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Quantum conductivity correction in a two-dimensional disordered pseudospin-1 system
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Using the Feynman diagram techniques, we theoretically obtain the quantum conductivity correction for a two-
dimensional pseudospin-1 electron system in the presence of long-range diagonal disorder. Theoretical results
clearly reveal that the quantum correction depends on the sublattice correlation properties of disorder potential.
The sublattice correlated disorder gives rise to normal weak localization, while the sublattice uncorrelated
impurity potential leads to the absence of logarithmic term in quantum conductivity correction. Remarkably,
those results cannot be understood by conventional symmetry classification. An additional symmetry operator
involving internal sublattice degrees of freedom, analogous with the time reversal symmetry operator, enables us
to clarify our findings from symmetry consideration.

DOI: 10.1103/PhysRevB.99.134204

I. INTRODUCTION

Weak localization originates from the constructive inter-
ference between the waves propagating along time-reversed
paths. In a conventional two-dimensional (2D) electron gas
system, the constructive interference enhances the backscat-
tering amplitudes and causes the negative quantum conduc-
tivity correction [1]. Remarkably, this correction diverges
logarithmically at low temperatures [2]. Such a divergence
provides a precursor of the Anderson localization and reflects
universal symmetry properties of the system. Recently, the
exploration of the quantum correction for pseudospin-1/2
electron systems (i.e., graphene) is a major activity in current
condensed matter physics [3–8]. Due to the nontrivial Berry
phase in graphene, the earlier studies showed that quantum
correction can be either positive or negative depending on the
range of impurity potentials. The long-range disorder only
causes intravalley scattering and gives rise to positive quan-
tum correction, while the short-range disorder yields negative
contribution owing to the presence of intervalley scattering
processes.

Most recently, the low-energy spectrum of the quasiparti-
cles described by the Dirac-Weyl equation with pseudospin-1
have attracted much attention. Electronic materials including
SrCu2(BO3)2 [9], transition-metal oxide trilayer heterostruc-
ture [10], and MoS2 allotropes with a square symmetry [11]
can host such quasiparticles. These pseudospin-1 systems
have also been theoretically predicted and experimentally
realized on optical dice or Lieb lattices with ultracold atoms
[12,13] and particularly engineered photonic crystals [14–16].
Especially the variation of length scale in photonic crystals
plays the role of potential change in pseudospin-1 systems. Its
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unusual spectrum consisting of two graphenelike bands and
one additional flat band intersecting with them at the Dirac
point implies the emergence of novel electronic properties,
such as super Klein tunneling [17], topological localization
[18,19], and anomalous Anderson localization behaviors with
one-dimensional disorder [20].

However, quantum correction to conductivity for these
systems has not been, in our opinion, sufficiently investigated
to date. Only a few studies have been devoted to this problem.
Vigh et al. [21] calculated the semiclassical conductivity in
the pseudospin-1 family of Dirac-Weyl fermion. Although
the group velocity is vanishing in the flat band where the
density of states exhibits a sharp peak, the dc conductivity at
the Dirac point still diverges logarithmically with decreasing
disorder due to interband transitions between the propagating
and the flat bands. Actually, they also indicated that the
leading impurity corrections to the current vertex depend on
the sublattice correlation of a random potential: The ladder
vertex corrections vanish for sublattice uncorrelated disorder
but yield finite contribution for sublattice correlated scatterers.
However, quantitative analysis and technical details are not
provided in their work [21].

In this work, using the Feynman diagram techniques, we
systematically study the quantum conductivity of the 2D
pseudospin-1 Dirac-Weyl electron system in the presence of
long-range diagonal disorder. We show that the ladder vertex
correction vanishes for the sublattice uncorrelated scatterers.
However, the sublattice correlated scatterers yield finite vertex
correction and the transport relaxation time is three times
the elastic scattering time. These results are in agreement
with that derived from the semiclassical Boltzmann approach.
More importantly, we study quantum conductivity correction
resulted from quantum interference beyond the semiclassical
transport theory. Traditionally, weak localization correction
is related to classification of the universality class according
to whether the system Hamiltonian has the time reversal and
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spin rotation symmetries. Owing to the absence of magnetic
impurity scattering or spin-orbit coupling in Hamiltonian,
our system should belong to the orthogonal class and give
rise to normal weak localization. However, our theoretical
results clearly reveal that quantum conductivity correction
depends strongly on the sublattice correlation properties of
the diagonal disorder. The sublattice correlated scatterers
yield normal weak localization, belonging to the orthogonal
class. In contrast, the sublattice uncorrelated potentials lead
to the absence of logarithmic term for quantum conductivity
correction, strongly suggesting that the system should belong
to the unitary class even in the absence of magnetic field
or magnetic impurity scattering. This seems in contrast with
the conventional classification of universality classes. Here,
an additional symmetry operator, analogous with the time
reversal symmetry operator, is proposed for understanding
such interesting findings.

II. MODEL FOR PSEUDOSPIN-1 SYSTEM

The unit cell of the dice lattice consists of a so-called hub
site (H) and two rim sites (A and B), and those internal degrees
of freedom play the role of a pseudospin-1 system [22,23].
Its Brillouin zone is hexagonal and contains a pair of nodes
(or called Dirac points), similar to graphene. The low-energy
dynamics near each node can be described by the pseudospin-
1 Dirac-Weyl Hamiltonian,

H = h̄vF S · k, (1)

where vF is the Fermi velocity, k = (kx, ky), and

Sx = 1√
2

⎛
⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎠, Sy = 1√

2

⎛
⎜⎝

0 −i 0

i 0 −i

0 i 0

⎞
⎟⎠, (2)

combining with

Sz =

⎛
⎜⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟⎠. (3)

Sx, Sy form a three-dimensional representation of SU (2),
satisfying commutation relation [Si, S j] = iεi jkSk , similar to
the Pauli matrix. However, they do not form a Clifford algebra
{Si, S j} �= 2δi j . The energy spectrum is isotropic and consists
of three branches labeled by the index s = 0,±, leading to a
perfectly flat energy band and two linearly dispersive bands at
each node,

εs(k) = sh̄vF k. (4)

The eigenstates in the two branches with s = ± are
expressed as

|sk〉 = 1

2

⎛
⎝e−iθ

s
√

2
eiθ

⎞
⎠ ⊗ |k〉. (5)

For the flat band with s = 0 they are

|0k〉 = 1√
2

⎛
⎝e−iθ

0
−eiθ

⎞
⎠ ⊗ |k〉, (6)

where eiθ = (kx + iky)/k.

To explore disorder effect on conductivity, in this work, we
only consider the long-range disorder whose potential range
is larger than the lattice constant. This assumption allows us
to neglect the scattering between the pair of nodes [24].

III. RESULTS AND DISCUSSION

A. Sublattice correlated disorder

First, we start with the Gaussian disorder with sublattice
correlation,

U = V (r)I, (7)

and

V (r)V (r′) = γ δ(r − r′). (8)

Here, . . . denotes the average over disorder realization, the
parameter γ quantifies the disorder strength, and I is the
identity matrix of rank 3. The using of δ function is based on
the assumption that the potential range is much smaller than
the varying range of the wave function.

Within the lowest Born approximation, the elastic scatter-
ing time is defined by

1

τs
= 2π

h̄

∑
s′k′

|〈sk|U |s′k′〉|2δ(εF − εs′ (k)). (9)

Using Eqs. (7)–(9), the elastic scattering times in branches
with s = ±1 are found to be equivalent:

1

τ+
= 1

τ−
= 3εF γ

8h̄3vF
2

= 1

τ
. (10)

Here, the Fermi energy εF is assumed to be large enough to
satisfy the weak scattering limit εF τ � 1. In this regime, the
elastic scattering time calculated by the lowest Born approxi-
mation is in agreement with that derived from self-consistent
Born approximation [21]. This agreement reflects that the
transition between different branches can be neglected. In the
following calculations, therefore, we can fix the branch index
s to be “+” and treat the spectral function as a delta function
approximately [25].

We calculate conductivity by the Kubo formula. Under
Drude approximation, the classical Drude conductivity is cal-
culated by only considering the contribution from the bubble
diagram shown in Fig. 1(a),

σDrude = h̄

2π

∫
dk

(2π )2
jx(k)G+(k) jx(k)G−(k), (11)

where jx(k) = evF 〈+k|Sx| + k〉 = evF cosθ denotes the elec-
tric current operator and the disorder averaged Green’s
function is defined as G± = 1/(εF − h̄vF k ± ih̄/2τ ). From
Eq. (11) we express the Drude conductivity as

σDrude = e2

4π h̄

εF τ

h̄
. (12)

As we see, the conductivity of Dirac-Weyl fermion with
pseudospin-1 within the Drude approximation is similar to
that of graphene [3,26]. Physically, the similar conelike bands
structure is the simple reason to hold the same Drude conduc-
tivity expression for both systems.

Commonly, the leading multiple scattering is described
by ladder vertex correction as shown in Fig. 1(b), and the
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FIG. 1. Diagrams for calculations of conductivity by Kubo for-
mula: (a) Drude approximation, (b) the vertex correction, and (c) the
Bethe-Salpeter equation for vertex function 
. A solid line with an
arrow denotes an averaged Green function. A dashed line represents
a bare vertex function.

corresponding contribution to the conductivity is given by

σD = h̄

2π

∫
dkdk′

(2π )4
jx(k) jx(k′)

× G+(k)G−(k)
(k, k′)G−(k′)G+(k′). (13)

The vertex-part 
(k, k′) satisfies the Bethe-Salpeter equation,
diagrammatically represented by Fig. 1(c),


(k, k′) = 
0(k, k′)

+
∫

dq
(2π )2


0(k, q)G+(q)G−(q)
(q, k′), (14)

where the bare vertex


0(k, k′) = |〈+k|U | + k′〉|2 = γ

4
[1 + cos(θ − θ ′)]2. (15)

Before trying to solve Eq. (13) iteratively, we notice that
the vertex function shows angular dependence and totally
suppresses the backscattering process. To retain the isotropy
of system, we only keep those parts of vertex functions
with e±i(θ−θ ′ ). To this end, 
0(k, k′) = γ

4 [e−i(θ−θ ′ ) + ei(θ−θ ′ )].
Substituting the bare vertex function into Eq. (14), we obtain
the vertex function


(k, k′) = 3γ

4
[e−i(θ−θ ′ ) + ei(θ−θ ′ )], (16)

and immediately the ladder vertex contribution to conductivity
equals to

σD = e2

2π h̄

εF τ

h̄
. (17)

The total semiclassical conductivity σ = σDrude + σD can
be expressed as

σ = e2

4π h̄

εF τtr

h̄
= e2

4π h̄
kF l, (18)

where the transport relaxation time τtr = 3τ , Fermi velocity
kF = εF /h̄vF , and l = vF τtr denotes the transport relaxation
length. In other words, the conductivity triples and the trans-
port relaxation time τtr is three times the scattering time τ .
This is different from in graphene, where the conductivity just
doubles due to the ladder vertex correction [3,26,27].

FIG. 2. The diagrams for the coherent scattering corrections to
conductivity: (a) the Cooperon correction, (b) the nonbackscattering
contribution (the dressed Hikami boxes), (c) the Bethe-Salpeter
equation for vertex function �. A solid line with an arrow denotes
an averaged Green function. A dashed line represents a bare vertex
function.

Now we turn to study the quantum correction to the total
semiclassical conductivity, which results from interference
processes between electrons passing along the time-reversed
paths, leading to the weak localization or weak antilocaliza-
tion. As illustrated in Fig. 2(a), the sum of all such diagrams
is called a “Cooperon,” owing to its similarity to the pair
susceptibility in superconductivity. The quantum conductivity
correction is thus given by

σC = h̄

2π

∫
dkdk′

(2π )4
jx(k) jx(k′)

× G+(k)G−(k)�(k + k′)G−(k′)G+(k′). (19)

This expression is analog to that in the vertex correction,
but the Cooperon �(q = k + k′) has a peak at backscatter-
ing q = 0. Under the condition q → 0, the bare vertex of
Cooperon is given by

�0(k, k′; q) = 3γ

8
+ γ

4
[e−i(θ−θ ′ ) + ei(θ−θ ′ )]

+ γ

16
[e−i2(θ−θ ′ ) + ei2(θ−θ ′ )]. (20)

The form of Cooperon � can be assumed to be [28,29]

�(k, k′; q) =
2∑

n,m=−2

�nmei(nθ−mθ ′ ). (21)

Solving the Bethe-Salpeter equation

�(k, k′; q) = �0(k, k′; q) +
∫

d p
(2π )2

�0(k, p; q)G+(p)

× G−(q − p)�(p, k′; q), (22)
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we only keep the divergent part in the limit q → 0 (see in
Appendix A)

�(k, k′; q) = 3γ

8

1

Dq2τ
, (23)

where D = v2
F τtr/2 denotes the diffusion coefficient. Notice

that the phase factors disappear here, and this causes a pos-
itive vertex function. Consequently the contribution of the
Cooperon to conductivity is calculated as

σC = − 3e2

4π2 h̄
ln

τφ

τ
. (24)

Here we multiply by (τtr/τ )2 to take into account the correc-
tion to velocity from the ladder diagram depicted in Fig. 1(b).

The correction from the Cooperon is negative, showing
normal weak localization. Here, we introduce the phase co-
herence time τφ as cutoff of integration [30]. At low tem-
perature, the dephasing is dominated by inelastic electron-
electron collisions. One can probe dephasing processes by
measuring the temperature dependence of conductivity in
the weak localization regime [1]. Notice that this negative
quantum correction to conductivity in Eq. (24) is in contrast
to that in graphene, which is revealed to be positive. The
simple explanation is ascribed to the trivial Berry phase in the
pseudospin-1 Dirac-Weyl system [20,31], leading to normal
weak localization.

The full correction to the conductivity should take into
account the nonbackscattering contribution [32–34]. The
backscattering and the nonbackscattering contributions to the
conductivity are reported to have the same order of magnitude
and different signs in 2D systems with large Rashba splitting
[30]. The nonbackscattering contribution is given by the dia-
gram in Fig. 2(b) and the other conjugated to it (the dressed
Hikami boxes). The corresponding expression reads as

σnon-bs = 2
h̄

2π

∫
dkdk′dq

(2π )6
�0(k,−k′) jx(k) jx(k′)

× G+(k)G−(k)G+(k′)G−(k′)

× G+(q − k)G+(q − k′)�(q), (25)

where the overall factor of 2 stems from the fact that the
diagram conjugated to Fig. 2(b) gives identical contribution.
The bare vertex �0 is anisotropic and the average of the
angular part is nonzero (see in Appendix B for details). After
some algebra, we find that the nonbackscattering contribution
to the conductivity takes the form

σnon-bs = − 2
3σC . (26)

This result is similar to that in graphene but their coef-
ficients are different [6]. Finally, the total weak localization
correction to the conductivity is obtained

σWL = 1

3
σC = − e2

4π2 h̄
ln

τφ

τ
. (27)

B. Sublattice uncorrelated disorder

Next, we consider a similar long-range disorder but without
sublattice correlation,

U ′ =
∑

i=1,2,3

Vi(r)Ui =

⎛
⎜⎝

V1(r) 0 0

0 V2(r) 0

0 0 V3(r)

⎞
⎟⎠, (28)

where Ui = diag(δi1, δi2, δi3) are projections onto the sublat-
tice A, H, and B, respectively, and Vi(r)Vj (r′) = γ δi jδ(r − r′).
Unlike the sublattice correlated disorder, here the Kronecker
delta δi j emphasizes the independence of disorder potential on
different sublattice sites.

The elastic scattering time τ ′ is determined by Eq. (9)
and equals to the one under sublattice uncorrelated disorder:
τ ′ = τ . However, based on diagrams in Fig. 1 we find that
the ladder vertex corrections give no contribution, in contrast
to that in sublattice correlated disorder. This is because for
the sublattice uncorrelated disorder, the bare vertex function
is written as


′0(k, k′) =
∑

i=1,2,3

|〈+k|Ui| + k′〉|2 = 3

8
γ , (29)

which is angular independent. Thus the vertex function

′(k, k′) is also angular independent and does not depend
on the incoming and outgoing directions. Since the current
operator jx(k) = evF cos θ is the only term that contains an
angular part, the angular average in Eq. (13) cancels and the
vertex correction to conductivity is zero.

As for the coherent scattering processes in the Cooperon,
the bare vertex function with sublattice uncorrelated disorder
is different from the one in Eq. (20):

�′0(k, k′; q) =
∑

i=1,2,3

〈+k|Ui| + k′〉〈+(−k)|Ui| + (−k′)〉

= γ

4
+ γ

16
[e−2i(θ−θ ′ ) + e2i(θ−θ ′ )]. (30)

Thus only the zeroth and second angular harmonics remains in
the bare vertex. The vertex function �′(k, k′; q) can be derived
from the Bethe-Salpeter equation, however the divergence
is absent (see in Appendix A). For example, the expansion
coefficients of the zeroth and second angular harmonics take
the form, respectively,

�′
0,0 ≈ 9γ

8

1

3/2 + Dq2τ
, �′

±2,±2 ≈ 9γ

8

1

15 + Dq2τ
. (31)

Thus the vertex function �′(k, k′; q) has no diffusion pole,
which is similar to that in 2D electron gas with magnetic im-
purities. The absence of diffusion pole in the Cooperon vertex
function leads to the absence of the logarithmic term, thus
we obtain a vanishing coherent correction to the conductivity
under sublattice uncorrelated disorder:

σ ′
C = 0. (32)

This is our central finding of this work, indicating that the
leading quantum correction to conductivity is absent and our
system in this case should belong to the unitary class from
symmetry consideration. This result is in sharp contrast with
conventional classification of universality classes, since in our
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calculation we do not introduce external magnetic field or
magnetic impurity scattering. The system Hamiltonian still
keeps the time reversal symmetry and should belong to the
orthogonal class. The time reversal symmetry operator of the
dice lattice Tdice is given by the complex-conjugation operator
C. In the low-energy effective Hamiltonian, since the Bloch
functions at different nodes are complex conjugate, we have
Tdice = (σx ⊗ I )C, where the Pauli matrices σx represent the
node index.

Note that this time reversal operator commutes with both
sublattice correlated and uncorrelated disorder potential. In
the absence of internode scattering, however, Tdice cannot be
used to classify the universality class for weak localization.
Here, we introduce another symmetry operator at each node
for classification of universality class,

T = e−iπSyC = (
1 − 2S2

y

)
C. (33)

This operator T transforms |sk〉 into |s−k〉 at each node
and can be regarded as the time reversal operator for trans-
port under intranode scattering. It is easy to verify that
T 2 = 1 and T SiT −1 = −Si, (i = x, y, z). Obviously, the orig-
inal Hamiltonian Eq. (1) is invariant under T transformation,

T H (−k)T −1 = H (k). (34)

In the presence of the sublattice correlated disorder we
considered above U = V (r)I , the symmetry T is retained.
Therefore, the disordered system is still orthogonal and the
coherent processes of coherent scattering processes give rise
to normal weak localization. As for the sublattice uncor-
related disorder in Eq. (28), its formula can be expressed
as U ′ = V1(r) 1

2 (S2
z + Sz ) + V2(r)(1 − S2

z ) + V3(r) 1
2 (S2

z − Sz ).
The uncorrelated parts V1,V3 break down the symmetry T ,
resulting in the absence of the leading quantum correction to
conductivity. It should be emphasized that the unitary class,
the absence of the logarithmic term, can be realized even
in the absence of magnetic impurity scattering. Moreover,
interpreting the internal sublattice degrees of freedom as a
fictitious spin-1, the origin of the absence of the logarithmic
term can be traced back to the term V1 and V3, acting as
fictitious magnetic impurity scattering.

IV. SUMMARY

In summary, the quantum conductivity of the Dirac-Weyl
fermions with pseudospin-1 is calculated in the weak
scattering limit. It is found that the ladder vertex and quantum
vertex correction strongly depend on the sublattice correlation
properties of disorder potential. More importantly, combining
previous studies in graphene (pseudospin-1/2 systems) with
our investigation on the pseudospin-1 system, we verify that
a type of symmetry operator involving internal sublattice
degrees of freedom plays an essential role in classifying the
universality class associated with the quantum conductivity
correction. These predictions can be easily tested in certain
photonic crystals. The sublattice correlation properties can
be modulated by varying the length scale in photonic crystals
[20,35]. Therefore, the sublattice correlated disorder gives
rise to a sharp peak of the reflection coefficient in the
backscattering direction, as a direct experimental evidence

of normal weak localization [36]. However, the sublattice
uncorrelated disorder will strongly suppress the peak of
reflection coefficient.
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APPENDIX A: CALCULATION OF THE COOPERON

Expanding the Green’s functions up to q2 and integrat-
ing the product of Green’s functions in the Bethe-Salpeter
equation (22) over |p|, we obtain

∫
pd p

2π
G+(p)G−(q − p) ≈

2∑
n=−2

neinθq . (A1)

Here

0 = εF τ

h̄3v2
F

(
1 − Q2

2

)
,

±1 = −i
εF τ

h̄3v2
F

Q∓
2

, (A2)

±2 = − εF τ

h̄3v2
F

Q2
∓

4
,

where Q = vF τq and Q± = Qe±iθq . Substituting Eq. (A1) into
Eq. (22), we arrive at

�(k, k′; q) = �0(k, k′; q)

+
2∑

n=−2

∫
dθp

2π
�0(k, p; q)�(p, k′; q)neinθp .

(A3)

Meanwhile, the bare vertex of the Cooperon function under
the sublattice correlated disorder can be rewritten as

�0(k, k′; q) =
2∑

n,m=−2

�0
nδnmei(nθ−mθ ′ ), (A4)

where

�0
0 = 3γ

8
, �0

±1 = γ

4
, �0

±2 = γ

16
. (A5)

Substituting Eqs. (21) and (A4) into Eq. (A3), we get

�nm = �0
nδnm +

∑
l

�0
nn−l�lm. (A6)

By defining matrix � = [�nm], �0 = [�0
nδnm], and � =

[n−m], we arrive at

� = �0 + �0��, (A7)
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and the solution is found as

� = (1 − �0�)−1�0. (A8)

The solution can be simplified as

� = 3γ

8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 + Q2

2 i Q+
2

Q2
+

4 0 0

i Q−
2

1
2 + Q2

2 i Q+
2

Q2
+

4 0
Q2

−
4 i Q−

2
Q2

2 i Q+
2

Q2
+

4

0 Q2
−

4 i Q−
2

1
2 + Q2

2 i Q+
2

0 0 Q2
−

4 i Q−
2 5 + Q2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(A9)

The zeroth angular harmonic is the only divergent part and
reads as

�00 ≈ 3γ

8

2

3Q2
= 3γ

8

1

Dq2τ
, (A10)

where D = v2
F τtr/2 denotes the diffusion coefficient. The

other diagonal elements are regular: �±1,±1 ≈ 10γ

69
1

20/69+Dq2τ

and �±2,±2 ≈ 9γ

10
1

12+Dq2τ
. Notice that the Cooperon will be

three times overestimated if one neglects the off-diagonal
terms in Eq. (A9).

The cooperon under the sublattice uncorrelated disorder
can be derived with a similar procedure. The integration in
Eq. (A1) is unchanged in this case. But the bare vertex �′0 is
different and can be written as

�′0
0 = γ

4
, �′0

±1 = 0, �′0
±2 = γ

16
. (A11)

Notice that the coefficient of zeroth angular harmonic
�′0

0 = γ

4 is different from that in sublattice correlated disorder
�0

0 = 3γ

8 , which plays a dominant role in yielding the diffu-
sion pole of the Cooperon. The solution of the corresponding
Bethe-Salpeter equation can be expressed as

�′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5
6 + Q2

12 i Q+
12

Q2
+

24 0 0

0 1 0 0 0
Q2

−
6 i Q−

3
1
3 + Q2

3 i Q+
3

Q2
+

6

0 0 0 1 0

0 0 Q2
−

24 i Q−
12

5
6 + Q2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−1

�′0.

(A12)

In this case, the divergence in the limit q → 0 is ab-
sent, because �′

0,0 ≈ 9γ

8
1

3/2+Dq2τ
, �′

±1,±1 = 0, and �′
±2,±2 ≈

9γ

8
1

15+Dq2τ
. Thus the Cooperon under sublattice uncorrelated

disorder has no diffusion pole, and the weak localization is
absent in this case.

APPENDIX B: CALCULATION OF THE
NONBACKSCATTERING CONTRIBUTION

TO THE CONDUCTIVITY

Using the identity

G+(k)G−(k) = τ

ih̄
[G−(k) − G+(k)], (B1)

and neglecting the rapidly oscillating products of the Green’s
function, the nonbackscattering contribution can be expressed
as

σnon-bs = − τ 2

π h̄

∫
dkdk′dq

(2π )6
�0(k,−k′) jx(k) jx(k′)

× G−(k)G−(k′)G+(q − k)G+(q − k′)�(q). (B2)

Notice that the current operator jx(k) = evF cos θk takes a
form similar to that of 2D electron gas. The bare vertex
�0(k,−k′) can be derived from Eq. (20),

�0(k,−k′) = γ

4
[1 − cos (θ − θ ′)]2. (B3)

Neglecting q in the Green’s functions and taking the aver-
age of the angular part, we arrive at

σnon-bs = −e2vF
2τ 2

π h̄

γ

8

∫
dkdk′

(2π )4

× G−(k)G+(k)G−(k′)G+(k′)
∫

dq
(2π )2

�(q). (B4)

Notice that the correction to velocity has not been taken into
account, so we need to multiply by (τtr/τ )2. After integrating
the Cooperon and the product of the Green functions, we
obtain

σnon-bs = e2

2π2h̄
ln

τφ

τ
= −2

3
σC . (B5)

APPENDIX C: TRANSPORT RELAXATION
TIME IN BOLTZMANN APPROACH

To gain more physical insight of the above results, we also
calculate the transport relaxation time within a standard semi-
classical Boltzmann approach. Considering that the system
is isotropic, the transport relaxation time in this regime is
defined by

1

τtr
= 2π

h̄

∑
k′

|〈+k|U | + k′〉|2δ(εF − ε+(k′))(1 − cosθ ′).

(C1)

In the presence of sublattice correlated disorder, substitut-
ing the definition of τ into Eq. (C1) we obtain

τtr = 3τ, (C2)

which yields the same result as that calculated by using the
Kubo formula. Physically, the difference between transport
relaxation time and the relaxation time in Green’s function
originates from the weighting factor 1 − cosθ ′. The factor
tends to favor large-angle scattering events and suppress the
small-angle scattering. However, the large-angle scattering
will be suppressed by the wave function overlap factor (1 +
cosθ ′)2. In fact, the transport relaxation time is weighted by an
effective angular factor (1 − cosθ ′)(1 + cosθ ′)2, which sup-
presses both large- and small-angle scattering contributions.
This special angular factor leads to a significant difference
between Dirac-Weyl fermions with spin-1 and graphene or
2D electron gas with respect to the behavior of τtr/τ [27]. On
the other hand, the conductivities within the ladder diagrams
from the Kubo formula and Boltzmann approach are equiv-
alent in the weak-disorder limit. Indeed this equivalence has
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been also noticed in the electron gas with Rashba spin-orbit
coupling [25].

As for the sublattice uncorrelated disorder, the special
form of disorder yields an angular free wave function overlap
factor, and the small-angle scattering will not be suppressed

by the weighting factor 1 − cos θ ′ anymore. This is similar to
the case in conventional 2D electron gas, where the isotropic
collisions do not yield the vertex contribution to conductivity.
Thus we obtain a vanishing ladder vertex correction to con-
ductivity under sublattice uncorrelated disorder.
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