactions, determined by the min-
imum of the cross-validation score, is given by the 10 clusters
listed in Table IV. The second-order expansion involves 78
coefficients that must be determined as a function of volume.
As in the case J[v], the coefficients are parametrized by a
polynomial of order 5 in the volume. The volume dependences
for the first-order coefficients are shown in Fig. 10, while
Fig. 11 shows the second-order coefficient for all pair clusters
used in the approximation. The corresponding ECIs for all 10
clusters in the approximation are shown in Figs. 12 and 13 for,
respectively, the pair and the nonpair clusters.
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