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Tunable circular dipolelike system in graphene: Mixed electron-hole states
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Coupled electron-hole states are realized in a system consisting of a combination of an electrostatic potential
barrier and ring-shaped potential well, which resembles a circular dipole. A perpendicular magnetic field induces
confined states inside the Landau gaps which are mainly located at the barrier or ring. Hybridizations between the
barrier and ring states are seen as anticrossings in the energy spectrum. As a consequence, the energy levels show
an oscillating dependence on the electrostatic potential strength in combination with an oscillating migration of
the wave functions between the barrier and ring. At the anticrossing points the quantum state consists of a mixture
of electron and hole. The present system mimics closely the behavior of a relativistic dipole on gapped graphene.
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I. INTRODUCTION

The experimental observation of graphene [1,2] as a sta-
ble two-dimensional (2D) system together with its interest-
ing electronic properties [3] has attracted a lot of attention.
However, the gapless nature of the spectrum together with
the linear spectrum has drastic consequences for the charge
carriers in graphene: charge carriers cannot be confined by
an electrostatic potential as shown by the Klein tunnel-
ing effect [4]. Controlling the charge carriers in graphene
is, however, essential for future electronic applications of
graphene.

One possibility to control the charge carriers in graphene
is by confining them in quantum dots. This can be done,
for example, by cutting out a finite-size flake of graphene
which naturally confines the charge carriers [5–8]. However,
it was shown in both theoretical and experimental studies that
the nature of the edges of the finite-size flakes drastically
alters the energy spectrum [8]. Since the edges are difficult to
control experimentally, this poses major challenges regarding
future applications.

However, in Refs. [9–11] another possibility to control the
charge carriers in graphene has been demonstrated. Here it
was shown that by combining an electric and magnetic field
a highly tunable quantum dot can be created. The magnetic
field quantizes the energy spectrum and thus creates Landau
gaps between the Landau levels. Using a nonhomogeneous
electrical potential, one is able to induce localized states
that are inside those gaps. The high degree of tunability of
this type of dot system, together with the absence of edges,
makes it very promising for the use in future electronic
applications of graphene (for example, in quantum infor-
mation and quantum computing [12]). Furthermore, recent
experiments [13–16] have demonstrated its high degree of
tunability.
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Coupling between quantum dot states is important to un-
derstand because of their potential use for promising ap-
plications in quantum information and optoelectronics [17],
[18]. Studying the coupling between two lateral quantum dots
[19] is impossible analytically due to the breaking of angular
symmetry. In this paper, we consider an electrostatic potential
barrier and ring (see Fig. 1) that are combined in a dipolelike
configuration. By applying a perpendicular magnetic field
it is possible to realize confinement in either the potential
barrier and/or ring. We show that by tuning the magnetic
and electric fields, electron and hole states located at either
the potential ring or barrier can be coupled. This coupling
is highly tunable by the external fields, which paves the
way toward the experimental study of magnetoelectrostatic
confined coupled graphene quantum dots. Furthermore, we
show that the general behavior of the spectrum and probability
densities closely mimics the behavior of a relativistic dipole,
hence, our proposed system can provide a platform to study
relativistic dipole physics.

By using step potentials and the circular symmetry of the
system we are able to obtain formal analytical expressions for
the energy spectrum and wave functions. Note that studying
the interaction between two lateral quantum dots usually
requires breaking angular symmetry which prevents exact
analytical solutions.

The paper is structured as follows. In Sec. II we present the
analytical model with expressions for the wave functions and
the nonlinear equations that determine the energy spectrum. In
order to understand the coupling between the circular quan-
tum barrier and the ring-shaped well, we first consider both
potential structures separately in Sec. III. The combination of
a potential barrier and ring is studied in Sec IV. In Sec. V we
present the main conclusions of this work.

II. ANALYTICAL MODEL

In this section we present our system and derive the equa-
tions governing this system, the energy spectrum, and wave
functions.
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FIG. 1. Schematic representation of the dipolelike ring system,
i.e., a circular potential barrier in the center of height Vb and a ring
potential well of depth −Vr . For the shape of the potential well and
barriers we opt for constant piecewise step potentials which allow
for analytical solutions. A magnetic field is applied, suppressing the
wave functions at larger distances.

A. Model

We consider a dipolelike structure created by a potential
barrier surrounded by a potential well ring. We apply a
magnetic field in order to create controllable confined states.
A schematic representation of our system is given in Fig. 1.
The potential barrier has a height of Vb and radius a. It is
surrounded by a ring-shaped potential well with inner radius
b, depth Vr , and width c − b.

Depending on the strength of the magnetic field and
electrostatic potentials, interaction between wave functions
located inside the ring and barrier will occur. In the next
subsections we will present analytical details of the solutions.
First, we will consider the potential barrier and ring separately
and subsequently we will couple the two systems.

B. Differential equations and solutions

We will work within the continuum model. The Dirac-
Weyl Hamiltonian for low-energy charge carriers in graphene,

in the presence of a perpendicular magnetic field, is given by

H = vF (p + eA) · σ + V (r) · I. (1)

Here, V (r) is an arbitrary radially symmetric electrostatic
potential, σ are the Pauli matrices, and A = B/2(−y, x, 0) is
the vector potential in the symmetric gauge. In this work we
will consider V (r) as being a stepwise potential. The energy
spectrum is determined by solving the Schrödinger equation
H� = E�. Due to the circular symmetry we have [H, Jz] = 0
where Jz = Lz + h̄σz/2 is the total angular momentum. This
implies that using polar coordinates, the two-component wave
function has the form � = (φa, φb) = eimθ (ψa(r), eiθψb(r)),
where m = 0,±1,±2, . . . is the total angular quantum num-
ber. Using the latter ansatz the coupled radial equations are
given by

V (r)

h̄vF
ψa +

(
∂

∂r
+ m + 1

r

)
ψb + r

2l2
B

ψb = E

h̄vF
ψa, (2a)

(
− ∂

∂r
+ m

r

)
ψa + V (r)

h̄vF
ψb + r

2l2
B

ψa = E

h̄vF
ψb. (2b)

Here, lB = √
h̄/eB is the magnetic length and E the energy.

Solving Eq. (2a) for ψa gives the following expression in the
case of a constant potential V (r) = V :

ψa = h̄vF

(E − V )

(
∂

∂r
+ m + 1

r

)
ψb + h̄vF

(E − V )

r

2l2
B

ψb. (3)

Substituting the latter expression in Eq. (2b) results in the
uncoupled second-order differential equation

∂2ψb

∂r2
+ 1

r

∂ψb

∂r

−
[

(m + 1)2

r2
+ m

l2
B

+ r2

4l4
B

− (E − V )2

h̄2v2
F

]
ψb = 0. (4)

This equation has two independent exact solutions given by
the following closed expressions for the wave function:

Fb(V, r) = 2− m
2 e−r2/4l2

B r−m−1

× L

[
l2
B

2h̄2v2
F

(E − V )2,−1 − m,
r2

2l2
B

]
, (5a)

Gb(V, r) = 2− m
2 e−r2/2l2

B r−m−1

×U

[
− l2

B

2h̄2v2
F

(E − V )2,−m,
r2

2l2
B

]
, (5b)

where L is the generalized Laguerre polynomial and U is
the Tricomi confluent hypergeometric function. The solution
Fb(V, r) is regular at the origin r = 0 while it is irregular at
infinity. The other solution Gb(V, r) is irregular at the origin
and regular at infinity.

The solutions for ψa(r) can be obtained by plugging the
solutions (5a) and (5b) into Eq. (3) giving the following wave
functions:

Fa(V, r) = 2− m
2 h̄vF

l2
B(E − V )

e−r2/4l2
B r−m

× L

[
−1 + l2

B

h̄2v2
F

(E − V )2,−m,
r2

2l2
B

]
(6a)
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and

Ga(V, r) = 2− m
2 (E − V )

2h̄vF
e−r2/4l2

B r−m

× U

[
1 − l2

B

h̄2v2
F

(E − V )2, 1 − m,
r2

2l2
B

]
. (6b)

C. Wave functions

In this section we derive the wave functions for the poten-
tial barrier, potential ring, and potential dipole system.

1. Potential barrier

We consider first a circular potential barrier of radius a and
height Vb. Thus, only two regions are relevant: in region I (r <

a) the solution is given by the wave functions

ψ I
a = A1Fa(Vb, r), (7a)

ψ I
b = A1Fb(Vb, r), (7b)

where A1 is an integration constant. In region II (r > a) we
have to take the other solution for the wave functions

ψ II
a = B1Ga(0, r), (8a)

ψ II
b = B1Gb(0, r), (8b)

where B1 is an integration constant.
The above wave functions have to be matched at the bound-

ary r = a, which results into the following wave functions in
region I:

ψ I
a = B1

Ga(0, a)

Fa(Vb, a)
Fa(Vb, r), (9a)

ψ I
b = B1

Ga(0, a)

Fa(Vb, r)
Fb(Vb, r). (9b)

In region II we have the following wave functions:

ψ II
a = B1Ga(0, r), (10a)

ψ II
b = B1Gb(0, r). (10b)

2. Potential ring

Now, we consider the situation where we have only a
potential ring of depth −Vr with inner (outer) radius b (c). In
this case, we have three regions. Region I is defined as r < b,
where the wave function is given by the expressions

ψ I
a = A2Fa(0, r), (11a)

ψ I
b = A2Fb(0, r). (11b)

Region II is defined as b < r < c where an electrostatic
potential of strength −Vr is present. Now, we have to keep
the two solutions of Eq. (1) and we have the following wave
functions:

ψ II
a = B2Fa(−Vr, r) + C2Ga(−Vr, r), (12a)

ψ II
b = B2Fb(−Vr, r) + C2Gb(−Vr, r). (12b)

In region III, which is defined as r > c, we have the following
wave functions:

ψ III
a = D2Ga(0, r), (13a)

ψ III
b = D2Gb(0, r). (13b)

The wave functions have to be matched at r = b and c. This
leads to the wave functions given in the Appendix.

3. Circular potential dipole

In this situation we consider both a potential barrier and
a ring, i.e., the combination of the previous two potential
structures. In this case, we have four regions. Region I is
defined as r < a with the wave functions

ψ I
a = A3Fa(Vb, r), (14a)

ψ II
b = A3Fb(Vb, r). (14b)

In region II, where a < r < b, we have the following wave
functions:

ψ II
a = B3Fa(0, r) + CGa(0, r), (15a)

ψ II
b = B3Fb(0, r) + CGb(0, r). (15b)

In region III, which is defined as b < r < c, we have an
electrostatic potential −Vr , the corresponding wave functions
are given by the expressions

ψ III
a = D3Fa(−Vr, r) + E3Ga(−Vr, r), (16a)

ψ III
b = D3Fb(−Vr, r) + E3Gb(−Vr, r). (16b)

Last, we have region IV which is defined as r > c; in this
region we have the following wave functions:

ψ IV
a = F3Ga(0, r), (17a)

ψ IV
b = F3Gb(0, r). (17b)

Matching the wave functions at the boundaries r = a, r =
b, and r = c leads to the solutions which are given in the
Appendix.

D. Energy equations

Using the wave functions derived in the previous subsec-
tion, we derive the equation for the energy spectrum.

1. Potential barrier

The energy equation can be obtained by matching the wave
functions (7a) and (7b) with the wave functions (8a) and
(8b) at the boundary between the two regions. This gives the
following algebraic equation:

Fa(Vb, a)

Fb(Vb, a)
= Ga(0, a)

Gb(0, a)
, (18)

whose solutions determine the energy spectrum.

2. Potential ring

Matching the wave functions (11a) and (11b) with the wave
functions (12a) and (12b) between regions I and II gives the
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FIG. 2. Energy spectrum of a circular potential barrier of radius a = 10 nm as function of the potential barrier strength for three values
of the angular momentum quantum number m = 0 (blue curves), m = −1 (green curves), and m = 1 (red curves) and in the presence of a
perpendicular magnetic field of B ≈ 3 T corresponding to a magnetic length lB = 15 nm.

following relation:

ψ I
a

ψ I
b

= ψ II
a

ψ II
b

→ Fa(0, b)

Fb(0, b)
= B2Fa(−Vr, b) + C2Ga(−Vr, b)

B2Fb(−Vr, b) + C2Gb(−Vr, b)
,

(19)
from which we obtain

B2

C2
= Fb(0, b)Ga(−Vr, b) − Fa(0, b)Gb(−Vr, b)

Fa(0, b)Fb(−Vr, b) − Fb(0, b)Fa(−Vr, b)
. (20)

Matching the wave functions (12a) and (12b) with the wave
functions (13a) and (13b) between regions II and III gives the
following relation:

ψ III
a

ψ III
b

= ψ II
a

ψ II
b

→ Ga(0, c)

Gb(0, c)
= B2Fa(−Vr, c) + C2Ga(−Vr, c)

B2Fb(−Vr, c) + C2Gb(−Vr, c)
,

(21)
which results into the following equation:

Ga(0, c)

Gb(0, c)
=

B2
C2

Fa(−Vr, c) + Ga(−Vr, c)
B2
C2

Fb(−Vr, c) + Gb(−Vr, c)
, (22)

from which we obtain the energy spectrum.

3. Circular potential dipole

The procedure is completely analogous as for the quantum
barrier and quantum ring. Matching the wave functions (14a)
and (14b) with the wave functions (15a) and (15b) between
regions I and II we can find the following ratio of integration
constants:

B3

C3
= Ga(0, a)Fb(Vb, a) − Gb(0, a)Fa(Vb, a)

Fb(0, a)Fa(Vb, a) − Fa(0, a)Fb(Vb, a)
. (23)

Matching the wave functions (16a) and (16b) with the wave
functions (17a) and (17b) between regions I and IV we find
the following ratio:

D3

E3
= Gb(−Vr, c)Ga(0, c) − Ga(−Vr, c)Gb(0, c)

Fa(−Vr, c)Gb(0, c) − Fb(−Vr, c)Ga(0, c)
. (24)

Finally, matching the wave functions (15a) and (15b) with the
wave functions (16a) and (16b) between regions II and III, we

obtained the following equation:

Fa(0, b) + C3
B3

Ga(0, b)

Fb(0, b) + C3
D3

Gb(0, b)
= Fa(−Vr, b) + E3

D3
Ga(−Vr, b)

Fb(−Vr, b) + E3
B3

Gb(−Vr, b)
,

(25)
whose solutions give the energy spectrum.

III. NUMERICAL RESULTS FOR THE
DECOUPLED SYSTEMS

In this section we will discuss the results obtained from
solving the energy equations (18) and (22).

A. Potential barrier

We consider first the results for the simplest system con-
sisting of just a circular quantum barrier and solve numerically
the energy equation (18) for different values of the potential
strength and angular quantum number. This system was inves-
tigated previously in Ref. [9], but to understand the spectrum
of a dot-ring system, we repeat here the essential results.

In Fig. 1 we show the energy spectrum as function of
the potential barrier strength Vb for three angular quantum
number values m = 0,±1 and a magnetic length lB = 15
nm (corresponding to B ≈ 3 T). We took the strength of the
dot potential positive, effectively creating a potential barrier.
However, the spectrum is symmetric in the sense that Vb →
−Vb is equivalent to E → −E . This means that changing the
sign of the barrier corresponds to interchanging electron and
hole states.

For the quantum numbers shown (m = 0, 1,−1) in Fig. 2,
we see Landau gaps. These gaps are determined by the Lan-
dau levels En = ±h̄vF /lB

√
2 | N | and consequently decrease

with decreasing magnetic field. When the potential barrier
strength increases, hole states rise into the Landau gap region
and form quantum dot states. In the Landau gaps, hole states
are allowed to rise further toward the more slowly rising
electron Landau levels outside the gap region with increasing
potential strength. This continues until at some point the first
state inside the gap region reaches the first electron state and
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FIG. 3. Probability density shown for the points marked in Fig. 2.
The position of the potential barrier is marked by the colored surface
under the density profile. The left side panels correspond to the
density of states inside the Landau gap, while the right panels
correspond to states outside the Landau gap.

anticrosses with the corresponding electron level. This behav-
ior reminds of the supercritical instability effect in gapped

graphene where bound states in the gap are allowed to enter
the corresponding continuum [20–22], with the important
difference that in that case the effect is created by a Coulomb
impurity and not a potential barrier. The fact that a potential
of arbitrary shape could be used to create supercritical states
was shown explicitly in Refs. [23,24].

In order to show the difference in behavior for the states
inside the Landau gap as compared to those outside it, we
show in Fig. 3 the probability densities for the points marked
in Fig. 2. The location of the barrier is shown as a colored
area under the probability density plots. From these figures
it is clear that the states inside the Landau gap (left figures
in Fig. 3) are more localized inside the potential barrier and
form true quantum dot states. States outside the gap region
are weakly localized in the potential barrier and these states
exhibit more a Landau-level-like behavior. Interestingly for
the states located in the gap region, we find that the m = −1
state (green curve) is much less localized in the barrier as
compared to the m = 0 (blue curve) and m = 1 (red curve)
state. This explains the smoother dependence of the energy,
compared to the m = 1 states, as a function of the barrier
strength.

B. Potential ring

Now, we consider an electrostatic potential ring and inves-
tigate the corresponding energy spectrum. In the presence of
a perpendicular magnetic field it is possible to create quantum
dot states located in the circular quantum ring within the
Landau gaps. We emphasize the differences between quantum
dot states located at the barrier compared to those located
at a ring-shaped potential. While graphene quantum rings
cut out from graphene sheets have been extensively studied
both within tight-binding and continuum models [25–27], the
system discussed in this paper, the combination of a ring-
shaped potential and magnetic field, has not been studied in
the literature to date.

In Fig. 4 we show the spectrum of an electrostatic quantum
well ring for the same three angular quantum numbers as
shown in Fig. 2 for the potential barrier. For the ring the size
parameters are b = 30 nm and c = 35 nm.

FIG. 4. Energy spectrum of a ring potential as function of the depth of the potential well for three values of the angular momentum
quantum number m = 0 (blue curves), m = −1 (green curves), and m = 1 (red curves) with inner (outer) radius b = 30 nm (c = 35 nm). A
perpendicular magnetic field is applied with strength B ≈ 3 T which results in lB = 15 nm.
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FIG. 5. Probability density shown for the points (1)–(6) marked
in Fig. 4. The area with the potential ring is marked by the colored
surface under the density profile. The left side panels correspond to
the probability density of states inside the Landau gap, while right
panels correspond to the states outside the Landau gap.

In contrast with the potential barrie,r no hole states enter
the gap region but electron states enter instead. This is merely
a consequence of the fact that we took a potential well ring
instead of a barrier. Remember that the spectrum has electron-
hole symmetry in the sense that the spectrum is invariant
under the transformations E → −E and Vr → −Vr , effec-
tively changing electron states into hole ones. With increasing
potential strength, electron states are allowed to sink into the
Landau gaps where they exhibit almost a linear dependence
on the potential strength. This behavior continues until the
electron level touches the first hole level at negative energy
and an anticrossing occurs, similar to the above quantum
barrier results.

In Fig. 5 the probability density is shown for the points
(1)–(6) marked in Fig. 4. The left panels show the densities for
points located inside the Landau gap region, while the right
panels show densities for states located outside the Landau
gap. In the left panels it can be nicely seen how the probability
densities are located around the quantum ring. As in the case
of a potential barrier it is seen that the m = −1 are less
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FIG. 6. Probability densities for the points (7)–(9) marked in
Fig. 4. The area with the potential ring is indicated by the colored
surface under the probability densities.

localized around the quantum ring compared to the m = 0
and −1 states. This explains the smoother behavior on the
potential ring strength of the m = −1 states compared to the
other angular momenta states. For the energy states located
outside the gap region (right panels of Fig. 5), the behavior is
totally different. These states do not exhibit a large peak in the
probability density at the potential ring and are not localized
in the ring. These states behave almost as unperturbed Landau
levels which is reflected in the behavior of the probability
densities which show a Landau-level-like behavior. Note that
regardless of the fact that these states are clearly less localized
at the quantum ring, they still feel the potential ring. This
can be seen from the fact that in the right panels of Fig. 5,
small subpeaks are observed in the probability density located
inside the quantum ring. This is a manifestation of the Klein
tunneling providing a coupling between the states outside the
gap and the potential ring.

In Fig. 6 the probability densities are shown for the three
successive states in the gap region shown in Fig. 4 for the
angular quantum number m = 1 and lB = 15 nm, indicated by
the points (7)–(9). As explained in the previous paragraph, the
densities are clearly spatially localized in the quantum ring.
In general, for all three states the densities exhibit similar
behavior. However, the number of peaks inside the electro-
static ring increases with the number of states entering the gap
region. The first state has one peak, the second two, and the
third three. This behavior reminds of the increasing number of
nodes with increasing principal quantum number in the case
of a relativistic hydrogen atom. Interestingly, the behavior
outside the quantum ring is almost exactly the same for the
three successive states, and these states are only distinguished
by the behavior inside the quantum ring.

IV. CIRCULAR POTENTIAL DIPOLE

Here, we investigate the interaction between the single-
electron energy spectrum of a combined quantum barrier
and ring-shaped well. By combining a barrier and ring with
opposite sign for electrostatic potential strength, it is possible
to couple electron and hole states which show up as anticross-
ings. This coupling can be effectively tuned by the strength of
the applied electrostatic and magnetic fields.
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FIG. 7. Energy spectrum as function of the potential ring and barrier strength V = Vr = Vb for three values of the angular momentum
quantum number m = 0 (blue curves), m = −1 (green curves), and m = 1 (red curves). The size of the dipole system we took a = 10 nm,
b = 30 nm, and c = 35 nm and the magnetic field value is lB ≈ 3 T corresponding to lB = 15 nm.

In Fig. 7 we show the spectrum as function of the elec-
trostatic potential strength for three values of the angular
momentum. We use the same dimensions for the barrier and
ring as used in the previous sections, i.e., a = 10 nm, b = 30
nm, and c = 35 nm and the same value for the magnetic
length (lB = 15 nm). From Fig. 7 it is clear how electron
states descend from the upper continuum while hole states rise
from the lower continuum and enter the Landau gaps where
they approach each other and anticross. These anticrossings
become stronger when the magnetic field is further reduced,
thus, the interaction between the barrier and ring states (i.e.,
the strength of the anticrossings) can be effectively tuned by
the magnetic field. Note that anticrossings are only observed
for states with the same angular momentum quantum number,
which is a consequence of the Wigner–von Neumann theorem
[28]. With increasing electrostatic field strength, more states
anticross and the states inside the Landau gap start to show an
oscillating dependence on the electrostatic potential strength.

In Fig. 8 we show the probability densities of the points
(1)–(4) shown in Fig. 7 which are the electronic states with
m = 0 around an anticrossing region. Before the anticrossing,
the electronic state is mainly located at the potential barrier
and is mostly hole, which explains the fact that the energy
is increasing with the electrostatic potential strength. At the
point of anticrossing, however, the state is spread out over
both the barrier and the ring and represents a coupled electron-
hole state. This shows that at the point of anticrossing, a
hybridization between a state from the quantum barrier and
quantum ring occurs. After the anticrossing, the probability
moves entirely to the quantum ring and the state becomes
electronlike. At the next point of anticrossing, the state is
again evenly distributed over the quantum barrier and ring.

From Fig. 7 we notice that the anticrossings are less clear
for the m = −1 states as compared to the other angular
momenta values. This is a consequence of the fact that the
states are less localized inside the barrier and/or ring for m =
−1 (as discussed in the previous sections). This argument is
supported by Fig. 9 where we show the probability densities
for the points (5)–(8) shown in Fig. 7. Qualitatively, the
behavior is very similar to that of the densities shown in

Fig. 8, the localization shifts from the barrier to the ring and
is equally distributed at the point of anticrossing. However,
quantitatively, before and after the point of anticrossing the
probability density is more spread out over the barrier and ring
as compared to the densities shown in Fig. 8.

Interestingly, the behavior shown in this paper, i.e., the
oscillations of the energy spectrum as a function of the
electrostatic potential strength and relocalization of the wave
function when passing the anticrossing, are also observed
in the spectrum of a relativistic dipole on gapped graphene
[29–32]. Thus, the coupled quantum barrier and ring system in
a magnetic field imitates relativistic dipole physics in gapped
graphene. Both systems share some similarities: the magnetic
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FIG. 8. Probability densities for the points shown in the m = 0
energy spectrum of Fig. 7.
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FIG. 9. Probability densities for the points shown in m = −1
energy spectrum of Fig. 7.

field creates a gap in the spectrum while the electrostatic
barrier and ring which are equal in strength but opposite in
sign replicate a positively and negatively charged Coulomb
impurity. However, experimentally the system presented in
this paper has several advantages as compared to the dipole
system in gapped graphene. First, the present system has many
more tuning possibilities as compared to the dipole system,
hence increasing the chance of detecting the rich physics of a
dipole. The governing length scales can be effectively tuned
by the magnetic field while the strength of the electrostatic
potentials are tunable by nanostructured gates. Second, ana-
lytical results are obtained in our paper which was impossible
for a dipole on gapped graphene.

V. CONCLUSIONS

In this paper we presented a system consisting of a po-
tential barrier and potential ring, e.g., a model system for
a circular dipole. In the first part of the paper we derived
the analytical expressions for the wave functions and energy
equations for the potential barrier and potential ring separately
and when they are both present. In the second part of the
paper we solved numerically the energy equations in order to
determine the energy spectra and wave functions.

We showed that in the case of a potential barrier and poten-
tial ring states enter the Landau gaps, created by the magnetic
field, and become spatially localized at the potential barrier
and ring. We studied the spectrum and wave functions for
different potential ring and barrier strengths, different values
of the magnetic field, and different values of the angular
momentum quantum number m.

By combining a potential barrier and potential ring equal
in strength but opposite in sign, i.e., a dipolelike structure,
we showed that electron states originating from the potential

ring and hole states originating from the potential barrier are
allowed to hybridize and form coupled states, which are seen
in the spectrum as anticrossings in the Landau gaps. The cou-
pling between the quantum states and hence the strength of the
anticrossings can be effectively tuned by, e.g., the magnetic
field and the strength of the electrostatic potentials. Finally,
we showed that due to the similarities with a relativistic dipole
placed on gapped graphene, the states for a dipole system
mimic closely the behavior of the electronic states of a dipole
on gapped graphene.

Our model has the big advantage that analytical results
for the energy equations and wave functions can be ob-
tained, the energy equations provided in this paper can be
straightforwardly solved using standard root-solving methods.
However, one should always consider a tradeoff between
simplicity of the model and experimental relevance. In this
paper we consider step potentials which in experiments can
be approximately realized by an STM tip, or by local doping,
or by nanostructured gates. In real experiments, the potentials
produced in this way will deviate from these step potentials.
However, a previous publication [9] has shown that the use
of step potentials makes sense and that they provide a good
approximation for the potentials present in real systems.
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APPENDIX: WAVE FUNCTIONS

In this Appendix we provide the exact form of the wave
functions obtained from our analytical model.

1. Potential ring

In region I we have the wave functions

ψ I
a = A2Fa(0, r), (A1)

ψ I
b = A2Fb(0, r). (A2)

In region II we have the wave functions

ψ II
a = A2 · B[AFa(−Vr, r) + Ga(−Vr, r)], (A3)

ψ II
b = A2 · B[AFb(−Vr, r) + Gb(−Vr, r)]. (A4)

Here, A is defined as

A = Ga(−Vr, c)Gb(0, c) − Gb(−Vr, c)Ga(0, c)

Fb(−Vr, c)Ga(0, c) − Fa(−Vr, c)Gb(0, c)
, (A5)

and B is defined as

B = Fa(0, b)

AFa(−Vr, b) + Ga(−Vr, b)
. (A6)

In region III we have the following wave functions:

ψ III
a = A2CGa(0, r), (A7)

ψ III
b = A2CGb(0, r). (A8)
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Here, C is given by the following expression:

C = B[AFa(−Vr, c) + Ga(−Vr, c)]

Ga(0, c)
. (A9)

2. Circular potential dipole

In region I we have the wave functions

ψ I
a = A3Fa(Vb, r), (A10)

ψ I
b = A3Fb(Vb, r). (A11)

In region II we have the wave functions

ψ II
a = A3F[DFa(0, r) + Ga(0, r)], (A12)

ψ II
b = A3F[DFb(0, r) + Gb(0, r)]. (A13)

Here ,D and F are, respectively, given by the expression

D = Ga(0, a)Fb(Vb, a) − Gb(0, a)Fa(Vb, a)

Fb(0, a)Fa(Vb, a) − Fa(0, a)Fb(Vb, a)
(A14)

and

F = Fa(Vb, a)

DFa(0, a) + Ga(0, a)
. (A15)

In region III we have the following wave functions:

ψ III
a = A3G[EFa(−Vr, r) + Ga(−Vr, r)], (A16)

ψ III
b = A3G[EFb(−Vr, r) + Gb(−Vr, r)]. (A17)

Here, E and G are, respectively, given by the expressions

E = Ga(−Vr, c)Gb(0, c) − Gb(−Vr, c)Ga(0, c)

Fb(−Vr, c)Ga(0, c) − Fa(−Vr, c)Gb(0, c)
(A18)

and

G = F[DFa(0, b) + Ga(0, b)]

EFa(−Vr, b) + Ga(−Vr, b)
. (A19)

In region IV we have the wave functions

ψ IV
a = A3HGa(0, r), (A20)

ψ IV
b = A3HGb(0, r). (A21)

Here, H is given by the expression

H = G[EFa(−Vr, c) + Ga(−Vr, c)]

Ga(0, c)
. (A22)
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