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We report the development and application of a method for carrying out computational investigations of
the effects of mass and force-constant (FC) disorder on phonon spectra. The method is based on the recently
developed typical medium dynamical cluster approach, which is a Green’s function approach. Excellent
quantitative agreement with previous exact diagonalization results establishes the veracity of the method.
Application of the method to a model system of binary mass and an FC-disordered system leads to several
findings. A narrow resonance, significantly below the van Hove singularity, that has been termed the boson peak,
is seen to emerge for low soft particle concentrations. We show, using the typical phonon spectrum, that the
states constituting the boson peak cross over from being completely localized to being extended as a function of
increasing soft particle concentration. In general, an interplay of mass and FC disorder is found to be cooperative
in nature, enhancing phonon localization over all frequencies. However, for a certain range of frequencies, and
depending on material parameters, FC disorder can delocalize the states that were localized by mass disorder,
and vice versa. Modeling vacancies as weakly bonded sites with vanishing mass, we find that vacancies, even
at very low concentrations, are extremely effective in localizing phonons. Thus, inducing vacancies is proposed
as a promising route for efficient thermoelectrics. Finally, we use model parameters corresponding to the alloy
system, Ni;_,Pt,, and we show that mass disorder alone is insufficient to explain the pseudogap in the phonon

spectrum; the concomitant presence of FC disorder is necessary.
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I. INTRODUCTION

Most forms of disorder in a crystal structure have two
essential consequences, namely a randomness in mass and a
concomitant change in the bond strengths. The phonon spec-
trum is, naturally, affected strongly by the presence of mass
and bond disorder, and it can exhibit Anderson localization
(AL) [1] depending on the nature and strength of disorder,
dimensionality, and other factors. The possibility of phonon
localization due to disorder has evoked great interest over the
past several decades, and several theoretical and experimental
investigations have been carried out. In recent years, there
has been a resurgence of interest in the field due to several
direct experimental observations of phonon localization [2,3].
The role of AL in the formation of polar nanoregions in
ferroelectrics has also generated a lively debate [4]. Theo-
retical investigations of spectral dynamics in mass and force-
constant (FC) [5] disordered systems received a big impetus
with the development of mean-field-based approaches [6-9].
However, single-site theories are, by construction, incapable
of incorporating the full nonlocal nature of force constants.
Additionally, some of the Green’s-function-based attempts
failed to maintain Herglotz analytic properties [10,11], which
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are essential to produce physically acceptable results. Var-
ious other extensions of single-site theories [12—-15] have
been attempted. Nevertheless, these perturbative methods are
plagued by uncontrollable approximations, and hence they are
unable to treat AL properly.

As a nonperturbative route to understand AL, exact diag-
onalization (ED) [16] is the most heavily employed method.
Although the method does not suffer from approximations,
and it yields the disorder-averaged spectrum, it does have
quite a few disadvantages. The state space increases ex-
ponentially with system size, implying a severe difficulty
in simulating large system sizes. The restriction on system
sizes, in turn, leads to difficulties in obtaining information
on AL [16]. The consideration of three independent force
constants, namely ¢a4, @ap, and ¢pp, is necessary for a
minimal description of FC disorder in a binary alloy system.
Such a consideration compounds the computational expense
involved in ED calculations. Another important exact method
for studying AL of phonons is the transfer matrix method
(TMM) [17]. Disorder effects in masses and force constants
are intertwined with each other in most of the binary alloys,
but the state-of-the-art TMM calculations [17] have thus far
treated the ionic masses and force constants as uncorrelated
variables, which is quite unrealistic. In addition, such an ap-
proximation can lead to a violation of sum rules. Thus, despite
extensive attempts, a satisfactory, reliable method for studying
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phonon localization in a strong mass and FC disordered
binary alloy is still lacking, which calls for further theoretical
development.

In a recent work [18], we described the development and
application of a typical medium dynamical cluster approxima-
tion (TMDCA) for investigating the effects of mass disorder
on the AL of phonons. In this work, we incorporate the effects
of FC disorder into the existing framework, thus taking a step
closer to realistic disorder. The present study has two objec-
tives, namely (i) the development of a formalism for mass
and FC disordered systems that is nonperturbative, systemat-
ically convergent, causal, computationally feasible, and well-
benchmarked; and (ii) the application of this formalism to
address several open questions (see below). Our first objective
has two parts: to develop (a) the DCA to obtain phonon spectra
and (b) the TMDCA to investigate phonon localization, in a
mass and FC disordered binary alloy. The DCA yields the
average density of states (ADOS), which is experimentally
observable and is crucial for a basic understanding of disor-
dered lattice vibrations, at a dramatically less computational
cost compared to other methods such as ED. Concomitantly,
the most salient feature of the TMDCA compared to other
theories of localization is its ability in predicting localization
based on a single-particle order parameter, namely the typical
density of states (TDOS). The main development in this work
is a cluster adaptation of the Blackman, Esterling, and Berk
(BEB) formalism [19], which was originally proposed for
bond-disordered electronic systems. In this study, we adopt
a scalar binary alloy model that consists of a single branch
and a single basis atom within the harmonic approximation.

To assess the validity of the method, we carry out quanti-
tative benchmarks, and we find excellent agreement. Subse-
quently, through an application of the method, we attempt to
address the following questions/issues related to the effects of
pure FC disorder and the interplay of mass and FC disorder:
(i) Structurally disordered glasses are known to exhibit a low-
frequency anomaly, known as the boson peak, in the density of
states. Such an anomaly has also been observed in disordered
lattice models, though the origin of the boson peak in the
two families of systems might be quite different. It has been
argued that a purely FC disordered system can also exhibit
such behavior. We carry out a comprehensive analysis of the
deviations from low-frequency Debye behavior, and we ask
the following questions: What are the reasons and conditions
for the emergence of a boson peak in a binary mass and spring
disordered system? (ii) In a related context, are the modes
associated with the boson peak localized or delocalized? (iii)
As shown in our previous work [18], lighter isotopic impu-
rities lead to strongly localized, short-wavelength phonons in
impurity bands. In this work, we ask whether the effect of FC
disorder is to reinforce or negate the localization induced by
mass disorder. (iv) Finally, as it is relevant for improving the
figure of merit in thermoelectrics, we explore the efficacy of
vacancies in realizing strong phonon localization over a broad
range of frequencies.

The paper is organized as follows. In Sec. I, we present our
model containing both the mass and FC disorder, and we give

a detailed description of the DCA and TMDCA formalism as
well as their numerical implementation. In Sec. III, we present
our results and a discussion. We summarize our analysis with
some future perspectives in Sec. IV.

II. METHOD

The Hamiltonian for lattice vibrations involving a single
basis atom is

2
g— S P

1
— aff ’ ,
- wma) 2 > P g (Dup(l’), (1)

I.ap

where u, (/) is the displacement of an ion in the ath direction
having mass M(I) in the /th unit cell coupled by the force
constant ®yp(l,1") tensor to ug(l’). We note that the mass
M (1) in Eq. (1) can vary randomly from site to site. Since
we are considering the Hamiltonian in Eq. (1) for a binary
alloy, the site / can be occupied by either an A-type atom or a
B-type atom, i.e., M(l) € {M4, Mg} with certain probabilities
depending on the relative concentrations of the A- or B-type
atoms. To this end, it is convenient to introduce occupation
indices (x, y) for host (A-type atoms) and guest (B-type atoms)
as [following Blackman, Ester, and Berk (BEB) [19]]

ifl €A,
ifl € B. 2)

x1=1, y1=O

x=0, y=1
These occupation indices must obey the following proper-
ties:
X = xi,
i) = ca. 3)

xy; =0,
(x1) = ca,

Note that double occupancy of a given site is prohibited in this
formalism. With this assumption, we are ready to express the
randomness in the masses as

xM()x; = My,

M)y = M, @)
xiM(1)y; = My =0,

yiM(D)x; = Mgy = 0.

M) =

We incorporate such randomness in our formalism by
defining a local disorder potential matrix V as

Vo = [1 = M1)/Molé1r, )

where M, is a reference (host) mass, and as a convention we
have chosen A to be the host, hence My = Mj,.

The corresponding probability distribution for binary dis-
order reads

P(Vi) = cad(V; — Vu) + cd(V) — Vp), (6)

where ¢4 and cg = 1 — ¢4 are the concentrations of A- and
B-type of atoms, respectively.

Mass disorder can be isotopic or nonisotopic. In gen-
eral, mass disorder will be accompanied by a corresponding
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randomness in the force constants as

xS 1y = UL 1),
WP, Iy = DB 1),
Xt Iy = vors, ), O
VOB, 1y = DUFBAL Y,

o, 1) =

Note that ®(/, ") can be decomposed into diagonal ® (1, )
and off-diagonal parts,

(Daﬂ(l, = 60,/3(®051,1/ + CDHH(SR,,,R,+?S)’ ®)

where ®p and ®,, are the diagonal and }he off-diagonal
component of the tensor, respectively, and § is defined as a
vector from a site to its nearest neighbors. The force-constant
tensor must obey a sum rule, namely Zz' (1,1 =0.
For satisfying the sum rule, the formalism must incorporate
multisite correlations, because the spring-constant tensor is
off-diagonal in nature. We are satisfying this property by
systematically increasing N,.

Now, we are in a position to apply the equation-of-motion
method to the Hamiltonian [Eq. (1)] and obtain the Dyson
equation as

MDA, 1, w) = 8 + Z U INHDI", I, ). (9)
i

Next, we premultiply and postmultiply the above Eq. (9) by x;
and y;, which would generate the four possible configurations
of the binary alloy. Combining this with Egs. (3), (4), and (7)
yields four self-consistent equations for the Green’s functions
as given below:

Daa(l, 1) = 81y +da(D) Yy ™, 1")Dpa 1", 1)

1741
+da(1) Y @AD", 1), (10)
17£1
Dap(l, 1) = ds () Y O* (L 1")Dap(I", 1)
171
+da() Y @Y1, D", 1), (11)
1"l
Dpa(1. 1) = dp() Yy A1, 1")Daa(I", 1)
1"l
+dp(1) Yy (U 1D (17,1, (12)
171
Dpp(l, 1) = 8+ dp(1) Y _ @ (1, 1")Dyp(l", 1)
1"l
+dg(l) Y (U, 1")Dpp(l", 1), (13)
1741

where the four configuration-dependent Green’s functions are
defined as

xD(, I")xp = Daa(l, 1),
x/D(L,I")yr = Dap(1, 1),
yiD(, I)xp = Dpa(l, 1),
yiD(L,I")yr = Dgp(l, 1), (14)

and the bare locators d4 and dg are given by

1

d(On =dy() = s (9)
1

wd(y; = dp(l) = (16)

[Mpw? — ®BB([, )]

The four self-consistent equations, Eqs. (10)—(13), may be
combined in a convenient 2 x 2 matrix form as

Dpa Dap\ _ (da O 51
Dps Dpg),, 0 dg),
di 0 oM pAB Das Dag
+ (0 d3)12<®BA o) \Dps Dps),,
12l 1 11
Finally, even this matrix equation can be compactified to get

D=d+dx®xD. a7

Here D and d are matrices of size 2N x 2N, where N is the
system size.

Thus, we have obtained an equation that has a structure
similar to the one obtained in the BEB formalism [19] for the
electronic problem. It is interesting to note that there is no
randomness associated with @ matrices. All the randomness is
absorbed in the d matrices, and the origin of this randomness
lies in the mass term. The & matrices will take the values
depending on the random values associated with the mass
term. Hence, diagonal mass disorder and off-diagonal spring
disorder are dependent on each other. The other point to note
is that we can consider three different spring constants, which
has been a computational limitation for some theoretical ap-
proaches [20,21]. To solve these equations, we have adopted
the dynamical cluster approximation. The formalism is similar
to the one presented in our previous work on mass disorder,
but there are certain steps that are unique to the spring-
disorder case. In the next section, we provide the details of
the formalism.

A. Dynamical cluster approximation

The advent of dynamical mean field theory (DMFT) led
to a sort of revolution in the understanding of quantum
many-body lattice systems. However, since DMFT ignores
nonlocal dynamical correlations, several phenomena such as
d-wave superconductivity, Anderson localization, and low-
dimensional physics are beyond the scope of this framework.
Hence, quantum cluster approaches, which go beyond DMFT,
have assumed great importance. One such approach, which is
based on momentum space clusters, is the dynamical cluster
approximation (DCA).

The DCA may be viewed as an approximation to the
wave-vector sums that occur in Feynman-Dyson perturbation
theory. Here, the first Brillouin zone containing N wave
numbers k is broken into N, nonoverlapping coarse-graining
cells. We then approximate the integrals associated with each
diagram by its sum of average/coarse-grained estimates of the
integrand within each cell. There is considerable freedom in
how this is done. For example, if the integrand is composed
of the product of two functions of the integration variable, do
we take the product of the two averages, or the average of the
products to define the approximate value in the cell? Since
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these two approximations have the same error provided that
the number of such cells is large, we can use this freedom
to simplify the approximation. To do this, we define the
many-to-few mapping M (k) = K, where K labels the cells
including k, so that k = K+ l~(, where k labels the wave
numbers within each cell. The corresponding transformation
of the Lie algebra is ¢ = ) ¢k, - It is easy to see that this
transformation preserves the Lie algebra. So it maps bosons
onto bosons and fermions onto fermions. The mapping is not
canonical, however, since information is lost in the process.
Nevertheless, this mapping ensures that FDPT may be used to
analyze the lattice plus the quantum impurity problem. Under
this transformation, all points within each cell are considered
to be equivalent, and they are mapped to a single point K.
So, each Green’s function within the cell may be replaced by
its average value within the cell. Equivalently, each G(k) in a
Feynman graph may be replaced by its coarse-grained analog.
More significantly, each sum over k is replaced by a sum
over K, thereby dramatically reducing the complexity of the
problem of order N to order N.. The associated FDPT is the
same as a small self-consistently embedded periodic cluster
problem. Once the cluster problem is solved, we calculate
the corresponding irreducible self-energy and vertex func-
tions. We use them in the Dyson and Bethe-Salpeter equation
to calculate the single-particle spectra and the two-particle
susceptibilities.

For example, the DMFT framework may be represented
as a mapping of the entire first Brillouin zone to just one
momentum at the center for the zone. The main simplifica-
tion in the DMFT framework is the absence of momentum
conservation at the vertices in the Feynman diagrams, thus
leading to a local self-energy. The DCA targets this lacuna of
DMEFT and replaces the Dirac § function that represents true
momentum conservation at the vertices by a Laue function
that conserves momentum, but only for the cluster momenta.
This brings back the momentum dependence in the Green’s
functions and self-energy, lost at the DMFT level. Thus,
as the number of clusters increases, the Brillouin zone is
sampled more densely, and hence the thermodynamic limit
is systematically approached. We refer the reader to review
articles [22,23] for details of the DCA and its applications
to a variety of problems. The DCA algorithm that we have
implemented is derived using the formalism described in the
previous subsection, and it is described below:

(i) We start with an initial guess of the hybridization
function as

AA
A(K. ) = (imﬁﬁj o

This guess may be obtained through a coarse graining of
the nondisordered Green’s function, or from a previously
converged calculation.

(ii) As a first step for solving the cluster problem, we
generate random configurations of the disorder potential V.
The disorder potentials V4 and Vp are assigned depending on
whether the site is occupied by an A- or B-type atom. We
generate some random number, and if it is less than a given
impurity concentration c4, wWe assign a given site as A-type,
otherwise it is assigned as B-type.

AB(K, w)
ABB(K, w) )"

(iii) We define @’ as configuration-dependent force con-
stants that can be obtained by configuration-dependent Fourier
transform as follows:

(5012<) KRR if ] e AT € A,
o1 (g)‘; oK (Ri—Ryr) ifl €eA,l' €B,
(w%() JKR=R) if] €B,l' €A,
(E) K R=Rp)  if] €B,l' €B,

where the 2 x 2 dispersion matrix is given by

) q)AA CDAB
YK =\ pBa o8B |?

and the coarse-grained dispersion is given by

§=—Z ((K +k)a>

+ sin? (—(Ky + ky)a> + sin® (—(KZ + ];Z)a)
2 2

The real-space hybridization function A’ is obtained from the
configuration-dependent Fourier transform as follows:

Y kIAMK, w)]e® =R if | € A, I' € A,

ALy = | 2B )] O if e A1 € B,
’ Y kIABAK, w)]e® &=k if | € B, I' € A,

Y k[ABB(K, w)]e® &R if | € B,I' € B.

After constructing @', A’, and V, we compute the corre-
sponding cluster Green’s function through the mass-weighted
Dyson’s equation [18] as

D1, @, V)

=\/1-(V)y@1-@ —A-V),'\/1- V). (18)

(iv) The next step is disorder-averaging over disorder
configurations denoted by ((---)). These disorder-averaged
Green’s functions correspond to a translationally invariant
system, and they are denoted by a DCA subscript:

(Dies)q = (DU @) ifl €Al €A,
(Diey)yp = (DU 1, w) ifl €A, l€B,
(Diey) gy = (DU, w)) ifl €B,1€A,
(D) gp = (D°U, 1, @) ifleB,leB. (19

Next, we construct a matrix of the cluster Green’s function
by reexpanding the Green’s function to a 2N, x 2N, matrix. It
can be represented as

Diys ((DECA) (DgCA)AB)_

(Dies)s (Dhes)

(v) As mentioned above, after disorder-averaging, the
translation symmetry is restored and we can perform Fourier
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transform for each component to get a disorder-averaged
K-dependent cluster Green’s function as

c DS, (K, w) D$(K, w)
DK, 0) = (D?Q(K, ©) Dig(K, w))'

(vi) Once the cluster problem is solved, we calculate the
coarse-grained lattice Green’s function as

DK, w)

*(K)], (20)

N _
= NZ[DC(K,w) "+ AK 0) - o +

which in explicit matrix form is given by

DSS(K, w) DSS(K, w)
G _ AA ) AB ’
Do) = DSS(K DSS(K, w))
BA K, w) BB K, w)

(vii) The DCA self-consistency condition requires that the
disorder-averaged cluster Green’s function equals the coarse-
grained lattice Green’s function,

DK, w) = D9(K, ). 21

(viii) The self-consistency condition is used for updating
the hybridization function for each component,

MK, ©) = MK, o)+ E[[D, (K, )]

- [DHK, )] '], 22)
APP(K, ) = APP(K, o)+ £[[ D (K, )]

- DK )] '], 23)
APK, 0) = AP(K, 0) + E[[D5p(K, )]

- [ K. )] ] 24)
APAK, 0) = APAK, ) + E[[Di (K, )]

—[DSS(K, )] '] (25)

In the above equations, the & is a mixing parameter that
determines the fraction of the updated hybridization that
should be mixed with the existing one, thus ensuring smooth
convergence of the DCA iterations.

As is well known, the Anderson localization of phonons
requires us to go beyond DCA. The arithmetic averaging
procedure needs to be modified, and a typical averaging ansatz
needs to be evolved. Such an ansatz has been worked out
in the electronic case, and has been benchmarked against
known results [24]. We have adopted the same ansatz in the
phonon case, and we have found that it yields the same level
of benchmarks as the electronic case. The formalism that
employs this typical averaging ansatz is called the typical
medium DCA or the TMDCA, and it is detailed in the next
section.

B. Typical medium dynamical cluster approximation

As mentioned in our previous discussion [18], the effective
medium is constructed via algebraic averaging in the DCA,
while the TMDCA utilizes geometric averaging to construct

the effective medium. We employ the same ansatz for evalu-
ating the typical density of states as in the electronic case [24]
as

Pryp (K, @)
1 N,
= exp (ﬁ Zanpn(w»)
¢ =1
< —1mmDg, (K, 0) > < —1ImD, (K, 0) >
e (< tmog@) [\ 2 (- L)

— L ImDg, (K, 0) — LImDg, (K, 0)

X
< Y (~ L mDg()) > < 3 (= Limg (@) >

(26)

where D is defined as

Di(w) =Y (D44 (K, ©) + Diy(K, w)

K

+ Dip(K, w) + Dy, (K, a))) 27)
and the local spectral function is given by
1 C

pi(w) = - [Di(w)]. (28)

Next, we calculate the cluster-averaged typical Green func-
tion, which is also a 2 x 2 matrix,

D¢ D
D¢ — (( lyp)AA ( l)p)AB>‘ (29)

—2 (DlLyp) BA (D&Cyp ) BB

We compute each component of the cluster-averaged typ-
ical Green’s function from the corresponding component of
the typical density of states (26) using the Hilbert transform,

P (K, w) T
_P/d = — i~ Py,

lvp

/p (Kw) T
=P / do'=2——" 2wpf;§. (30)

Once the disorder-averaged cluster Green’s function is calcu-
lated using (30), the self-consistency follows the same steps
as in the DCA presented in the previous section. The coarse-
grained lattice Green’s function is then calculated using (20),
which is utilized to update the hybridization function in (25).

Using DCA and TMDCA, we can calculate the arithmeti-
cally averaged density of states (ADOS) and typical density
of states (TDOS), respectively, as follows:

ADOS(0?) =

(K, »)], 3D

DCA
K,o0’

TDOS(w?) = K, a)) 32)

typ
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where o, 0’ = A/B. The formalism described above has been
implemented, and we present results and a discussion in the
following section.

III. RESULTS AND DISCUSSION

We begin our discussion with a validation of the method.
To that end we compute the ADOS via exact diagonalization
(ED) of a large number of phonon models of large-sized
disordered supercells. Within the supercells the impurities
are randomly distributed, and beyond the supercell bound-
aries the impurity distributions periodically repeat. Specifi-
cally for each set of model parameters we derive the force
constant matrices of 100 supercells each with 60 impurities
and roughly 400 sites on average. The dynamical matrix
of each supercell is then evaluated and diagonalized on a
10 x 10 x 10 supercell momentum space grid. We note that
not only the impurity distributions but also the shapes of the
supercells are randomized under the following constraints.
The supercell volumes vary within 375 and 430 sites, and
the angles between the vectors that span the supercells vary
between 75° and 105°.

The left panels of Fig. 1 show DCA results (red solid lines)
and ED results (black solid lines) for a binary alloy (¢ =
0.15, V = 0.67) with three different spring constant combina-
tions. A good agreement is seen over all scales, thus validating
the formalism. We also note that the DCA can access detailed
information of the ADOS with relatively small cluster sizes,
i.e., N, = 64, which shows that the DCA is dramatically less
expensive compared to ED while being numerically exact.
To check the sensitivity of the DCA results on the choice of
cluster size N., we present the ADOS for different N, in the
right panel of Fig. 1. We find that the ADOSs for N, = 64 and
125 are almost identical, which implies a rapid convergence
of our calculations with respect to increasing N,. In contrast
to the results for N, = 64 and 125, the single-site (N, = 1)
calculations (solid blue lines) are unable to capture nonlocal
fluctuations and disagree significantly with the converged
spectra.

The result presented above, namely a comparison of DCA
with ED, lends strong credence to results from DCA. Hence,
we employ DCA, and subsequently TMDCA to investigate
the interplay of spring and mass disorder on phonon spectra
and on AL of phonons. We begin with an investigation of the
effect of pure spring disorder on phonon spectra.

The upper panel in Fig. 2 shows the average DOS for
pure spring disorder (i.e., V. — 0) with spring constant values
¢paa = 1.0, ¢pp = 0.1, and ¢4 = 0.3 for various impurity
concentrations (cg) ranging from 0.95 to 0.05. The parameters
have been chosen to mimic the values obtained in a recent
experiment [25] on crystals of binary hard-soft microgel par-
ticles with three distinct interparticle potentials. The spring-
constant values imply that A are hard particles, while B are
soft. Hence, cg = 0.95 corresponds to B-particle concentra-
tion of 95%, which implies hard sphere concentration of 5%.
As expected, the spectrum for a higher concentration of hard
particles (stiffer springs, cg = 0.05, ca = 0.95, ¢aa/dps =
10) has almost the entire spectral weight at higher frequen-
cies, and as cp varies from 0.05 to 0.95, spectral weight is
transferred to lower frequencies. The DOS at 20-40% soft

N, =1
<

ED N =64

DCAN =64 —_—— N _=I25

FIG. 1. Validation and the convergence of the results using DCA.
Left panel: The comparison of the arithmetic density of states
(ADOS) obtained from the DCA using N, = 64 and ED for various
values of ®,,, ®,,, and impurity concentration ¢ keeping fixed values
of &, = w and disorder potential V = 0.67 for the three-
dimensional binary alloy model. We find good agreement between
the DCA and ED results. Right panel: The evolution of the ADOS
for N. = 1, 64, and 125 for the same parameter values. Results are
converged for N, = 64.

particles (cg = 0.2-0.4) shows a clear excess density of states
around a frequency, which occurs far below the van Hove
singularities of the pure hard particle system. Such behavior is
strongly reminiscent of disordered systems, where the origin
of such an excess of DOS, termed a boson peak, has generated
a lot of debate. We briefly review a few theoretical and
experimental results relevant to this issue, and we place our
results in perspective.

It has been shown theoretically [26] that a strongly disor-
dered three-dimensional system of coupled harmonic oscilla-
tors with a continuous force-constant distribution exhibits an
excess low-frequency DOS (boson peak) as a generic feature.
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5% hard particles

ADOS

Cumulative ADOS

FIG. 2. Boson peak appearance at intermediate concentrations.
For pure spring disorder with V =0.01, ¢an =1.0, ¢pp =
0.1, ¢ap = 0.3, the disorder-averaged phonon spectra (top panel)
and the corresponding cumulative spectra (bottom panel) are shown
for a range of soft particle concentrations (cg = 0.05-0.95). A fea-
ture reminiscent of the boson peak appears for cg ~ 0.2-0.4.

Specifically, if the system is proximal to the borderline of
stability, a low-frequency peak (i.e., the boson peak) appears
in the quantity g(w)/w? as a precursor of the instability. Our
results have been obtained for a binary alloy with three values
of spring constants, and we see that a boson peak appears in a
regime of lower soft particle concentration.

Experimental measurements [27] of normal modes and
the DOS in a disordered colloidal crystal showed Debye-like
behavior at low energies and an excess of modes, or a boson
peak, at higher energies. The normal modes took the form of
plane waves that hybridized with localized short-wavelength
features in the Debye regime but lost both longitudinal and
transverse plane-wave character at a common energy near the
boson peak. More recently, experiments [25] on deformable
microgel colloidal particles with random stiffness appear to
contradict the theoretical results of Ref. [26]. The authors cre-
ate crystals of binary hard-soft microgel particles with three
distinct interparticle potentials distributed randomly on a two-
dimensional triangular lattice. The nearest-neighbor bonds are
either very stiff (¢a4), very soft (¢pp), or of intermediate
stiffness (¢4p). Subsequently, they obtain, experimentally, the
phonon modes in crystals with bond strength disorder as a
function of increasing dopant concentration. The interesting
feature of the microgel crystal is that although the bonds are
randomly distributed, the masses are nearly identical, hence
the disorder is purely off-diagonal. The experimental results
[25] show the absence of a boson peak, although an excess
in the density of states as compared to conventional Debye
behavior was observed.

In the lower panel of Fig. 2, we present integrated DOS
as a function of frequency. The results indicate conventional
Debye behavior (~w?) at lowest frequencies followed by a
deviation, and finally a convergence to the normalization value

TSW

0 L | L J
0 0.5 l
CB

FIG. 3. Boson peak—localized or delocalized? For the same
parameters as in Fig. 2, the ADOS (solid black line) and TDOS (red
shaded part) are shown for concentrations cg from 0.05 to 0.95. The
bottom left panel shows the integrated spectral weight of the typical
density of states vs cp as solid blue circles.

of 1 at the highest frequencies. In the experiment, the hard
particle concentration has been varied from 0% to about 21%.
A comparison to Fig. 3 of Yodh et al. [25] shows that our
results concur well with the experiments. An absence of a
boson peak, as concluded in the experiments, is natural since a
clear boson peak occurs only in the opposite limit of lower soft
particle concentration. To summarize, within the framework
of DCA, we find (see Fig. 2), for a binary alloy, that a transfer
of spectral weight to lower frequencies results in the boson
peak, which emerges as a crossover feature between a pure
host system and a pure guest system.

A question that has been much debated in the literature is
about the nature of states within the boson peak: Are they
localized or delocalized? This question can be effectively
answered through the evaluation of the typical DOS, since
the typical spectral weight is a measure of the proximity to
Anderson localization. A subtle issue about the interpretation
of the typical density of states must be mentioned here. A
nonzero typical DOS signifies the presence of extended states.
According to Mott, a degeneracy of localized and extended
states should lead to their hybridization, and hence an eventual
delocalization of the localized states. The average DOS and
the typical DOS, being different at a given energy, are thus
immaterial regarding the identification of the states being
extended or localized. If the typical DOS is nonzero, the states
at that energy should be interpreted as being extended. Con-
comitantly, a large difference between the average and typical
DOS does indicate a proximity to the Anderson localization
transition (ALT).

In Fig. 3 we show, for the same parameters as Fig. 2, a
series of average (black solid lines) and the corresponding
typical spectra (red shaded part).
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FIG. 4. The average DOS (solid black line) and the typical DOS
(red shaded part) for different values of ¢44 are shown. The arrows
mark the upper mobility edge. The evolution of the mobility edge
and the typical spectral weight with increasing values of ¢4 is
noticeable: The parameters ¢pg = 1.0, V = 0.67, and ¢ = 0.5 are
fixed, while ¢ap = 0.5(¢aa + ¢pp) changes correspondingly. The
inset shows the decrease of the integrated typical spectral weight
(blue solid circles) with increasing ¢a4.

The boson peak is seen to have numerically negligible
typical spectral weight (TSW) until ¢z ~ 0.4, beyond which
the low-frequency peak acquires finite and significant TSW.
Thus, the states in the BP exhibit a kind of crossover from
being almost localized (proximal to ALT) to being delocalized
(relatively smaller difference between average and typical
DOS) with increasing cg. The overall typical spectral weight,
shown in the bottom left panel, is nonmonotonic, and shows
a minimum at cg ~ 0.5, showing that the overall system is
closest to the ALT when the ratio of the concentrations of the
two species is roughly equal to 1.

To understand the interplay of mass and spring disorder, we
consider two protocols. In the first, we keep the mass ratio pa-
rameter V = 0.67 and the impurity concentration ¢ = 0.5 as
constants, and we increase the spring disorder systematically
by varying ¢aa/¢ps [With ¢pp = 1 and pap = (¢Pas + ¢ps)/2]
from 0.2 to 2.0, representing a change of host spring constants
from very soft to very stiff. The resulting spectra (ADOS as
solid black lines and TDOS as the red shaded part) are shown
in Fig. 4, while the inset shows the integrated typical spectral
weight (TSW, solid blue circles) as a function of ¢44. For
soft A-springs, the characteristic frequencies of the system
must be lower than a pure B-type system, and as the ¢4 is
increased, the spectral weight in the second, high-frequency
peak increases, as does the bandwidth of the system. So,
nominally, it appears that the system is getting delocalized,
as the host springs are made stiffer for a fixed mass disorder.
However, the inset shows a decrease in TSW with increasing
stiffness of ¢4, which implies that the order parameter for
AL is decreasing, and hence the system is moving closer to
localization. If we focus on a fixed frequency, say w? = 5.0,

TSW
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0.1 ®
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0002 04 05 08 " V=09 ADOS
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FIG. 5. The average DOS (solid black line) and the typical DOS
(red shaded part) for increasing values of V are displayed. The
influence of V on the mobility edges and the typical spectral weight is
demonstrated: The parameters ¢4 = 1, ¢pg = 0.1, ¢ap = 0.3, and
¢ = 0.5 are fixed, and the mass ratio of B- to A-type sites is varied
from ~1 to 0.1, which corresponds to changing V from 0.01 to 0.9.
The inset shows the decrease of the integrated typical spectral weight
(blue solid circles) with increasing V.

then we see that for ¢44 = 0.2, the ADOS and TDOS are
zero, while for ¢44 = 2.0, both the average and typical DOS
are nonzero, suggesting the interpretation that spring disor-
der is of a delocalizing nature and counters the localization
produced by mass disorder alone. However, the order param-
eter for AL, namely the TSW, decreases sharply. Thus the
interplay of mass and spring disorder is quite subtle, and an
interpretation of the results needs to be done carefully. It must
be emphasized here that the subtlety of this interplay has been
uncovered through the application of TMDCA, which is able
to produce, simultaneously, the typical and the average DOS.

The second protocol is to vary the mass ratio parameter,
V =1 — Minp/Mhnos, keeping the relative concentrations as
well as the spring constants fixed. The ADOS and TDOS
are shown in Fig. 5 for V = 0.01-0.9, implying a systematic
decrease in the B-site ionic mass. Again, lighter impurities
imply transfer of spectral weight to higher frequencies, and
the B-site band appears as a separate feature, which blueshifts
significantly with increasing V. In parallel with the results of
the first protocol, this result lends itself to an interpretation
of delocalization of modes at higher frequencies, but the
vanishing of the typical density of states shows that the high-
frequency modes for V — 1 are almost localized. The inset
shows that the TSW (solid blue circles) decreases sharply
with increasing V, and this also implies that increasing mass
disorder in the presence of fixed spring disorder pushes the
system closer to the AL transition.

The insight we gain from the study of the inter-
play of mass and spring disorder is that an inference of
localization/delocalization of specific modes cannot be made
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FIG. 6. Modeling vacancies: The spring constants (¢4 =
1, ¢pp = 0.15, ¢pap = 0.15) and the mass ratio (V = 0.95) are fixed,
and three different guest concentrations are considered, namely ¢ =
0.1 (solid black), ¢ = 0.2 (dashed red), and ¢ = 0.3 (dotted blue).
The upper panel shows the average DOS, while the lower panel
shows the typical DOS. The inset in the lower panel shows the rapid
decrease of the integrated typical spectral weight (blue solid circles)
with increasing concentration, c.

on the basis of ADOS alone, and the TDOS must be concomi-
tantly examined.

Vacancies, even at low concentrations, can lead to strong
localization of phonons. Within the present theoretical frame-
work, we model vacancies as weakly bonded sites with van-
ishing mass. So, we choose My, = Mo /20, which is equiv-
alent to V = 0.95, and spring constants as ¢as = 1, ¢pp =
0.15, ¢ap = 0.15. For these parameters, in Fig. 6 we show
the average DOS (upper panel) and typical DOS (lower panel)
for three different guest concentrations, namely ¢ = 0.1 (solid
black), ¢ = 0.2 (dashed red), and ¢ = 0.3 (dotted blue). The
upper panel shows that the average DOS hardly changes with
increasing concentration, while the corresponding typical
DOS (lower panel) undergoes significant changes. The inset
in the lower panel shows the rapid decrease of the integrated
typical spectral weight (blue solid circles) with increasing
concentration, c. Modeling real vacancies is quite challenging,
but the present analysis with a very crude model for vacancies
is already indicative of their strong localization effects. The
figure of merit for thermoelectrics is inversely proportional
to the thermal conductivity, and is directly proportional to
electrical conductivity. So, in order to maximize the figure
of merit, the vacancy concentration ¢ should be tuned to an
optimal value such that it is less than, but not too close to,
the percolation limit, implying that the electrical conductivity
is not too significantly affected, but the thermal conductivity
due to phonons gets drastically reduced due to the strong lo-
calization of acoustic phonons in a large part of the spectrum.

Nl N =64
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FIG. 7. Validation against experiments on NiPt alloy and ICPA.
Left panel: ADOS obtained from the DCA method for a three-
dimensional binary alloy model at various values of force constants
D, Py, and d,, for fixed impurity concentration ¢ = 0.5 and
disorder potential V = 0.67. Right panel: The corresponding results
are shown using the same parameter values for N, = 64. In the
presence of strong spring disorder, the gap in the ADOS obtained
from N, = 64 reduces, which is consistent with neutron scattering
data [29] as well as previous ICPA results [15].

We generally expect that the high-frequency impurity
mode will be separated out from the host spectrum in the
presence of disorder. For example, the vibrational spectrum of
a strong-mass disordered alloy like Ni3zAl [28] exhibits such
behavior. However, force-constant disorder strongly renor-
malizes such a feature of the spectrum. Hence, we should also
consider force-constant disorder on an equal footing, mainly
for such alloys where mass and force-constant disorder both
play a significant role in controlling material properties. This
leads us to attempt a qualitative comparison with experiments
in a case in which mass disorder alone is inadequate to
explain the experimental measurements. It has been argued
for a Ni,Pt;_, alloy that x = 0.65 constitutes weak force-
constant disorder, while x = 0.5 constitutes strong mass and
force-constant disorder. Ghosh et al. [15] demonstrate that for
x = 0.5, a CPA-level consideration of an interatomic force
constant leads to a split-band spectrum. The authors show that
a proper treatment of force-constant disorder using itinerant
CPA leads to a closure of the gap. Our calculations are in
full qualitative agreement with these conclusions, as argued
below. Figure 7 shows ADOS for a binary alloy with M;p, =
Myt /3 as appropriate for Ni impurities in a Pt host. The left
panel is for N, = 1, equivalent to a CPA calculation, while
the right panel is for N, = 64, which is equivalent to the
thermodynamic limit. The impurity concentration used is ¢ =
0.5, which implies strong mass disorder, and the spectra cor-
responding to three distinct force-constant combinations are
shown. The black solid line corresponds to pure mass disorder,
which at the CPA level shows a split-band (left panel), while
at the DCA level (right panel), the spectrum has a two-peak
structure with a soft-gap between the peaks. The red and green
lines correspond to weak and strong force-constant disorder,
respectively. Again, the CPA results are hardly affected by an
increase in disorder, while the DCA results for N, = 64 show
that increasing force-constant disorder leads to significant
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spectral weight transfer, especially a filling-up of the soft
gap. Since the force-constant combination represented by the
green line most closely corresponds to the Nig 5Pty 5 alloy, we
conclude that our results agree qualitatively with the ICPA
results as well as experimental neutron scattering data for
Nig 5Pt 5 [29].

IV. CONCLUSIONS

The incorporation of the BEB formalism for off-diagonal
disorder into the TMDCA yields a reliable and computa-
tionally feasible approach for investigating binary mass and
spring-disordered alloys. Such a conclusion is supported by
the benchmarking studies discussed in the initial part of
Sec. III. For a fixed mass ratio and fixed spring constants
(daa, Psp,and ¢4p), increasing the soft particle concentration
leads to an excess density of states below the first van Hove
singularity of the host hard particle system. In the present
context, it may be identified as the boson peak, commonly ob-
served in structurally disordered glasses as well as disordered
lattice systems, albeit with different origins. We conclude that
the origin of the boson peak in the disordered binary alloy
system is a transfer of spectral weight from the guest to the
host system, with a necessary condition being the presence of
off-diagonal disorder. We emphasize that with pure mass dis-
order, even though spectral weight transfer does occur, such a
BP does not emerge. Additionally, we find that at very low soft
particle concentrations, the states in the BP are completely
localized, but some of the states cross over to being extended
as their concentration is increased. The BP eventually ceases
to be an anomaly, as the soft particle system becomes the host,
and the hard particles assume the role of impurities. The inter-
play of mass and spring disorder is found to be quite subtle.
The overall typical spectral weight decreases upon increasing
either of the types of disorder, which indicates that there is
a cooperative interplay. However, an added clause is that the
interpretation of a cooperative or competitive interplay is also
frequency-selective, since different parts of the spectrum can
transform from being localized to delocalized or vice versa,
depending on the protocol. With a crude modeling of vacan-

cies, we suggest that tuning the concentration of vacancies to
an optimal level, which is below but not close to the percola-
tion limit, should be an optimal route to maximizing the figure
of merit of thermoelectric materials. All the above results
finally culminate in an attempt to understand experiments on
Ni,Pt,_, alloys, where, in agreement with ICPA results, we
show that x = 0.65 constitutes weak force-constant disorder,
while x = 0.5 represents a system with strong mass and force-
constant disorder. Of course, such a conclusion is qualitative
at best, because the real system has a nontrivial structure
with multiple branches and spring-constant disorder, while the
present implementation is restricted to a scalar approximation
and force-constant disorder. The extension of the present
framework to incorporate multiple branches, which will allow
us to treat disordered phonons in real materials, is in progress.

Note added. Recently, Cheng et al. [30] have presented
an auxiliary coherent medium theory for lattice vibration in
random binary alloys with mass and force-constant disorders.
The main novelty of their method lies in its capability of satis-
fying sum rule within single-site approximation and they have
successfully demonstrated the superiority of the auxiliary-
CPA over conventional CPA. To capture the clustering effect,
they have used molecular-CPA in combination with auxiliary-
CPA. We believe that the present auxiliary CPA can serve as
a good single-site starting point for incorporating systematic
non-local corrections by integrating this method with DCA
and TMDCA. Such integration would also yield an effective
tool for studying phonon localization.
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