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The inevitable and random impurities or defects can significantly influence the lattice-vibrational properties of
materials and devices. Thus, the capability of effectively treating disorder effects is indispensable for theoretical
simulations. In this paper, we report an auxiliary coherent medium theory, in the framework of multiple scattering
theory, to simulate disordered vibrational systems containing both mass and force-constant disorders. In this
method, the physical Green’s function is related to an auxiliary Green’s function by introducing a separable
force-constant model to describe disordered systems. As an important result, the force-constant disorder can
be transformed to a diagonal-like disorder in the auxiliary Hamiltonian while maintaining the important
force-constant sum rule. In combination with the single-site and cluster coherent potential approximation,
the configurational average over the auxiliary Green’s function can be performed to obtain the configuration-
averaged physical properties. To demonstrate the effectiveness of this method, we apply it to a one-dimensional
harmonic chain with atomic disorders and find our calculations agree very well with the exact results for a wide
range of mass and force constants. Moreover, we show that the phonon transport property of disordered devices
can be derived based on the auxiliary Green’s function formalism in combination with vertex corrections. The
auxiliary coherent medium theory features easy implementation and feasible incorporation with diagrammatic
technique in many-body perturbation and various cluster approximations, providing an important approach to
analyze disorder effects on the vibrational properties. Moreover, it is also straightforward to apply the present
formalism to treat the general atomic disorder in electronic systems.
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I. INTRODUCTION

Inevitable atomic disorders possess profound and funda-
mental influences on the ground-state and excitation prop-
erties of materials and devices [1–3]. For example, the ran-
dom impurities/defects in lattice vibrations can significantly
change the thermal conductivity of materials [2,4,5]. How-
ever, understanding the disorder effects in materials/devices
remains challenging for both experiment and theory. Over the
past decades, considerable efforts have been spent to develop
effective methods to derive the disorder averaged physical
properties, to enable the simulation of disorders. The most
important approximations include the conventional coherent
potential approximation (CPA) for only the diagonal disorder
(as first proposed by Soven for the electronic system [6] and
Taylor for the vibrational system [7]), and its various exten-
sions and further developments to include the off-diagonal
disorder and the effects of clusters, as demonstrated with
different model systems [8–15] and implemented with first-
principle methods [16–25]. Within the first-principles KKR
[16–20] and MTO [21,22] methods with the local muffin-
tin potential approximation, the combined diagonal and off-
diagonal disorders for general electronic problem can be
transformed to a diagonal-like disorder problem by introduc-
ing the scattering-path-operator technique [18]. Presently, the
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first-principles CPA has seen many important applications
in simulating disordered electronic materials [16–18,21,22]
and quantum transport in nanoelectronics [26–29]. In addi-
tion, the separability of diagonal and off-diagonal disorders
in general electronic problem allows the formulation of the
Black-Esterling-Berk (BEB) locator CPA method [8,9] for
disordered electronic structure simulation, for example, the
attempts for implementing BEB-CPA in combination with
LCAO first-principles method [30]. The wide applications of
CPA in electronic system can be attributed to its important
advantages of easy implementation and high computational
efficiency, and moreover the advantage that conventional CPA
can be systematically improved with diagrammatic techniques
(vertex corrections) in many-body perturbation to account for
nonlocal correlations [31] and various cluster approximations
beyond single-site approximation [12,13]. These important
advantages of conventional CPA are desirable for simulating
the disordered vibrational systems.

However, for a general vibrational system, the translational
invariance (or momentum conservation) requires that the dy-
namic matrix elements between site i and its neighbors j al-
ways satisfy the relation Dii = −∑

j �=i Di j , namely, the force-
constant sum rule [32]. As an important consequence, unlike
the general electronic problem, the diagonal and off-diagonal
disorder in vibrational Hamiltonian are inseparable, making
the conventional CPA and BEB locator-CPA unfeasible for
simulating disordered vibrational systems (except for the spe-
cial case of the diagonal only-mass disorder). However, to
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extend the CPA to include the force-constant disorders, there
have been several reported attempts but only for some spe-
cial cases, such as Kaplan-Mostoller’s method [33] with the
arithmetical-scaled force constant [kAB = (kAA + kBB)/2] and
Grünewald’s locator-CPA method [34] with the geometric-
scaled force constant (kAB =

√
kAAkBB). As far as we know,

there are only a very limited number of general methods that
can deal with both mass and force constant disorders. These
approaches are based on the augmented-space formalism
(ASF) proposed by Mookerjee [35], in which the disorder
average in real space is mapped to an augmented space, such
as the augmented-space recursion method (ASR) [15,36–38]
and the itinerant coherent potential approximation (ICPA)
[14]. As the important advantage, the state-of-art ASR and
ICPA methods can provide the exact representation of the
disordered force-constants for vibrational systems with the
sum rule obeyed. The ASR method [15] is not self-consistent,
but it can handle large cluster effects, while ICPA provides a
self-consistent approach in a single-fluctuation approximation
as a generalization of the traveling cluster approximation
(TCA) [10,39]. Presently, the ASR method has been applied
with reasonable success to different alloys [40,41] and the
ICPA method has reproduced the phonon dispersions for
several alloys [42,43]. However, ASR and ICPA are not easy
to implement and are computationally expensive, compared
to the conventional CPA [6,7]. For the self-consistent ICPA, it
is not easy to go beyond the single-fluctuation approximation
to include the important cluster effects and nonlocal corre-
lation of disorders. Extending the conventional CPA to the
disordered vibration is thus desirable for studying vibrational
properties of realistic materials with inevitable disorders,
especially important for material/device design for thermal
control and management.

In this paper, we report an auxiliary coherent medium
theory to treat both the mass and force-constant disorders in
random binary alloys. In this method, an approximate force-
constant decomposition technique is introduced to transform
the force-constant disorder into a diagonal-like disorder prob-
lem in an auxiliary Hamiltonian. Then, the disorder averaged
physical quantities, including density of states and phonon
transmission function, can be calculated with an averaged
auxiliary Green’s function obtained by performing conven-
tional CPA, enabling the simulation of the general disor-
ders in lattice vibration. The applications to 1D disordered
harmonic chains for a wide range of disordered mass and
force-constants show good agreement with the exact numer-
ical results, demonstrating the effectiveness of the auxiliary
coherent medium theory. In addition to disordered vibra-
tional problem, this decomposition technique can also be
used in the electronic disorder problem with off-diagonal
disorder.

The rest of the paper is organized as follows: In Sec. II,
we introduce the force-constant decomposition and the asso-
ciated auxiliary Hamiltonian and Green’s function that gives
the physical Green’s function and properties. Section III in-
troduces the conventional CPA to self-consistently calculate
configurational average of the auxiliary Green’s function,
to obtain averaged physical phonon properties. Section IV
presents the configurational averaged phonon transmission

function based on the auxiliary Green’s function. In Sec. V
we apply our method to calculate the phonon density of states
in a one-dimensional (1D) disordered harmonic chain with
different mass and force-constant disorders, and we compare
our results with the exact results and previous method. At last,
we conclude in Sec. VI.

II. FORCE-CONSTANT DECOMPOSITION AND
AUXILIARY GREEN’S FUNCTION

We consider the lattice vibration Hamiltonian in the har-
monic approximation

H =
∑

iα

p2
iα

2mi
+ 1

2

∑
iα jβ

uiαDiα jβu jβ, (1)

where piα and uiα are the respective momentum and displace-
ment of the atom on site i along α = {x, y, z} direction, mi is
the atomic mass on site i, and Di, j denotes the dynamic matrix
element between the sites i and j. The corresponding retarded
Green’s function, namely the displacement-displacement cor-
relation function, can be defined as [44]

GR
iα jβ (t ) = − i

h̄
θ (t )〈[uiα, u jβ ]〉, (2)

where θ is the step function. By taking second-order time
derivative and Fourier transformation to the frequency do-
main, one can obtain

miω
2GR

iα jβ (ω) = δαβδi j +
∑
kγ

Diαkγ GR
kγ jβ (ω), (3)

or more concisely

GR(ω) = (mω2 − D)−1, (4)

which is the basic equation that describes the vibrational
properties of materials. For a random alloy, the Hamiltonian in
Eq. (1) and corresponding Green’s function in Eq. (4) become
random quantities, depending on the atomic configuration of
a specific sample. For a binary alloy AxB1−x with x denoting
the concentration of A, the quantities mi and Di j become
random and are determined by the disordered atomic species
on the relevant lattice site(s), for example, mi = mQ

i (Q =
A, B) and Di j = DQQ′

i j (Q, Q′ = A, B). Therefore, to obtain the
meaningful averaged physical quantities, we need to calculate
the configurational average of the Green’s function. However,
the force-constant disorder in the diagonal (due to the sum
rule) and off-diagonal parts of the dynamic matrix prohibits
the implementation of conventional CPA method for lattice
vibration of random alloys. To provide a solution to this prob-
lem, we introduce a force-constant decomposition technique
and the associated auxiliary Green’s function in the following.

For a random alloy AxB1−x, the force constants ki j between
the site i and j are generally determined by the atomic occu-
pants and structure of the lattice. For example, ki j can take
the different possible values kAA

i j , kAB
i j , kBB

i j depending on the
atomic occupations of sites i and j. To proceed, we introduce
a new separable form to the force constants

ki j = xiSi jx j + λi j (i �= j), (5)

134202-2



AUXILIARY COHERENT MEDIUM THEORY FOR LATTICE … PHYSICAL REVIEW B 99, 134202 (2019)

where Si j and λi j contains the structural information (in-
cluding the distance and lattice geometry) independent of
the atomic occupations on sites i and j, and the quantity
xi = xQ

i (Q = A, B) contains the information of the atomic
occupant on the i-th site. The first term in Eq. (5) is the
geometric-scaled force-constant model proposed in Ref. [34]
with very limited application due to the neglect of other
contributions. Importantly, the form of the first term provides
a way to account for the disorder information of the atomic
occupants on the two sites. Without the first term, λi j only
provides a virtual crystal approximation to the disordered
force constant, losing the disorder information due to the
randomness on the two sites. The combination of the virtual-
crystal and geometric-scaled models in Eq. (5) overcomes the
shortcomings of the two models, featuring higher accuracy
and more general applicability in the description of disor-
dered systems. As shown in the Appendix, we find Eq. (5)
can provide the exact representation of the disordered force
constants for the 1D chain with arbitrary values. The exact
representation of 1D case provides an important validation for
the separable force-constant model and gives the important
basis for generalizing to higher dimensions. Extending to
the systems of 2D and 3D can be realized by introducing
the respective 2 × 2 and 3 × 3 tensors for the single-site
quantity xi and two-site quantities Si j and λi j . As shown in the
Appendix, the model in Eq. (5) can represent the disordered
force-constants from first principles for face-centered-cubic
PdFe alloy with very small error.

As an important consequence of the above force-constant
model, the dynamic matrix can be rewritten as

D = XK, (6)

with the matrix element explicitly given by Diα, jβ = XiiKiα jβ .
Here, X is a diagonal matrix, namely Xii = xi, and Xi j = 0
(i �= j), and the K matrix is given in the following form:

Ki j = −
(

Si jx j + λi j

xi

)
(i �= j) (7)

and

Kii = 1

xi

∑
j �=i

ki j =
∑
j �=i

(
Si jx j + λi j

xi

)
. (8)

Note that xi and x j are linearly separated in K , providing
an important feature of K . It is clearly seen that K matrix
satisfies Kii = −∑

j �=i Ki j . This sum rule of K ensures that
the force-constant sum rule is always satisfied in our further
derivation. As an important result of Eqs. (6)–(8), we can
further decompose K into a sum of single-site dependent
quantities, namely,

K =
∑

i

Ki, (9)

where Ki is a matrix and Ki contains all the contributions only
associating with xi. For example, for a 1D disordered chain of
a binary alloy as illustrated in Fig. 1, the Ki of the site i takes

FIG. 1. Schematic illustration of a 1D atomic chain of a binary
alloy AxB1−x .

the form (see the Appendix for the final result)

Ki =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ... 0 ... 0

... Si−1,ixi −Si−1,ixi 0 ...

... − λi−1,i

xi

λi−1,i+λi,i+1

xi
− λi,i+1

xi
...

... 0 −Si,i+1xi Si,i+1xi ...

0 ... 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (10)

As we show in the Appendix, the decomposition formalism
from Eqs. (5)–(10) present an exact representation of the
dynamic matrix for the 1D chain with the nearest-neighbor
coupling for arbitrary values of force-constants.

Importantly, using diagonal matrix X and Eq. (6), the
Green’s function in Eq. (4) can be rewritten as

G = gX −1, (11)

where the auxiliary Green’s function is defined as

g = (X −1mω2 − K )−1 (12)

and the corresponding auxiliary Hamiltonian P ≡ X −1mω2 −
K , which yields a complete separation of single-site quantity
from the dynamic matrix. Thus, P can be decomposed as P =∑

i Pi, where the single-site quantity

Pi = x−1
i miω

2 − Ki. (13)

In this form, the general disorders in lattice vibration is
reduced to a diagonal-like disorder problem. The auxiliary
Hamiltonian containing only single-site Pi is essential for
the implementation of conventional CPA for calculating the
disordered phonons in binary alloys. This is because propaga-
tor expansion in multiple-scattering description of disordered
system requires the single-site scatters in conventional CPA,
[45] as we show in next section. Moreover, Eq. (11) provides a
simple connection between the physical G and the auxiliary g.
Hence, the vibrational properties of the system can be related
to the auxiliary Green’s function, such as the phonon density
of state discussed in Sec. V and the phonon transmission
function derived in Sec. IV.

III. COHERENT POTENTIAL APPROXIMATION
TO AUXILIARY g

For a disordered binary alloy, the single-site quantity Pi is
a random quantity, resulting in the random g and G. Thus, for
disordered systems, it is important to do the disorder average
to obtain physically meaningful results. To do so, we first
introduce CPA to calculate the disorder averaged auxiliary
Green’s function 〈g〉, from which the averaged physical prop-
erty can be derived as we show for phonon transport in Sec. IV
and density of state in Sec. V.

Generally, the coherent potential approximation constructs
an effective medium with the Green’s function same as the
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disorder averaged one. To start, we introduce a coherent
function P = ∑

i Pi to give the auxiliary Green’s function
of an effective medium, namely g = P−1. Then, we consider
a specific configuration of random binary alloy with the
auxiliary Green’s function given as g = P−1.

By defining the deviation function V = P − P = ∑
i Vi,

that contains all the randomness, the auxiliary Green’s func-
tion can be rewritten in a form of Dyson equation with
reference to the effective medium

g = g + g V g. (14)

By defining a T -matrix T = V (1 − g V )−1 describing the total
scattering due to disorders, the auxiliary Green’s function
changes to

g = g + gT g. (15)

By taking the disorder average, we obtain

〈g〉 = g + g 〈T 〉g. (16)

We can enforce 〈g〉 = g to obtain the CPA condition namely
〈T 〉 = 0, providing a self-consistent equation to solve the
effective medium P . However, T is generally an intractable
full matrix that contains all the complexity of a random
system. As a result, directly solving the CPA equation 〈T 〉 = 0
is not practical, and thus further approximation to the average
of T is required [45].

To make the CPA practical, one can introduce the single-
site approximation (SSA) [45]. As known, the total T can be
expressed with multiple scattering events, namely,

T =
∑

i

ti +
∑
i �= j

tigi jt j +
∑

i �= j, j �=k

tigi jt jg jktk + ...., (17)

with the single-site scattering matrix ti defined as

ti = Vi(1 − giiVi )
−1. (18)

The single-site approximation neglects the correlation be-
tween all the scattering events on different sites and on the
same site at different times. As an important result, the CPA
condition 〈T 〉 = 0 is reduced to a single-site equation

〈ti〉 =
∑

Q=A,B

cQtQ
i = 0. (19)

By combining the above single-site equation and g = P−1,
the single-site quantity Pi can be self-consistently solved for
each disordered site of the system. In such a way, the effective
medium described by P = ∑

i Pi can be efficiently obtained.
To provide a stable solution to the single-site CPA equations,
one usually introduces the coherent interactor 	i to describe
the effects of the surrounding coherent medium to the site i
[28], and then the site-diagonal auxiliary Green’s function can
be given as

gii = (Pi − 	i )
−1, (20)

and the conditionally averaged auxiliary Green’s function,
which corresponds to the system with the fixed Q atom on
the site i, can be given as

gQ
ii = gii + giit

Q
i gii = (

PQ
i − 	i

)−1
. (21)

In addition, we have the relation gii = ∑
Q cQ

i gQ
ii (cQ is the

concentration of Q), thus we can obtain

Pi =
⎡
⎣∑

Q

cQ
i (PQ

i − 	i )
−1

⎤
⎦

−1

+ 	i. (22)

Equations (20)–(22) together with g = P−1 form a closed set
of self-consistent equations to solve Pi for all the disordered
sites. The iterative calculation starts with an initial Pi obtained
under average-t-matrix approximation, which is regarded as a
good start in the self-consistent CPA calculation [46]. Then,
with P = ∑

i Pi, we calculate g = P−1 to obtain gii, and thus
obtain the coherent interactor 	i with Eq. (20). Finally, new
Pi is calculated for using in next iteration with Eq. (22). Such
calculation iterates till Pi is converged.

With the averaged auxiliary Green’s function, various dis-
order averaged physical quantities can be derived to realize
the simulation of disordered material/devices. For exam-
ple, the averaged physical Green’s function can be directly
given as

〈Gii〉 = 〈
giix

−1
i

〉 =
∑

Q

cQ
i

〈
gQ

ii

〉(
xQ

i

)−1
. (23)

Furthermore, as we will show in Sec. IV, the averaged two-
Green’s-function correlator can also be formulated with the
auxiliary Green’s function formalism in combination with the
vertex correction technique, thus enabling the simulation of
thermal transport through disordered devices.

IV. FORMULATION OF TRANSMISSION FORMULA WITH
THE AUXILIARY GREEN’S FUNCTION g

We consider the thermal transport through a device con-
taining a central region sandwiched by two semi-infinite or-
dered thermal leads. In order to calculate the averaged thermal
conductance [47] given by

σ =
∫ ∞

0

dω

2π
h̄ω〈T (ω)〉 ∂ f

∂T
, (24)

where f is the Bose-Einstein distribution function, we need
the phonon transmission function given by the Caroli formula
[47,48]

T (ω) = Tr(GRLGAR), (25)

where GR/A is the retarded/advanced Green’s function of
the central region of the device, the linewidth function L/R

describes the coupling of the central region to the left/right
leads.

By using the relation gR/A = GR/AX , the averaged transmis-
sion function becomes

〈T (ω)〉 = Tr(〈gRX −1LgAX −1R〉) = Tr(〈gR̃LgÃR〉),

(26)

where the auxiliary line-width function ̃L/R = X −1L/R.
̃L/R is independent of the atomic disorders in central device,
because it only depends on the ordered left/right leads and
ordered buffer-layers at left/right side of the central region.
Then the nonequilibrium vertex correction (NVC) theory
[26] can be introduced to treat the two-particle auxiliary
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FIG. 2. DOS of 1D disordered harmonic chains in the single-site approximation vs (ω/ωm )2 where ωm = 2
√

kAA/mA. Specific parameters
are shown for all cases. Red solid: results of our present method; black dashed: results of Grünewald’s locator-CPA method [34]; brown
histograms: exact results calculated by Dean’s technique [50].

Green’s function. Using the relations in Sec. III, gR/A =
g R/A + g R/AT R/Ag R/A and 〈T R/A〉 = 0, we can obtain

〈gR̃LgÃR〉 = g R̃Lg ÃR + g R	NVCg ÃR, (27)

where the NVC matrix 	NVC is defined as

	NVC =
∑
i, j

〈
T R

i g R̃Lg AT A
j

〉
, (28)

where

T R/A
i = (1 + T R/Ag R/A)Vi = tR/A

i +
∑
j �=i

T R/A
j g R/AtR/A

i . (29)

In the SSA, for i �= j we have 〈T R
i g R̃Lg AT A

j 〉 = 0. Thus, the
	NVC can be written as a sum of site-diagonal matrices

	NVC =
∑

i

	NVC,i =
∑

i

〈
T R

i g R̃Lg AT A
i

〉
. (30)

Substituting Eq. (29) into Eq. (30), the terms with single
ti vanish in the SSA, and then we obtain a self-consistent
equation of 	NVC

	NVC,i = 〈
tR
i g R̃Lg AtA

i

〉 + ∑
j �=i

〈
tR
i g R	NVC, jgAtA

i

〉
. (31)

With the 	NVC, the averaged transmission function can be ob-
tained easily by Eqs. (26) and (27), thus the thermal transport
through disordered devices can be simulated.

V. NUMERICAL RESULTS AND DISCUSSIONS

The source of errors in conventional CPA arises from the
neglect of the disordered-surrounding-induced local fluctua-
tion away from the uniform effective medium in which the
single-site or cluster is embedded. However, the relative local
fluctuation due to surroundings is inversely proportional to
the number of neighboring disordered sites [49] (given by
the central limit theorem). The 1D chain features the smallest
number of neighboring couplings and thus the largest local
fluctuations, compared to the 2D and 3D systems. Thus, as an
important test of the accuracy and applicability of the present
method, we calculate the disordered 1D harmonic chain as
shown in Fig. 1. For a general combination of possible force
constants kAA, kBB, and kAB between two neighboring sites,
the Ki has the final form of Eq. (A7) in the Appendix, and
CPA equations are solved self-consistently to obtain auxiliary
g. The local phonon density of state [45] of a harmonic chain
is given by

ρi(ω
2) = − 1

π
Im〈miGii(ω)〉

= − 1

π
Im

∑
Q

〈
mQ

i gQ
ii (ω)xQ,−1

i

〉
, (32)

which requires the conditionally averaged auxiliary Green’s
function [see Eq. (21)].

As the first application, we consider the alloys with
geometric-scaled force constants, namely kAB =

√
kAAkBB.
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Our results are compared with the Grünewald’s locator-CPA
[34,51] calculations and exact results of Dean’s technique [50]
(with a chain of 1 000 000 random atoms) for four different
cases, as shown in Fig. 2. To erase the influence of the absolute
value of atomic parameters, we take the host mA = 1.0 and
kAA = 1.0 for simplicity, and normalize the frequency by
taking (ω/ωm)2, where ωm = 2

√
kAA/mA is corresponding to

the maximum frequency of the pure A lattice. It can be clearly
seen that, in comparison with the exact result for all cases, our
present results (solid) show significant improvement over the
results of locator-CPA (dashed). The locator-CPA calculations
present seriously wrong behavior in the DOS, and significant
errors in the bandwidth for the four specific cases. In particu-
lar, locator-CPA for the case in Fig. 2(a) presents a divergence
at about (ω/ωm)2 = 0.8 (like a virtual-crystal approximation),
which is absent in the exact and our present calculations; for
the case in Fig. 2(b), the expected peak of DOS at about
(ω/ωm)2 = 1.0 has an observable shift in the result of locator-
CPA, while our result gives a good match to the exact result;
for the case in Fig. 2(c), the exact and our present results show
a cutoff frequency at (ω/ωm)2 = 1.0 with a sharp peak, which
is missing in the result of locator-CPA. Moreover, locator-
CPA significantly underestimates the bandwidth for cases of
Figs. 2(a), 2(b) and 2(d), and overestimates the bandwidth
for the case of Fig. 2(c), while our results present better
agreement with the exact results. The important accuracy of
present method over the previous locator-CPA method [34,51]
can be attributed to the fact that the force-constant sum rule
is fully satisfied in our method, but not in the locator-CPA
method.

However, because the single-site approximation neglects
the local environmental effects, our results in the SSA can-
not include the effects of localized modes corresponding to
different specific local configurations, which contribute the
sharp and localized peaks in the exact results. To involve the
effects of different local structures, we combine molecular
coherent potential approximation (MCPA) [11,12] with our
method, where all single-site quantities in our method are
replaced with single-cluster quantities. Although MCPA vio-
lates the single-site translational symmetry, it has the Herglotz
analytic properties and can include the local environment
effect (short-range order effect) systematically [45]. To show
the improvement of our formalism with MCPA, we take the
case in the Fig. 2(d) as an example and show the DOS for
the cluster size changing from Nc = 1 to Nc = 10 atoms in
Fig. 3 (note that we account for all the possible 2Nc atomic
configurations in each MCPA calculation). It is obvious that,
as increasing the cluster size, more sharp features caused
by local environmental effects emerge in the high-frequency
region.

To demonstrate the general applicability of present method,
we investigate the averaged DOS of 1D atomic chain for two
cases with the respective light- (mB = 0.5mA) and heavy-mass
(mB = 2.0mA) defects and force-constants chosen arbitrarily.
Figure 4 shows the present CPA results for cluster sizes
ranging from Nc = 1 to Nc = 10, and compare with the exact
results [50]. It is clear that the SSA (namely, Nc = 1) works
very well at low-frequency regime, but it fails to produce
the localized peaks at high frequencies, illustrating the defi-
ciency of SSA in comparison with the exact result. However,
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FIG. 3. DOS of 1D disordered harmonic chains for the cluster size Nc = 1, 2, 3, 4, 6, 10 with mA = 1.0, mB = 0.5, kAA = 1.0, kAB = 1.3,
and kBB = 1.69 with the defect concentration cB = 0.2.
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FIG. 4. DOS of 1D disordered harmonic chains for the cluster size Nc = 1, 2, 4, 6, 8, 10. Left side is for the chain with mA = 1.0,
mB = 0.5, kAA = 1.0, kAB = 1.5, and kBB = 1.25 with the defect concentration cB = 0.25; right side is for the chain with mA = 1.0, mB = 2.0,
kAA = 1.0, kAB = 1.2, and kBB = 1.5 with cB = 0.50.

accounting for the localized modes at high frequencies re-
quires the MCPA method. As Nc reaches 6 and beyond, both
cases shown in Fig. 4 exhibit the inclusion of local envi-
ronmental effects in the CPA calculations and present good
convergence to the exact results. The good agreement with
the exact results in Figs. 3 and 4 illustrates the effectiveness of
the present CPA method for treating disorder effects in lattice
vibration. It is also worth mentioning that the translational
symmetry, broken by the MCPA, can be restored by imple-
menting with dynamic cluster approximation [13,52] (DCA).
It is noted that DCA was used to address diagonal mass
disorder and its cluster effects on phonon density of states
properly [13,52] and the DCA simulation of force-constant
disorders has not been shown to date. Our present single-site
auxiliary method [Eq. (9)] provides a good jumping off point
to implement the DCA to study the cluster effects of force-
constant disorders. As found in Figs. 3 and 4, with the sum
rule obeyed, the spectral calculated with the auxiliary CPA
can approach the exact results as increasing the cluster size.
We note that in Ref. [53] for magnetism (Ising model), it has
been shown the CPA and DCA methods enforced to obey the
sum rule (optical theorem in this case) can approach the exact
result versus cluster size, and the CPA with sum rule obeyed
gives closer result to the DCA result.

In above calculations, we have used the disordered 1D
atomic chain to demonstrate the effectiveness of present
auxiliary CPA. As one may notice that the disordered force
constants kQ,Q′

i j are independent of the surrounding atomic
configurations in a simulation of disordered system. For an
effective medium calculation of disordered system, it is not
realistic to account for the variance of the force constants
induced by the completely random chemical environment.
Thus, to realize the ab initio simulation of real disordered
materials (for force-constant decomposition in 2D and 3D,
please see the Appendix), we can use the force constants
which are obtained by averaging over different surround-
ing atomic configurations calculated with first-principles

super-cell method. Furthermore, a practical approach called
transferable force-constant model [41,54] reported recently
can be combined with our auxiliary CPA method to realize the
ab initio modeling of disordered vibration (see more details
in the Appendix). It is worth to mention that the imple-
mentation of present force-constant model and the auxiliary
CPA for simulating the 3D realistic alloys is straightforward,
and presently we have realized such an implementation and
reproduced the phonon dispersions for several 3D alloys in
comparison with ICPA results and experiments, which will be
reported in our next work.

After presenting the effectiveness of present auxiliary CPA
method in disordered lattice vibration, we want to mention
that the separable form of Eq. (5) is also applicable to the
general disordered electronic Hamiltonian. Thus, the auxiliary
CPA method proposed above can be applied to simulate
the electronic structure and electron transport in disordered
systems with both diagonal and off-diagonal disorders. For
electronic systems, we note that the first term in Eq. (5) is
equivalent to the first-order TB-LMTO Hamiltonian with very
good accuracy (see page 76 in Ref. [28]). Adding the λi j can
make the representation of disordered electronic Hamiltonian
with Eq. (5) more accurate.

VI. CONCLUSIONS

In this paper, we have reported an auxiliary coherent
medium theory to treat both mass and force-constant dis-
orders for lattice vibration in random binary alloys. Based
on an approximate force-constant decomposition, the general
force-constant disorder (correlating diagonal and off-diagonal
disorders) is transformed to a diagonal-like disorder in an
auxiliary Hamiltonian, enabling the use of coherent potential
approximation. The applications of this method in the DOS
calculation of 1D disordered harmonic chains show good
agreement with the exact numerical results. Moreover, we
show the averaged phonon transmission through a disordered
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device can be derived based on the auxiliary Green’s function
method in combination with vertex correction technique, en-
abling the thermal transport simulation of disordered devices.
Hence, we conclude that this method provides an effective
approach for simulating the disorder effects on the vibra-
tional properties of random alloys/devices. The application
of present auxiliary CPA to general disordered electronic
systems is also straightforward.

Note added. Recently, we note that Ref. [55] just pre-
sented a study of effects of mass and force-constant disorders
on phonon localization with typical medium theory (TMT)
[56] in combination with DCA to treat cluster effects and
BEB transformation for treating force-constant (off-diagonal)
disorder. This work is an extension of the method TMT-
DCA-BEB recently reported for electronic system [57]. How-
ever, due to the limitation of BEB transformation, the force-
constant sum rule is hard to be fully satisfied for different
finite size of clusters, and the corresponding induced error is
unclear so far. Here we want to mention that the approach to
effectively handle force-constant disorder is key for localiza-
tion and other key phenomena for vibrational systems with
disorders.
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APPENDIX: FORCE CONSTANT MODEL FOR
1D AND 3D BINARY ALLOYS

For a 1D binary alloy with nearest-neighbor force con-
stants, force constants only can take three possible values kAA,
kAB, and kBB. Using the force constant model in Eq. (5) and
defining a, b as

xi =
{

a if A atom is at i site

b if B atom is at i site
,

we can obtain the separable forms of force constants

a2S + λ = kAA, (A1)

b2S + λ = kBB, (A2)

abS + λ = kAB. (A3)

We set a = 1 and then obtain the solution

λ = kAAkBB − kAB2

kAA + kBB − 2kAB
, (A4)

S = (kAB − kAA)2

kAA + kBB − 2kAB
, (A5)

b = kBB − kAB

kAB − kAA
. (A6)

Then we can write the Ki explicitly

Ki =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ... 0 ... 0

... Sxi −Sxi 0 ...

... − λ
xi

2λ
xi

− λ
xi

...

... 0 −Sxi Sxi ...

0 ... 0 ... 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A7)

The above exact representation is based on the approx-
imation of nearest-neighbor interaction. If considering the
interaction beyond the nearest neighbor (usually significantly
smaller than nearest-neighbor interaction), then we can obtain
the optimal parametrization for the separable force-constant
model by numerical optimization.

For a general 2D/3D lattices, ki j , Si j , λi j will be replaced
by tensors with Cartesian coordinates ki j,αβ , Si j,αβ , λi j,αβ :

a2Sαβ + λαβ = kAA
αβ , (A8)

b2Sαβ + λαβ = kBB
αβ , (A9)

abSαβ + λαβ = kAB
αβ . (A10)

To realize the phonon calculation in real materials with
atomic disorder, the well-established transferable force-
constant model can be adopted for the implementation of aux-
iliary CPA simulation. The transferable force-constant tensors
take the form [42,54]

k =

⎡
⎢⎣

ks 0 0

0 kb 0

0 0 kb

⎤
⎥⎦, (A11)

where ks represents the stretching stiffness along the bond and
kb represents the isotropic bending stiffness.

Unlike the 1D case in Eqs. (A1)–(A6), for arbitrary param-
eters ks and kb, an exact representation of the force-constant
is difficult in the present separable form in Eqs. (A8)–(A10).
Thus, we propose to use the optimization method to fit our
separable force-constant model, namely the parameters a, b
and tensors Si j and λi j , to the results obtained by first-
principles calculations or some transferable force fields. In
such as optimization for a 3D lattice, the inclusion of a
cluster of neighboring sites with direct coupling to the central
sites are required, and this optimization can be realized by
the conjugate-gradient method. For example, we consider the
FCC Pd0.96Fe0.04 alloy with force constants given by the first-
principles calculation in Ref. [42]: kFeFe

s = 13366, kPdPd
s =

45925, kFePd
s = 35698, kFeFe

b = −566, kPdPd
b = −2424, and

kFePd
b = −1879 (in unit of dyn cm−1). The optimized rep-

resentation will give Ss = −41191.8, λs = 54557.4, Sb =
2362.2, λb = −2935.9, and b = 0.4578 with approximate
force constants k̃FeFe

s = 13365.6, k̃PdPd
s = 45924.4, k̃FePd

s =
35699.8, k̃FeFe

b = −573.7, k̃PdPd
b = −2440.8, and k̃FePd

b =
−1854.5, with accuracy significantly beyond the Shiba’s and
virtual-crystal models. Thus, with the separable force constant
model and auxiliary CPA, the effect of the force-constant
disorder together with mass disorder can be simulated for real
materials, with the expense of the little error in some specific
force constants.
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