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Many-body theory of optical absorption in doped two-dimensional semiconductors
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In this paper, we use a many-body approach to study the absorption spectra of electron-doped two-dimensional
semiconductors. Optical absorption is modeled by a many-body scattering Hamiltonian which describes an
exciton immersed in a Fermi sea. The interaction between electron and exciton is approximated by an effective
scattering potential, and optical spectra are calculated by solving for the exciton Green’s function. From
this approach, the trion can be assigned as a bound state of an electron-exciton scattering process, and the
doping-dependent phenomena observed in the spectra can be attributed to several many-body effects induced
by the interaction with the Fermi sea. While the many-body scattering Hamiltonian cannot be solved exactly,
we reduce the problem to two limiting solvable situations. The first approach approximates the full many-body
problem by a simple scattering process between the electron and the exciton, with a self-energy obtained by
solving a Bethe-Salpeter equation (BSE). An alternate approach assumes an infinite mass for the exciton, such
that the many-body scattering Hamiltonian reduces to a Mahan-Noziéres-De Dominicis (MND) model. The
exciton Green’s function can then be solved numerically exactly by a determinantal formulation, with an optical
spectra that show signatures of the Fermi-edge singularity at high doping densities. The full doping dependence
and temperature dependence of the exciton and trion line shapes are simulated via these two approximate
approaches, with the results compared to each other and to experimental expectations.
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I. INTRODUCTION

A trion is usually defined as a three-particle bound state
which is composed of two electrons and one hole or two holes
and one electron [1]. It can also be viewed as a negatively
or positively charged exciton, which is generated by optical
absorption in doped semiconductors or nanostructures. In the
absorption or photoluminescence spectra of such systems at
low doping density, a peak assigned to the trion is observed on
the low energy side of the exciton peak. The energy difference
between the trion and exciton peaks in the zero doping-density
limit is called the trion binding energy (denoted as �T). For
semiconducting quantum wells, this binding energy is a few
meV [1–4]. The trion binding energy rises to about 30 meV for
monolayer transition metal dichalcogenides (TMDCs) [5–10]
and about 100 meV for single-wall carbon nanotubes [11,12].

While the nature of the trion in the limit of vanishing dop-
ing density is well studied and well understood, the physical
description of what we will call the “trion transition” as a
function of doping remains unclear [13,14]. A trion transition
is an optical process of trion creation by photon absorption or
trion annihilation via emission of light. In this discussion, we
consider specifically the optical absorption of electron-doped
materials. Assuming electron doping can be described by
altering the Fermi level in the conduction band, one can use
the Fermi energy (denoted as εF) to estimate the scale of the
electron doping density. According to various experimental
measurements [1–5,7,10], the line shapes and intensities of
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exciton and trion transitions are notably affected by the dop-
ing density. For example as εF increases, the exciton peak
diminishes and the trion peak amplifies. The exciton peak
begins to be depleted as the Fermi energy exceeds the trion
binding energy (εF � �T). The total area of the combination
of the two peaks in the absorption spectrum is relatively
insensitive to the doping density variation. This behavior is
connected to a sum rule that conserves the total oscillator
strength. In addition, the energy splitting between the exciton
peak and trion peak grows with increasing doping density,
and is roughly given by Esplit � �T + εF. Some experiments
also show that the exciton linewidth increases proportionally
to the Fermi energy, while the trion linewidth is relatively
insensitive to it [3,10]. Finally, in the high doping density
regime, the trion and exciton line shapes are susceptible to
temperature, and may become strongly asymmetric [2,3]. This
latter feature implies the possible existence of a Fermi-edge
singularity, which has been shown to exist in doped two-
dimensional semiconductors [15–17]. All of these doping-
dependent phenomena suggest the importance of many-body
effects for understanding the nature of the trion.

Various theories have been proposed to study the trion
transition and simulate the doping-dependent optical spectra
in semiconductors [13,14,18–26], but many questions remain.
A common picture of the trion transition is that of an electron-
hole-pair generated in the presence of a background doping
electron, from which the bound trion state forms. The transi-
tion amplitude connecting the exciton, the background elec-
tron and the trion state can be calculated by Fermi’s golden
rule [13,18,19,24]. This method is useful in the extremely
low doping-density limit (εF � �T), but it fails to explain
doping-dependent phenomena for higher doping densities.
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An improved approach proposed by Bronold [20,23] sug-
gests a dynamical theory to explain the oscillator-strength
competition between the exciton and trion peaks. Accord-
ingly, the photogenerated valence hole scatters and transfers
momentum to excite a Fermi sea electron-hole pair in the con-
duction band. The excited electron interacts with the photo-
generated electron-hole pair to form a bound trion state. Along
with the hole in the Fermi sea, the trion transition is inter-
preted as a dynamical trion-hole generation process. Bronold
employed an exciton Green’s function formalism to simulate
the absorption line shape, and included the dynamical trion-
hole generation by means of diagrammatic self-energy cor-
rections. Within this formalism, the doping-dependent optical
spectrum can be simulated in low doping-density regime
(εF < �T), and the sum rule and oscillator strength trans-
fer can be elucidated well. In addition to this study, Esser
et al. also proposed a similar dynamical theory based on the
density-matrix approach [21]. They applied their theory to the
optical spectra of one-dimensional nanostructures. However,
due to the difficulty to compute the eigenspectrum of the
trion in two dimensions, a detailed discussion of the trion and
exciton line shapes with respect to different doping densities
and temperatures in two dimensions has not been carried out
within these theoretical frameworks.

Other theories exist which describe the dynamical process
of trion-hole generation. One such theory is the T-matrix
model proposed by Suris et al. [22,23]. Based on this ap-
proach, the trion binding energy can be obtained by solving
a Lippmann-Schwinger equation which describes electron-
exciton scattering. By assuming that only s-wave scattering
is important and parametrizing the T -matrix phenomenolog-
ically, the authors found reasonable doping-dependent line
shape variation without concern for the details of the scat-
tering potential. Recently, Efimkin and MacDonald [26] ex-
tended the T -matrix model in their Fermi-polaron theory of
trion transition. The Fermi-polaron picture is normally em-
ployed in the study of the quasiparticle properties of impurity
atoms immersed in, and strongly coupled to, an ultracold
Fermi gas [27–30]. In the present context, the impurity atom
is replaced by an exciton and the Fermi gas is represented
by the electron gas, such that the quasiparticle is given the
name “exciton-polaron.” In this framework, the trion transi-
tion can be interpreted as the lower-energy attractive exciton-
polaron branch. A derivable scattering model has been built
by approximating the electron-exciton scattering potential by
a contact interaction. The trion binding energy (�T) can then
be calculated and the optical spectrum in full doping-density
regime can also be obtained. However, the trion binding en-
ergy appears to be overestimated and is found to be dependent
on an ultraviolet cutoff energy. Since the cut-off dependence
is abruptly distinguishable with a trion model described by
the three-particle Schrödinger equation (presumably valid in
the limit of vanishing doping density), the difference between
the exciton-polaron state and the standard view of a trion state
requires further investigation.

Based on concepts related to the Fermi-polaron approach,
the Fermi-edge singularity associated with optical transitions
in doped materials in the large exciton mass limit can also
be studied. In particular, the Mahan-Noziéres-De Dominicis
(MND) theory provides a framework to study the doping

dependence of optical line shapes in a dense electron gas
[15,16,31–38]. Traditionally, the MND model is used to study
an infinite-mass hole immersed in a Fermi sea in conjunction
with an electron-hole scattering potential to explain the origin
of edge singularity behavior. In a recent work, Baeten and
Wouters [25] applied an electron-exciton-scattering version of
MND theory to the study of trion-polaritons. A long-range
attractive Yukawa potential was used to simulate the electron-
exciton interaction, and a trion transition can be obtained
by numerically solving the model. The calculated doping-
dependent optical spectra show some features coincident with
behaviors observed in the optical spectra of TMDCs. How-
ever, the use of a Yukawa form of the scattering potential
results in an overestimation of the trion binding energy and
a doping-independent exciton linewidth. A better choice of
model potential to describe electron-exciton scattering would
be helpful to remedy these issues for applications in two-
dimensional semiconductors.

The goal of the present work is to unify our understanding
of the doping-dependent optical spectra of two-dimensional
semiconductors via a systematic exploration of these re-
lated approaches and to improve upon them. An appropriate
electron-exciton scattering potential is derived, and a many-
body scattering Hamiltonian which describes an exciton im-
mersed in Fermi sea interacting with electrons through this
potential is written down. While the many-body Hamiltonian
cannot be solved exactly, we reduce the description to two
limiting situations which correspond to a particular type of
electron-exciton scattering problem and the MND problem.
The electron-exciton scattering problem can be solved by
a Bethe-Salpeter equation (BSE), whose eigenspectrum can
be included into the self-energy in a Green’s function for-
malism. We show how this approach, which we will call
the BSE formalism in the following discussions, is concep-
tually related to Bronold’s dynamical theory of trion-hole
generation [20], Suris’ T -matrix model [22], and Efimkin-
MacDonald’s Fermi-polaron theory [26]. However, our BSE
formalism improves upon their works via the use of a physical
and realistic electron-exciton potential. In addition, a direct
connection between the dynamical trion-hole viewpoint and
the Fermi-polaron theory is made explicit for the first time.
The doping-dependent exciton and trion line shapes can be
studied analytically in low doping-density regime, and ex-
tended to higher doping densities numerically. In the other
limiting situation of infinite exciton mass, the MND model
is numerically solved and the optical spectrum is obtained
by propagating the Green’s function in the time domain. The
doping-dependent and temperature-dependent optical spectra
of two-dimensional materials can then be numerically studied
and compared with calculated results of the BSE approach and
experimental expectations.

This paper is organized as follows. In Sec. II, we give a
heuristic review of the theories of optical transitions in doped
semiconductors by writing down the wave functions associ-
ated with the optically generated quasiparticles. The concepts
and relationship between the exciton state, trion state, trion
transition, electron-exciton scattering, dynamical trion-hole
generation, Fermi-polaron and Fermi-edge singularity are in-
troduced in a second-quantization language. Building on these
concepts, the derivation of the electron-exciton scattering

125421-2



MANY-BODY THEORY OF OPTICAL ABSORPTION IN … PHYSICAL REVIEW B 99, 125421 (2019)

potential becomes manifest. In Sec. III, the electron-exciton
scattering potential is derived and the many-body scattering
Hamiltonian is written down. Approximate methods based
on the BSE formalism and the MND theory to solve the
Hamiltonian are introduced. The connection between the BSE
formalism and Efimkin-MacDonald’s Fermi-polaron theory
[26] is also discussed. By using the self-energy from the BSE
formalism, the exciton and trion line shapes are analyzed in
Sec. IV. Numerical calculations within both the BSE formal-
ism and the MND theory are provided in Sec. V to study
the exciton and trion line shapes. The optical band-gap renor-
malization and Pauli-blocking effects due to electron doping
in two-dimensional materials are also discussed. Finally, our
conclusions are given in Sec. VI.

II. HEURISTIC WAVE-FUNCTION THEORY

In the case of weak light-matter interaction, the optical ab-
sorption of solid-state materials can be realized as a dynamical
conduction process. The creation of an exciton is associated
with the electron-hole-pair generation process, whereby the
electron and hole become bound due to the attractive Coulomb
interaction between them. The frequency-dependent transition
spectral density of this process is proportional to

A(ω) ∼ 1

ω

∑
K

| 〈XK| ĵ|0〉 |2δ(ω − εX,K ), (1)

where |XK〉 is an exciton state, |0〉 is the ground state, εX,K =
〈XK|Ĥ|XK〉 − 〈0|Ĥ|0〉 is the exciton transition energy, and ĵ
is the current operator [37]. The ground state can be described
as one with the valence band fully occupied and the conduc-
tion band completely empty. The exciton state can then be
written as |XK〉 = X̂ †

K |0〉, where

X̂ †
K =

∑
p

�X,pĉ†
p+Kd̂†

−p, (2)

is the exciton creation operator, ĉ†
p is the creation operator

of electron in the conduction band with quasimomentum p,
d̂†

p is the creation operator of hole in the valence band, and
�X,p is the exciton wave function. For a direct band-gap
semiconductor, the electric current operator is written as

ĵ � e
∑

k

(Pkcvĉ†
kd̂†

k + P∗
kcvd̂kĉk ), (3)

where Pkcv is the momentum matrix element. Therefore, a
vertical transition selection rule 〈X0| ĵ|0〉 �= 0 can be found.

On the other hand, the trion transition is more complex.
The trion state can be written as |TQ〉 = T̂ †

Q |0〉, where the
trion creation operator is

T̂ †
Q =

∑
pq

�T,pqĉ†
p+ me

MT
Qĉ†

q+ me
MT

Qd̂†
−p−q+ mh

MT
Q
, (4)

with �T,pq the trion wave function, me the electron mass, mh

the hole mass, and MT = 2me + mh the trion mass. With these
assumptions, it is found that the transition amplitude 〈TQ| ĵ|0〉
is zero. A commonly used modification is to employ a dif-
ferent initial state in calculating the transition rate. Assuming
that the initial state is |eQ〉 = ĉ†

Q |0〉, such that the transition

amplitude 〈TQ| ĵ|eQ〉 is nonzero, then the transition spectral

density in the Fermi’s golden rule limit is [18,19,24]

A(ω) ∼ 1

ω

⎛
⎝1 − σ

∑
Q

nQ

⎞
⎠|〈X0| ĵ|0〉|2δ(ω − εX)

+σ

ω

∑
Q

nQ|〈TQ| ĵ|eQ〉|2δ(ω−εT,Q+εe,Q), (5)

where σ is an adjustable parameter related to the photon-
electron scattering cross-section, nQ is the electron density
distribution of the |eQ〉 state, εT,Q = 〈TQ|Ĥ|TQ〉 − 〈0|Ĥ|0〉 is
the trion transition energy, and εe,Q = 〈eQ|Ĥ|eQ〉 − 〈0|Ĥ|0〉
is the electron quasiparticle energy. Although this is an ad hoc
description, the above formula is quite useful and physical in
the extreme low doping-density limit (εF � �T). Particularly
if we assume 〈X0| ĵ|0〉 � 〈TQ| ĵ|eQ〉, integration over the rate
constant

∫
dω A(ω) is roughly invariant to doping density,

implying that the lowest-order sum rule is fulfilled. However,
with higher doping density and thus

∑
Q nQ � 1/σ , the transi-

tion rate constant becomes negative and the formula becomes
unphysical.

Another description of the trion transition is given by
Fermi-polaron approach [26]. Based on this framework, the
ground state is described by the Fermi sea formed by the
electron gas that resides in the conduction band, in addition to
the fully occupied valence band. When an exciton is excited,
the Coulomb interaction between the exciton and the Fermi
sea induces electron-hole polarization near the Fermi surface.
The Fermi-polaron state |P〉 can be written as [29]

|P〉 = �0X̂ †
0 |FS〉 +

∑
q,K

�q,KX̂ †
−Kĉ†

q+Kĉq |FS〉 , (6)

where �0, �q,K are superposition coefficients, and |FS〉 is
the Fermi sea conduction-band plus fully occupied valence-
band state. The coefficients �0, �q,K can be determined by
treating |P〉 as variational wave function via minimization
of the variational energy. Since we are not considering the
Coulomb interaction among the electrons in the Fermi sea,
we can assume the Fermi sea is composed of independent
electrons and replace |FS〉 by ĉ†

Q |F̃S〉, where |F̃S〉 = ĉQ |FS〉.
Therefore the Fermi-polaron state becomes

|P〉 = �0X̂ †
0 c†

Q |F̃S〉 +
∑

K

�Q,KX̂ †
−Kĉ†

Q+K |F̃S〉 . (7)

If we define the incoming state and outgoing state as

|in〉 = X̂ †
0 c†

Q |F̃S〉 , |out〉 = X̂ †
−Kĉ†

Q+K |F̃S〉 , (8)

then solving for the variational coefficients reduces to an
electron-exciton scattering problem. If there is an attractive
interaction between the electron and the exciton, an extra
bound state may exist, which can be interpreted as a trion
state.

Although the Fermi-polaron state and the trion state appear
to be different, the two pictures can be connected if the
electron-exciton bound state can be related to the trion state
by a linear transformation,

T̂ †
Q =

∑
K

�Q,KX̂ †
−Kĉ†

Q+K. (9)
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In this case, the Fermi-polaron state can be rewritten as

|P〉 = �0X̂ †
0 |FS〉 +

∑
Q

�̃QT̂ †
Q ĉQ |FS〉 , (10)

with �Q,K = �Q,K�̃Q. Therefore Fermi-polaron generation
can be seen as the collective excitation of trion-hole-pair
states, where the hole is created by annihilating an electron
in the Fermi sea. If the trion-hole interaction energy is small
compared to the trion binding energy, the excitation will show
particlelike features, such that the process can be interpreted
as trion generation. The collective nature of dynamical trion-
hole generation and the trion-hole interaction will however
affect the trion and exciton transition energies and line shapes.

The problem of the Fermi-edge singularity is naturally con-
nected to that of the Fermi-polaron, since they both describe
an impurity immersed in, and interacting with, the Fermi
sea. In the case under consideration here, the impurity is an
exciton. While the scattering function formalism describes
single electron-hole pair excitation near the Fermi surface,
the Fermi-edge singularity is caused by multiple electron-
hole pair excitation. Based on the Fermi-polaron state wave
function, if the exciton mass is much larger than the electron
mass and the electron density is sufficiently high, and �Q,K
is approximated by �K for a short-range electron-exciton
interaction, the edge singularity state will include multiple-
excitation terms as

|ES〉 = �0X̂ †
0 |FS〉 +

∑
K

�KX̂ †
−KB̂†

K |FS〉

+
∑
K1K2

�K1,K2 X̂ †
−K1−K2

(
B̂†

K1
B̂†

K2

) |FS〉 + · · ·

+
∑

K1···Kn

�K1···Kn X̂ †
− ∑n

α=1 Kα

(
n∏

α′=1

B̂†
Kα′

)
|FS〉 + · · · ,

(11)

where B̂†
K = ∑

q ĉ†
q+Kĉq is the Fermi sea electron-hole exci-

tation operator. If the hole and electron are excited within the
energy scale of the Fermi surface, the Fermi sea electron-hole
excitation energy will be close to zero. When the exciton mass
is large, the exciton kinetic energy makes a vanishingly small
contribution to the excitation energy. Therefore all multiple-
excitation terms can have an excitation energy coincident with
the exciton transition energy, producing a divergence in the
oscillator strength close to the exciton transition energy.

To describe all relevant transitions, the Fermi-polaron state
wave function in Eq. (6) or the edge-singularity state wave
function in Eq. (11) can act as variational wave functions, and
the wave-function coefficients can be treated as variational pa-
rameters. If the lowest-energy solution of the variation prob-
lem has a lower energy than the exciton transition energy, the
state may be interpreted as a trion bound state. Other solutions
with energies higher than the exciton transition energy can be
interpreted as electron-exciton scattering states. However, the
variational problem is too difficult to solve in the electron-
hole basis due to the large number of degrees of freedom.
Approximations are needed in order to reduce the numerical
effort. In the present work, one approximation we consider is
to reduce the electron-hole basis to an electron-exciton basis.

The exciton state is then presumed to be a particle state that
can not be decomposed, and the exciton transition energy is
taken as a parameter. Via this approximation, the number of
degrees of freedom is greatly reduced. In Sec. III, we will give
the formal theory of this reduction and provide the methods of
solution of the resulting theory.

III. FORMAL THEORY

In this section, we give a formal theory of the exciton
Green’s function based on a many-body scattering Hamil-
tonian, which includes electron and exciton kinetic energies
and an appropriate electron-exciton scattering potential. We
assume that, by solving the exciton Green’s function of the
many-body scattering Hamiltonian, a trion peak can be found
and the doping dependence of the exciton and trion line shapes
can be explained. In Secs. III A and III B, the electron-exciton
scattering potential is derived and the many-body scattering
Hamiltonian is introduced. However the many-body Hamilto-
nian is not exactly solvable, and some approximations must
be employed. One avenue to approximation is the reduction
of the many-body problem to a two-particle scattering prob-
lem between an electron and an exciton. In Sec. III C, we
introduce this method and show that it is closely related to
Efimkin and MacDonald’s Fermi-polaron theory for optical
absorption of a two-dimensional doped semiconductor [26].
While their Fermi-polaron theory requires a cut-off energy-
dependent trion binding energy, our theory eliminates this
shortcoming. In Sec. III D, a BSE formalism that employs
Bronold’s dynamical theory of trion-hole generation [20] is
derived. Finally, we consider another approximate method
valid in the limiting situation where the exciton mass is
infinitely large. Here, the many-body scattering Hamiltonian
is reduced to an electron-exciton version of the MND model
[25]. In Sec. III E, the MND model and its numerical method
of solution are introduced.

A. Scattering potential

In order to find the scattering potential between electron
and exciton, we consider the electron-hole Hamiltonian for
electron-doped semiconductors [39]

Ĥ =
∑

k

(εe,kĉ†
kĉk + εh,kd̂†

k d̂k )

+
∑
kk′q

Uq

2
(ĉ†

k+qĉ†
k′−qĉk′ ĉk − 2ĉ†

k+qd̂†
−k′−qd̂−k′ ĉk ), (12)

where the Hamiltonian contains kinetic energy terms and
Coulomb interaction terms, εe,k, εh,k are the kinetic energies
of electron and hole, and Uq = vq/LD, with vq the Coulomb
potential and LD the volume of the system. The scattering
transition amplitudes can be calculated by using the electron-
exciton basis states of Eq. (8). Note that the Q of all basis
states are equal in order to fulfill momentum conservation. For
the diagonal term of the Hamiltonian matrix, we find

(〈F̃S| ĉQ+KX̂−K )Ĥ(X̂ †
−Kĉ†

Q+K |F̃S〉)

� EF̃S + εX,−K + εe,Q+K, (13)
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where EF̃S = 〈F̃S| Ĥ |F̃S〉 = 〈FS| Ĥ |FS〉 − εe,Q is the Fermi
sea ground-state energy and εX,K is the exciton excitation
energy. The nondiagonal terms of the Hamiltonian matrix give
the scattering potential

VKK′,Q = (〈F̃S| ĉQ+KX̂−K )Ĥ(X̂ †
−K′ ĉ

†
Q+K′ |F̃S〉). (14)

The exciton creation operator is assumed to be X̂ †
−K =∑

p �pĉ†
pd̂†

−p−K, where �p is the exciton wave function. Since
the electron-exciton interaction only involves the electron and
hole degrees of freedom contained in the basis states, Eq. (14)
becomes

VKK′,Q =
∑
pp′

�∗
p�p′ 〈ĉQ+Kĉpd̂−p−KĤĉ†

p′ d̂
†
−p′−K′ ĉ

†
Q+K′ 〉 . (15)

Assuming that the conduction electron is sparse and thus the
scattering potential is unaffected by the electron density, the
scattering matrix elements are given by

〈ĉQ+Kd̂−p−KĉpĤe-eĉ†
p′ d̂

†
−p′−K′ ĉ

†
Q+K′ 〉

=
∑
kk′q

Uq

2
〈ĉQ+Kd̂−p−Kĉpĉ†

k+qĉ†
k′−qĉk′ ĉkĉ†

p′ d̂
†
−p′−K′ ĉ

†
Q+K′ 〉

� δp−p′,K′−K(UK′−K − Up−Q−K′ ) (16)

and

〈ĉQ+Kd̂−p−KĉpĤe-hĉ†
p′ d̂

†
−p′−K′ ĉ

†
Q+K′ 〉

=−
∑
kk′q

Uq〈ĉQ+Kd̂−p−Kĉpĉ†
k+qd̂†

−k′−qd̂−k′ ĉkĉ†
p′ d̂

†
−p′−K′ ĉ

†
Q+K′ 〉

�−(−UQ+K−p′δp,Q+K′ −Up−Q−K′δQ+K,p′ + UK−K′δp,p′ ).

(17)

The scattering potential can thus be written as

VKK′,Q = V di-ee
KK′ + V ex-ee

KK′,Q + V di-eh
KK′ + V ex-eh

KK′,Q, (18)

with a direct electron-electron interaction V di-ee
KK′ , an exchange

electron-electron interaction V ex-ee
KK′,Q, a direct electron-hole

interaction V di-eh
KK′ , and an exchange electron-hole interaction

V ex-eh
KK′,Q. The interactions are

V di-ee
KK′ =

∑
p

U ∗
K−K′�

∗
p�p+K−K′ , V di-eh

KK′ = −UK−K′ , (19)

V ex-ee
KK′,Q = −

∑
p

Up�
∗
p+Q+K′�p+Q+K, (20)

and

V ex-eh
KK′,Q =

∑
p

(U ∗
p �∗

Q+K′�p+Q+K+Up�
∗
p+Q+K′�Q+K ). (21)

It it important to note that the present derivation does not
consider the spin degree of freedom. Therefore the electron
and hole creation operators contained in the trion creation
operator can be seen to have the same spin quantum number.
In this case, the exchange interaction is of opposite sign to that
of the direct interaction. However, if the two electrons which
comprise the electron portion of the trion have different spin

quantum numbers, the exchange interaction can be zero or of
the same sign as the direct interaction, and will depend on
the overall spin state of the trion. The spin dependence of the
trion is beyond the scope of this work, and we will ignore all
exchange interactions in the following discussion. The effect
of spin and exchange interactions will be studied in future
work.

Assuming Uq = U ∗
q and �K = K − K′, the total direct

interaction can be written as

V di
KK′ = −U�K

(
1 −

∑
p

�∗
p�p+�K

)
. (22)

The wave-function overlap
∑

p �∗
p�p+�K is unity for �K =

0 and tends to zero as �K → ∞. Via Taylor expansion with
respect to |�K|, the wave-function overlap can be expressed
as ∑

p

�∗
p�p+�K �

∑
p

�∗
p�p − i|�K|

∑
p

�∗
p

(
i

∂

∂ p

)
�p

−1

2
|�K|2

∑
p

�∗
p

(
i

∂

∂ p

)2

�p + · · · .

(23)

Assuming the exciton wave function is given by the nodeless
1s-orbital wave function obtained from the two-dimensional
hydrogen atom problem, the wave-function overlap can be
approximated as∑

p

�∗
p�p+�K � exp

(
− 1

2
|�K|2ξ 2

)
, (24)

where ξ 2 = ∑
p �∗

p (i∂/∂ p)2�p, since it can be shown that∑
p �∗

p (i∂/∂ p)�p = 0 for a 1s orbital. The exponential form
of the approximate wave-function overlap reproduces the
correct behavior as �K → 0. Given that �p is the 1s orbital
of an exciton, the characteristic length ξ can be interpreted as
the exciton radius.

B. Many-body scattering Hamiltonian

With exchange interactions ignored, the many-body scat-
tering Hamiltonian for an exciton immersed in an electron gas
can be written as

Ĥeff =
∑

K

εX,KX̂ †
KX̂K +

∑
k

εe,kĉ†
kĉk

+
∑

QKK′
VK,K′ ĉ†

K+QĉK′+QX̂ †
−KX̂−K′ , (25)

where the exciton kinetic energy and electron kinetic energy
can be written as

εX,K = εX + |K|2
2MX

, εe,k = |k|2
2me

, (26)

where εX = εX,K=0 is the exciton transition energy, MX is
the exciton mass and me is the electron mass. The scattering
potential is assumed to have the form

VK,K′ = −vK−K′

L2

[
1 − exp

(
−1

2
|K − K′|2ξ 2

)]
, (27)
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where vK−K′ can be taken to be the screened Coulomb poten-
tial and ξ is the exciton radius.

The electric current operator for the electron-hole excita-
tion process is given by

ĵ � e(PX̂ †
0 + P∗X̂0), (28)

where P = ∑
p �pPpcv is the transition momentum matrix

element. The absorption spectrum can be calculated by the
real part of the optical conductivity or the imaginary part of
the current-current response function [37],

A(ω) = 2 Re σ (ω) = − 2

ω
Im

∫ ∞

−∞
dt eiωtπR(t ), (29)

πR(t ) = −iθ (t ) 〈G|[ ĵ(t ), ĵ]|G〉 , (30)

where θ (t ) is a step function. The ground state |G〉 = |0〉 |FS〉
is a direct product of the vacuum state of the exciton (|0〉) and
the Fermi sea of electrons (|FS〉). The response function can
be obtained from the exciton Green’s function,

πR(t ) = e2|P|2GR(t ), (31)

GR(t ) = −iθ (t ) 〈G|[X̂0(t ), X̂ †
0 ]|G〉 . (32)

Then the absorption spectrum is expressed as

A(ω) = −2e2

ω
|P|2Im GR(ω). (33)

The commutator in the Green’s function written in Eq. (32)
implies that the exciton operators are presumed to be bosonic
particles. However, since the ground state is an empty state
for the exciton, and only the generation of single exciton is
considered, the type of the commutation relation chosen in
Eq. (32) does not alter the final results.

C. Scattering function and Fermi polaron theory

In the frequency domain, the exciton Green’s function can
be solved by the Dyson’s equation

GR(ω) = 1

ω − εX − �R(ω)
, (34)

where �R(ω) is the exciton self-energy. Based on perturbation
theory, the lowest-order expression for the exciton self-energy
is given by

�R(ω) =
∑
pQ

(
1 − np+ me

MT
Q
)
nQ

∣∣Vp+ me
MT

Q,Q

∣∣2

ω − εX,−p+ MX
MT

Q − εe,p+ me
MT

Q + εe,Q + i0+ ,

(35)

where MT = MX + me is the trion mass. It is not difficult to
show that the imaginary part of the self-energy corresponds
to the damping constant of electron-exciton scattering derived
from Fermi’s golden rule,

ηe-X = −2Im �R(εX). (36)

This confirms that the self-energy is simply the second Born
approximation of the electron-exciton scattering problem.
However, one cannot find a bound-state solution via a simple
perturbative self-energy approximation. One needs to con-
sider, in an exact or approximate way, the complete Born

series. We assume that at lowest-order the two-particle scat-
tering function can be written as

�R
Q,Q(ω)=

∑
p

(
1 − np+ me

MT
Q
)∣∣Vp+ me

MT
Q,Q

∣∣2

ω − εX,−p+ MX
MT

Q − εe,p+ me
MT

Q + i0+ , (37)

with a self-energy

�R(ω) =
∑

Q

nQ�R
Q,Q(ω + εe,Q). (38)

By including higher-order terms in the Born series, the scatter-
ing function can be extended to the solution of a two-particle
Lippmann-Schwinger equation [40–42]

�R
Q,Q′ (ω) = VQ,Q′ +

∑
p

VQ,p+ me
MT

Q

×
(
1 − np+ me

MT
Q
)
�p+ me

MT
Q,Q′ (ω)

ω − εX,−p+ MX
MT

Q − εe,p+ me
MT

Q + i0+ , (39)

where we have used VQ,Q = 0. By solving the Lippmann-
Schwinger equation, bound states can be found as the poles
of the scattering function.

If we assume that for s-wave scattering the scattering
potential and the scattering function can be approximated as

VQ,Q′ � V, �R
Q,Q′ (ω) � �R(ω, Q), (40)

then the Lippmann-Schwinger equation becomes

�R(ω, Q) = V + V KR(ω, Q)�R(ω, Q), (41)

where the scattering kernel is

KR(ω, Q) =
∑

p

1 − np+ me
MT

Q

ω − εX,−p+ MX
MT

Q − εe,p+ me
MT

Q + i0+ . (42)

The two energy terms that appear as poles of the kernel
function can be rewritten as

εX,−p+ MX
MT

Q + εe,p+ me
MT

Q = εX + |Q|2
2MT

+ |p|2
2mT

, (43)

where mT = (M−1
X + m−1

e )
−1

is the electron-exciton reduced
mass. Equations (41) and (42) are effectively the starting point
of Efimkin and MacDonald’s Fermi-polaron theory [26]. If the
scattering process occurs in two dimensions, the approxima-
tion in Eq. (40) introduces a bound state with a binding energy
depending on the ultraviolet cutoff momentum, k�, as [26]

�T = k2
�

2mT
exp

(
− 2π

mTg

)
, (44)

with the coupling constant g connected to V via V = −g/L2.
Note that the cutoff energy can be related to the bandwidth
of the conduction band and is thus not unphysical. However,
a cutoff-dependent bound state is fundamentally inconsistent
with the trion model, valid in the limit of small doping,
based on solving the three-particle Schrödinger equation. The
cutoff-dependent bound state originates from the contact po-
tential approximation in Eq. (40), and the cutoff dependence
is known as the quantum anomaly in the two-dimensional
quantum scattering problem [43,44]. To avoid this problem,
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an interaction with some spatial range must be retained, such
that a more sophisticated method of solution is required.

D. BSE and dynamical trion-hole generation

To avoid the brute force solution of an integral equa-
tion, the two-particle Lippmann-Schwinger equation can be
solved by an orthogonal polynomial expansion, with basis
functions given by the eigenstates of the corresponding two-
particle Schrödinger equation [42]. The connection between
Lippmann-Schwinger equation and Schrödinger equation can
be derived by a BSE formalism. The two-particle Lippmann-
Schwinger equation in Eq. (39) can be rewritten as

�R
Q,Q′ (ω) = VQ,Q′ +

∑
pp′

VQ,p+ me
MT

Q

×PR
p,p′ (ω, Q)Vp′+ me

MT
Q,Q′ , (45)

where the polarization is given by

PR
p,p′ (ω, Q) = δp,p′�R

p (ω, Q)

+
∑

q

�R
p (ω, Q)Vp,qPR

q,p′ (ω, Q), (46)

and the zeroth-order polarization is

�R
p (ω, Q) =

1 − np+ me
MT

Q

ω − εX,−p+ MX
MT

Q − εe,p+ me
MT

Q + i0+ . (47)

Equation (46) is known as the BSE. The BSE can be solved
by the spectral representation

PR
p,p′ (ω, Q) =

∑
n

ρn,Q�p;n,Q�∗
p′;n,Q

ω − εX − ε̃n,Q + i0+ , (48)

where ρn,Q is the distribution function of allowed transi-
tions, and ε̃n,Q and �p;n,Q are obtained from the two-particle
Schrödinger equation

∑
p′

[
δp,p′

( |Q|2
2MT

+ |p|2
2mT

)

+Vp+ me
MT

Q,p′+ me
MT

Q

]
�p′;n,Q = ε̃n,Q�p;n,Q. (49)

Note that Eq. (43) has been used to derive the kinetic-energy
part of the Schrödinger equation. The distribution function of
allowed transitions is defined by

ρn,Q ≡ 〈G|{T̂n,Q, T̂ †
n,Q}|G〉 , (50)

where T̂ †
n,Q = ∑

p �p;n,QX̂ †
−p+(MX/MT )Qĉ†

p+(me/MT )Q is the trion
creation operator. Since the exciton state is initially empty,
we find 〈X̂kX̂ †

k′ 〉 = δk,k′ and 〈X̂ †
k′ X̂k〉 = 0. The distribution

function of allowed transitions then becomes

ρn,Q =
∑

p

�∗
p;n,Q�p;n,Q 〈FS|ĉp+ me

MT
Qĉ†

p+ me
MT

Q|FS〉

= 1 −
∑

p

|�p;n,Q|2np+ me
MT

Q. (51)

This function introduces a Pauli-blocking effect to the transi-
tion as the doping density increases. From Eqs. (45) and (48),

the exciton self-energy can be solved as

�R(ω) =
∑

Q

∑
n

nQρn,QBn,Q

ω − εX − ε̃n,Q + εe,Q + i0+ , (52)

where the self-energy spectral density is

Bn,Q =
∣∣∣∣∣
∑

p

VQ,p+ me
MT

Q�p;n,Q

∣∣∣∣∣
2

. (53)

Therefore the eigenvalues and eigenstates of Eq. (49) contain
all the information needed to construct the self-energy. The
eigenstates include the electron-exciton bound states, which
we interpret as the trion states, and the electron-exciton scat-
tering states.

The formalism described here is similar to Bronold’s
dynamical theory of trion-hole generation [20], except that
Bronold solved for the trion transition energy and the trion
state by using a three-particle Schrödinger equation. Note
that the exact solutions of Eq. (49) can be independent of
the cutoff momentum. Since the BSE formalism is equivalent
to the two-particle Lippmann-Schwinger equation formalism,
our theory of dynamical trion-hole generation is consistent
with the Fermi-polaron picture with a cutoff-independent trion
bound state.

E. MND theory and Fermi-edge singularity

To introduce Fermi-edge singularity behavior, one possible
method is to include the self-energy corresponding to the
contributions of multiple electron-hole pair excitations. How-
ever, this method is complicated and numerically demanding.
A simpler method is to reduce the present formalism to
an electron-exciton scattering version of the MND theory,
which was originally used to describe the response of the
Fermi sea to a core-hole potential [31–36]. The MND theory
has a straightforward and numerically exact solution for the
response function in terms of a time-dependent determinantal
formulation. In this section, we will derive the MND Hamil-
tonian and introduce this solution.

By a change of variables, the effective Hamiltonian can be
reformulated as

Ĥeff =
∑

Q

εX,QX̂ †
QX̂Q +

∑
k

εe,kĉ†
kĉk

+
∑

QKK′
VK,K′ ĉ†

KĉK′ X̂ †
Q−K+K′ X̂Q. (54)

Assuming that the exciton mass is infinitely large, the exci-
tonic states can be expressed as

X̂ †
Q−K+K′ X̂Q � X̂ †

QX̂Q. (55)

Due to the infinite exciton mass, the exciton transition energy
becomes εX,Q � εX, and the quasimomentum Q becomes
irrelevant. The effective Hamiltonian can be reduced to the
MND Hamiltonian [31,32]

ĤMND =εXX̂ †X̂ +
∑

k

εe,kĉ†
kĉk +

∑
kk′

Vk,k′ ĉ†
kĉk′ X̂ †X̂ , (56)
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where X̂ † and X̂ are creation and annihilation operators of the
immobile exciton.

Based on this Hamiltonian, the exciton Green’s function in
the frequency domain can be solved exactly by [25,34–36,45]

GR(ω) = −i

∫ ∞

0
dt ei(ω−εX )t det[Sk,k′ (t )]|k|,|k′|�kF , (57)

where kF is Fermi momentum, and det[Sk,k′ (t )]|k|,|k′|�kF is the
determinant of the matrix

Sk,k′ (t ) =
∑

n

�∗
k,n exp [−i(ε̃n − εk′ )t]�k′,n, (58)

with ε̃n, �k,n given by the solution of the eigenvalue problem∑
k′

(
δk,k′

|k|2
2me

+ Vk,k′

)
�k′,n = ε̃n�k,n. (59)

The exciton Green’s function can be generalized to include
the effect of finite temperatures and spectral line broadening
by including an electron distribution factor (nk) and a line
broadening parameter (γ ) [25,45]

GR(ω) = −i

∫ ∞

0
dt ei(ω−εX+iγ )t

×det[δk,k′ (1 − nk ) + nkSk,k′ (t )]. (60)

IV. EXCITON AND TRION LINE SHAPES

In this section, we scrutinize the exciton Green’s function
within the BSE formalism to investigate optical line shapes
in two dimensions. Since the exciton self-energy contributes
to the line broadening of the exciton peak and the emerging
trion peak, an analytical study of the self-energy can help us
understand the effects of the electron-exciton interaction on
the doping dependence of the optical spectra. In Sec. IV A,
the exciton self-energy and the bound-state solution of the
BSE are used to discuss the emergence of the trion peak. In
Sec. IV B, the scattering-state solutions of the BSE are used
to explain exciton line broadening. In Sec. IV C, the oscillator
strength transfer from the exciton peak to the trion peak is
studied by analytically solving for the spectral weight of the
exciton transition. In Sec. V, we follow up on our analytical
explorations with extensive numerical calculations.

A. Trion peak emergence

Based on the sign of the eigenvalues of the two-particle
Schrödinger equation at Q = 0, the exciton self-energy can be
separated into bound-state contributions, �R

b (ω) for ε̃n,0 < 0,
and scattering-state contributions, �R

s (ω), for ε̃n,0 � 0. In the
following, we will illustrate that the bound-state contribu-
tion is responsible for the emerging trion peak and that the
electron-exciton scattering states contribute to exciton line
broadening and an energy shift.

In the low-doping density regime, only |Q| → 0 needs
be considered. The self-energy spectral density Bn,Q in this
regime is insensitive to Q and can be approximated as a con-
stant. Assuming that the lowest eigenvalue of the Schrödinger
equation is

ε̃0,Q = −�T + |Q|2
2MT

, (61)

the self-energy contribution from the bound state can be
written as

�R
b (ω) �

∫
dε

D(ε) f (ε)ρ0B0

ω − εX + �T + (1 − me/MT)ε + i0+ ,

(62)

where D(ε) is the density of states, f (ε) is the Fermi-Dirac
distribution function, ρ0 is the probability of allowed transi-
tion to the bound state, B0 is the self-energy spectral density
of the bound state with |Q| → 0, and �T is the trion binding
energy. For a two-dimensional system, D(ε) = θ (ε)me/(2π ).
In the zero-temperature limit, f (ε) = θ (εF − ε), and the self-
energy becomes

�R
b (ω) � α0 ln

[
1 + (1 − me/MT)εF

ω − εX + �T

]
− iπα0θ (εX − �T − ω)

× θ

[
ω − εX + �T +

(
1 − me

MT

)
εF

]
, (63)

where α0 = ρ0B0me/[2π (1 − me/MT)]. The self-energy di-
verges at ω = εX − �T and ω = εX − �T − (1 − me/MT)εF

with εF > 0. The trion transition energy (εT) can be solved
from εT − εX − Re �R(εT) = 0 and turns out to be ap-
proximately εX − �T − (1 − me/MT)εF. The line broaden-
ing arises from the imaginary part of the self-energy. The
linewidth of the trion peak is

ηT = −2Im �R
b (εT) � 2πα0. (64)

In this regime, the trion transition is a discrete quasiparticle-
like excitation as opposed to a collective excitation, and the
trion linewidth is basically independent of the doping density.

B. Exciton line broadening

In addition to the bound-state solutions of the BSE, the
scattering-state solutions are also included in the exciton self-
energy. The transition energies of the scattering states are
close to, or larger than, the exciton transition energy, and the
associated wave functions can be approximated as plane-wave
functions. For these scattering-state contributions, the second-
Born self-energy in Eq. (35) can be used as an approximation.
By a change of variables, Eq. (35) can be rewritten as

�R
s (ω) =

∑
pq

(1 − np+q)nq|Vp+q,q|2
ω − εX − |p|2

2MX
− |p+q|2

2me
+ |q|2

2me
+ i0+

. (65)

Replacing the scattering potential by Vp+q,q = ṽp/L2 and
converting summation to integration, the self-energy can be
reformulated as

�R
s (ω) =

∫
d2pd2q
(2π )4

(1 − np+q)nqṽ
2
p

ω − εX − |p|2
2mT

− p·q
me

+ i0+
. (66)

In the integration, the range of quasimomentum q is confined
by the electron-density distribution nq, and the range of quasi-
momentum p is determined by the electron-exciton potential
ṽp. Clearly, exciton line broadening is dependent on the form
of the electron-exciton potential.

For example, consider the case of a contact potential,
ṽp = ṽ0. Since the Fermi energy is generally smaller than
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the bandwidth of conduction band, the range of |q| is much
smaller than the range of |p|, such that we can ignore the term
p · q/me in the denominator and approximate np+q � np. The
self-energy becomes

�R
s (ω) � nDṽ2

0

∫
d2p

(2π )2

(1 − np)

ω − εX − |p|2
2mT

+ i0+
, (67)

where nD = ∫
d2qnq/(2π )2 is the doping density. The exciton

line broadening function is then given by

ηX(ω) = −2Im �R
s (ω)

� 2π nDṽ2
0

∫ k�

kF

pd p

2π
δ

(
ω − εX − p2

2mT

)

∝ nDṽ2
0 θ

(
ω − εX − me

mT
εF

)
. (68)

Based on this approximate expression, the exciton linewidth
is proportional to the doping density, and the line shape is
an asymmetric peak with a threshold energy ωTH = εX +
(me/mT)εF. On the other hand, if the electron-exciton po-
tential diverges as |p| → 0, the approximation in Eq. (67)
is no longer valid. As an extreme example, consider a case
where the scattering potential diverges at a quasimomentum
much smaller than kF; here we can assume ṽp ∼ 2π ṽ0δp,0. The
exciton line broadening function becomes

ηX(ω) = −2ṽ2
0 Im

∫
d2q

(2π )2

(1 − nq)nq

ω − εX + i0+

∼ 2π ṽ2
0β

−1δ(ω − εX). (69)

In this case, exciton line broadening becomes independent
of doping density and proportional to the temperature. The
exciton peak is also fixed at the vertical transition energy.

Based on the above considerations, the doping-dependent
exciton linewidth in Efimkin and MacDonald’s work [26]
and the doping-independent exciton linewidth in Baeten and
Wouters’ work can be explained, since the former’s study
uses a contact potential while the later study uses a Yukawa
potential [25] which approaches singular behavior near zero
quasimomentum. Clearly the form of the doping dependence
is affected by the screening length of the Coulomb potential.
A numerical calculation is needed in realistic cases, as we will
pursue in Sec. V D.

C. Oscillator strength transfer

Based on standard Green’s function considerations, the
spectral weight of the exciton transition can be calculated
from [37]

ZX =
[

1 − ∂

∂ω
Re �R(ω)

∣∣∣∣
ω=εX+�R(εX )

]−1

, (70)

where �R(ω) = �R
b (ω) + �R

s (ω). Since the scattering-state
self-energy only contributes to the exciton line broadening and
does not affect the total area of the line shape, we only need
consider the bound-state self-energy at the exciton transition
energy εX to probe the spectral weight shift. Thus the spectral

weight can be approximated as

ZX �
[

1 − ∂

∂ω
Re �R

b (ω)

∣∣∣∣
ω=εX

]−1

=
[

1 + α0

�T

(1 − me/MT)εF

�T + (1 − me/MT)εF

]−1

. (71)

We find ZX = 1 at εF = 0. Assuming that ZX → 0 as εF →
∞, which implies α0/�T → ∞, the competition between
exciton and trion oscillator strengths are significant only at the
scale of the Fermi energy εF ∼ �T. This matches the observed
scale where the exciton peak is depleted.

We note that α0 is a constant only for low doping-density
regime, and thus all statements of this section are restricted
by this consideration. A full numerical investigation will be
carried out in Sec. V D.

V. NUMERICAL CALCULATIONS

In this section, numerical calculations employing both
the BSE formalism and the MND theory are performed
to compare the two methods and discuss the effects of a
broad range of doping densities as well as edge-singularity
effects. First, it is necessary to discuss the optical band-
gap renormalization due to doping, since it will affect the
positions of the trion and exciton peaks. In Sec. V A, the
parameters for two-dimensional materials are given, and some
energy-scale and momentum-scale parameters of the two-
dimensional electron gas model are introduced for usage in the
following discussions. In Sec. V B, the scale of optical band-
gap renormalization due to doping electrons is estimated. In
Sec. V C, the differential density of states is plotted by solving
the Schrödinger equation with the scattering potential. The
calculated bound-state behavior and the relationship between
the trion peak calculated via the BSE formalism and the MND
theory are discussed. In Secs. V D and V E, the doping and
temperature dependencies of the optical spectra calculated by
BSE formalism and MND theory are presented and discussed.

A. 2D materials

The exciton transition energy of a doped material can be
defined by the optical band-gap in the absence of doping and
the doping-induced energy shift,

εX = � + δ�, (72)

where � is the optical band gap and δ� is the optical band-
gap renormalization due to electron doping. For the BSE
calculations, we assume that the electron mass and hole mass
are equivalent, me = mh, such that the exciton mass is MX =
2me, the trion mass is MT = 3me, and the electron-exciton
reduced mass is mT = 2me/3. On the other hand, for the
MND calculations, the hole mass, exciton mass and trion mass
are infinitely large. The electron mass and electron-exciton
reduced mass are equal (me = mT). We assume that the
screened Coulomb potential in two dimensions is described
by the Rytova-Keldysh potential [6,46,47]. Via Eq. (27), the
scattering potential is written as

Vk,k′ = −2πe2/L2

|k − k′|(1 + r0|k − k′|) (1 − e−|k−k′ |2ξ 2/2), (73)
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where L2 is the dimensional area, r0 is the screening length,
and ξ is the exciton radius. We use a finite-size square
box with square-lattice points to approach the infinite two-
dimensional limit. The lattice k grid is given by

k = (kx, ky) =
(

2π

L
κx,

2π

L
κy

)
, (74)

where κx, κy = 0, 1, . . . , N − 1 with N the number of grid
point in one direction. The box dimension length is L = Na�,
where a� is the cutoff length and also the lattice constant. The
cutoff momentum is k� = 2π/a� and cutoff energy is ε� =
k2
�/(2me). In our calculations, we use the parameters � =

2.0 eV, ε� = 2.0 eV, r0 = 36 Å, and the effective electron
mass is assumed to be me = 0.045 eV−1 Å

−2
. We will discuss

the dependence of electron mass on the trion binding energy
in Sec V C. The exciton radius ξ is an adjustable parameter.

Electron doping in two-dimensional materials can be mod-
eled by a noninteracting two-dimensional electron gas. The
electron distribution is given by

nk = [eβ(εe,k−εF ) + 1]−1, (75)

where β is the inverse temperature and εF is the Fermi energy.
The total doping density is given by

nD = ν

L2

∑
k

nk = ν

∫ ∞

0

dk2

4π
[eβ(k2/(2me )−εF) + 1]−1

=
∫ ∞

−∞
dε D(ε) f (ε), (76)

where ν is the degeneracy factor, D(ε) = θ (ε)νme/(2π ) is the
density of states, and f (ε) = 1/[eβ(ε−εF ) + 1] is the Fermi-
Dirac distribution function. We can define the Fermi momen-
tum by

nD = ν

∫ kF

0

kdk

2π
= νk2

F

4π
. (77)

The Fermi momentum is given by kF = √
4πnD/ν. The

chemical potential is defined as

μ = k2
F

2me
. (78)

Note that the chemical potential can be different from the
Fermi energy at nonzero temperatures and becomes equivalent
to it, namely μ = εF, at zero temperature.

B. Optical band-gap renormalization

The contributions to the optical band-gap renormalization
include a Pauli-blocking effect (δ�PB), a vertical-excitation
shift (δ�VE), and a band-gap renormalization factor (δ�BG)
[48,49]

δ� = δ�PB + δ�VE + δ�BG. (79)

There are two additional contributions which are often men-
tioned in the literature that we do not consider here. One is the
exciton binding energy renormalization and the other arises
from dynamical screening. The former increases the optical
band gap and the later reduces it. According to some reports,
the two terms are minor effects and roughly cancel with each

other [50,51]. It should however be noted that these studies are
performed in the low doping density regime. In the remainder
of this work, we assume that these two contributions can be
ignored.

The Pauli-blocking effect can be subsumed into δ�PB as

δ�PB = μ, (80)

since the conduction band states lower than the chemical
potential are filled. The vertical excitation shift is accompa-
nied by a Pauli-blocking effect as well, since the the quasi-
momentum of the excited electron must be larger than the
Fermi momentum kF when the excited hole has the same
quasimomentum as the excited electron. The energy shift is
given by

δ�VE = k2
F

2mh
= me

mh
μ. (81)

The band-gap renormalization factor due to electron-electron
interactions is

δ�BG = Re σk(ω)
∣∣
k=0, ω=0, (82)

where σk(ω) is the quasiparticle self-energy. The self-energy
is given by the static screened-exchange approximation
[52,53] with a band-gap renormalization factor that can be
written as

δ�BG = − 1

L2

∑
q

nqWq. (83)

The screened potential is given by Wq = (v−1
q − �q)−1,

where the Rytova-Keldysh potential vq can be approximated
as Coulomb potential in long-wavelength regime (q � kF)

vq � 2πe2

q
. (84)

The polarization is given by the Stern’s formula [54–56]

�q = −νme

2π

[
1 − θ (q − 2kF)

√
1 − (2kF/q)2

]
. (85)

Since �q = −νme/(2π ) when q � kF, the screened potential
can be approximated as

Wq � 2πe2

q + qTF
, (86)

where qTF = νmee2 is the Thomas-Fermi wave vector in two
dimensions. The band-gap renormalization factor in the zero-
temperature limit is given by

δ�BG = −
∫

d2q
(2π )2

nqWq

� −e2

[
kF − qTF ln

(
1 + kF

qTF

)]
. (87)

Since kF � qTF, we find

δ�BG � −e2

[
kF − qTF

(
kF

qTF
− k2

F

2q2
TF

+ · · ·
)]

� − e2k2
F

2qTF
= − k2

F

2νme
= −μ

ν
. (88)
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For a spin-degenerate electron gas, δ�BG � −μ/2 as found
from the static screened-exchange approximation. However,
for the case where the spin-orbit coupling is large enough
to split the spin degeneracy and the splitting energy is larger
than or close to the chemical potential, the degeneracy factor
becomes ν = 1. In this case, the value of the band-gap renor-
malization factor becomes δ�BG � −μ. This is the situation
that occurs in TMDC monolayers and in most semiconducting
quantum wells. In the present calculations, we will consider
this later case.

In summary, within the approximations outlined above, the
total optical band-gap renormalization is approximately given
by

δ� = me

mh
μ, (89)

which for our BSE calculations we take as δ� = μ, since we
choose equal electron and hole masses. The optical band-gap
renormalization for our MND calculations is δ� = 0, since
the hole mass is infinitely large.

C. Electron-exciton scattering and bound states

In this section, we study the bound-state solution of the
electron-exciton scattering problem by solving the eigenvalue
problem

∑
k′

(
δk,k′

|k|2
2m

+ Vk,k′

)
�k′,n = ε̃n�k,n. (90)

The equation is identical to Eq. (59) in our discussion of the
MND theory for m = me. The equation with m = mT can also
be used to find the eigenvalue and the eigenvector of Eq. (49)
since the center-of-mass momentum can be decoupled as

ε̃n,Q = ε̃n + |Q|2
2MT

, �k;n,Q = �k,n. (91)

In order to describe the impurity-induced bound states of the
system, we define the differential density of states (diff. DOS)
as

�ρ(ω) ≡ 1

N2

[∑
n

δ(ω − ε̃n) −
∑

k

δ(ω − εk )

]
. (92)

This quantity measures the spectral density shift from the
noninteracting Fermi gas to the reorganized Fermi gas due to
the electron-exciton interaction. In Fig. 1(a), the calculated
diff. DOS with different values of the electron mass and
exciton radius is shown. It is found that a negative energy
bound state exists for each parameter set. In the language
employed in this work, the bound state is assigned as the
trion state. The trion binding energy depends on the mass and
the exciton radius. It is found that the trion binding energy
increases as the electron mass and exciton radius parameters
increase.

In Figs. 1(b) and 1(c), the optical spectra given by (b)
the BSE formalism and (c) the MND theory with electron
mass me = m are shown for different exciton radius. The
peaks close to ω − � � 0 are assigned as exciton transitions
and the additional peaks with lower energies are assigned as
trion transitions. As can be seen, the trion binding energies

FIG. 1. (a) Differential DOS; (b) absorption spectrum from the
BSE formalism; (c) absorption spectrum from the MND theory with
β−1 = 0 meV, εF = 5 meV, γ = 1 meV, N = 140.

calculated with the same parameters but by different methods
are quite different. The binding energy calculated by the BSE
formalism is consistently smaller than the one calculated by
the MND theory. This occurs because that the binding energy
given by the BSE formalism is calculated by diagonalizing
Eq. (90) with m = mT = 2me/3, while the binding energy
given by the MND theory is calculated from the same equation
with m = me. The binding energy obtained from the BSE

formalism with me = 0.045 (eV)−1 Å
−2

is close to the bind-
ing energy of the MND theory with me = 0.030 (eV)−1 Å

−2
.

Since the effective electron mass can be found computa-

tionally [9], and is about me = 0.045 (eV)−1 Å
−2

for MoS2

(∼0.34 m0, where m0 is the bare electron mass), we choose
different exciton radii for different methods (ξ = 22 Å for
BSE and ξ = 17 Å for MND) to adjust the binding energies
to similar values. Through this adjustment, we can compare
the optical spectra by the two methods and exclude the bind-
ing energy difference, thus enabling consideration of edge-
singularity effects.

Note that we use an overestimate of the exciton radius
for each method and still find an underestimate of the trion
binding energy. For a monolayer TMDC, such as MoS2, the
exciton radius is about 10 Å and the trion binding energy is
over 20 meV based on the calculation of the three-particle
Schrödinger equation model [6]. The deviation results from
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FIG. 2. The doping-dependent optical spectra calculated by the
BSE formalism (top) and the MND theory (bottom) with me =
0.045 (eV)−1 Å

−2
, β−1 = 0.1 meV, γ = 2 meV, N = 140. The inset

in upper panel shows the spectra calculated by the BSE formalism
without the distribution function of allowed transition ρn,Q for n = 0
(the trion bound state) in Eq. (52).

some factors not considered in the present theory. First, we do
not include the exchange energy in our model. The exchange
energy can be described as the indistinguishability between
the doping electron and the bound electron in the exciton.
For the Schrödinger equation model, the exchange energy can
be included by assuming that the variational wave function
is symmetric to the exchange of the two electron degrees
of freedom. Secondly, we do not consider the relaxation
of the exciton transition energy to lower values due to its
interaction with the doping electrons. Lastly, the electron-
exciton scattering potential has been written by assuming
that the exciton wave function is a 1s-orbital solution of
the two-dimensional hydrogen atom. However, it is possible
that there exist excited-state orbitals that hybridize with the
exciton wave function when the exciton interacts with doping
electrons. All of these factors contribute to the observed
deviations and are beyond the present discussion. We will
leave these issues to a future study.

D. Doping-dependent optical spectra

By altering the Fermi energy, the doping dependence of
the optical spectrum can be studied. Figure 2 shows the
doping-dependent optical spectra calculated by both the BSE
formalism and the MND theory. As can be seen, for both
methods, the trion peak emerges with positive increases of
the Fermi energy, and the energy splitting between the ex-
citon peak and the trion peak increases upon doping. The
oscillator strength transfer from exciton peak to trion peak
calculated by the BSE formalism saturates with increasing εF.

FIG. 3. The doping-dependent exciton-trion peak positions, peak
areas, and peak widths calculated by the BSE formalism (left) and the

MND theory (right) with me = 0.045 (eV)−1 Å
−2

, β−1 = 0.1 meV,
γ = 2 meV, N = 140. The peak areas are calculated by integrating
the imaginary part of the exciton Green’s function and are normalized
to the total area at εF = 0 for each method.

The saturation can only be attributed partially to the Pauli-
blocking effect discussed in Sec. IV C. Via performing the
BSE calculation without the distribution function of allowed
transition ρn,Q for n = 0 (the trion bound state) in Eq. (52), a
new doping-dependent spectra is shown in the inset of Fig. 2
and a reduction of the saturation of the oscillator strength
transfer is observed. The heights of the trion peaks in the high
doping-density regime (εF � �T) surpass those of the exciton
peaks. However, the peak area transfer between the exciton
and trion peaks remains saturated. The result (the exceedance
of the peak heights and the saturation of the peak areas) is
consistent with the calculation of Ref. [26], which also does
not appear to contain explicit Pauli-blocking term for the trion
transition. On the other hand, the oscillator strength transfer
calculated by the MND theory shows no saturation.

Via simple curve fitting, the energy splitting between exci-
ton peak and trion peak, the peak areas, and the peak widths of
the two peaks calculated by the BSE formalism and the MND
theory are estimated and shown in Fig. 3. For calculations
based on the BSE formalism, the energy splitting is approx-
imately proportional to the Fermi energy, Esplit � �T + εF,
and �T is about 19 meV, where the trion binding energy is
equal to the peak position of the Diff. DOS calculation shown

in Fig. 1(a) with ξ = 22 Å and m = 0.030 eV−1 Å
−2

. The
increasing peak area of the trion transition and the decreasing
peak area of the exciton transition with respect to increasing
the Fermi energy are shown, and the total area is conserved
for different Fermi energies. As can be seen in Fig. 3, the
oscillator strength transfer is gradually saturated. For the peak
widths, the exciton linewidth is roughly proportional to the
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Fermi energy, implying that the scattering potential is more
similar to a contact potential at the relevant length scales. On
the other hand, the trion linewidth is basically invariant to
changes in the Fermi energy as found in Ref. [26].

For the calculations based on the MND theory, the trion
peak continues to grow as the Fermi energy increases, and
the energy splitting is given by Esplit � �T + εF, with �T

about 19 meV, where the trion binding energy is equal to the
peak position of the Diff. DOS calculated in Fig. 1(a) with

ξ = 17 Å and m = 0.045 eV−1 Å
−2

. Note that the doping
density is nonzero at εF = 0 eV due to the small but nonzero
temperature, such that the trion line shape emerges and has
a finite oscillator strength even at εF = 0. Similar to the
BSE calculation, with increasing Fermi energy the peak area
of the trion transition increases and the peak area of the
exciton transition decreases, with the total area conserved for
different doping densities. The peak areas of exciton and trion
transitions intersect around 18 meV, which is also close to the
trion binding energy. The peak widths of exciton and trion
transitions are found to have a somewhat quantitatively differ-
ent dependence with the Fermi energy. The trion linewidth
calculated by the MND theory is roughly invariant to the
Fermi energy, and the exciton linewidth is proportional to the
Fermi energy, as in the BSE calculation.

In comparison with the results calculated by the BSE
formalism, the MND results show better correspondence with
at least some experiments which show an oscillator strength
transfer that shows no sign of saturation with increasing εF

[1,2,7]. This implies that the Fermi sea multiple-electron-hole
excitations, which are responsible for the creation of the
Fermi-edge singularity, may also contribute to the trion peak.

E. Temperature-dependent optical spectra

In this section, the temperature dependence of the optical
spectrum is discussed. In Fig. 4, the temperature-dependent
optical spectra calculated by both the BSE formalism and
the MND theory are given. For both spectra, the linewidths
are broadened and the peak heights become lower as the
temperature increases. For the spectra calculated by the MND
theory in extremely low-temperature regime (below 1 meV),
both the exciton and the trion peaks exhibit asymmetric line
shapes near the transition energies (ω − � � μ for exciton
and ω − � � −�T for trion), and the peak heights are sensi-
tive to the temperature. Both of these features are signatures
of the Fermi-edge singularity. On the other hand, the spectra
calculated by the BSE formalism are relatively insensitive to
temperature variations in this low temperature regime. As can
be seen in Fig. 4, only very small variations of the trion and
exciton line shapes can be observed when the temperature is
on the order of 5% of the trion binding energy.

VI. DISCUSSIONS AND CONCLUSION

In the present work, we have theoretically studied the prob-
lem of an exciton immersed in a Fermi sea which interacts
with electrons through a scattering potential. We have focused
on two approximate methods, the BSE formalism and the
MND theory, to solve a many-body Hamiltonian parametrized
to describe two-dimensional semiconductors. We find some

FIG. 4. The temperature-dependent optical spectra calculated by
the BSE formalism (top) and the MND theory (bottom) with me =
0.045 (eV)−1 Å

−2
, εF = 10 meV, γ = 1 meV, N = 140.

results that are coincident with experimental observations and
expectations [1–5,7,10]. Both the BSE formalism and the
MND theory describe the trion peak emergence, the oscillator
strength transfer, and the doping-independent line shapes in
a sensible manner in the low doping-density regime. When
the Fermi energy exceeds the trion binding energy, the BSE
formalism may not account completely for the oscillator
strength transfer from the exciton peak to the trion peak, while
the MND theory is found to describe this effect [2]. This
limitation of the BSE approach can only be altered in part by
the ad hoc procedure of removing the Pauli-blocking term.

Neither the BSE nor the MND theories are expected to
capture all experimental features over all parameter regimes,
since they only describe two limiting physical situations of a
simple model. Even if we could solve the many-body scat-
tering Hamiltonian exactly, there are still many factors which
are not included in our model which could affect the results of
the calculations. In Sec. V C, we have discussed three such
factors that may result in an underestimation of the trion
binding energy. The same missing physical ingredients may
also cause errors in the prediction of the doping dependence
and temperature dependence of optical spectra. In addition
to the mentioned factors, a significant approximation of the
many-body scattering Hamiltonian is that the Fermi sea is
assumed to be composed of noninteracting electrons. This is
not a particularly realistic assumption, since in two dimen-
sions the long-range Coulomb interaction is not fully screened
and thus electron correlation effects may be important. A
direct consequence of electron correlation is that the electron
mass, the exciton mass, and the scattering potential should be
renormalized by doping and temperature [37,55,56]. Electron
correlation can also affect the ratio between the electron mass
and exciton mass, and alter the effective scattering potential,
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thus changing the trion binding energy and the absorption line
shapes. Without considering the renormalization induced by
electron correlation, precise predictions are difficult to obtain.
These issues are beyond the scope of the present work, and we
leave the topic of electron-electron interactions in the optical
spectra to a future study.

Despite the physical factors which we do not include,
the present model and its approximate solutions still provide
a physically clear picture of the doping-dependent optical
spectra in two-dimensional semiconductors that captures non-
trivial features seen in experiments on TMDCs. In a nutshell,
trion formation can be realized as the dynamical generation
of a trion and a hole in the Fermi sea. The dynamical process
originates from the electron-hole polarization near the Fermi
sea induced by electron-exciton interaction, with the trion
state formed as the bound state of an electron-exciton scat-
tering process. From the fundamental (electron/hole) particle
point of view, the scattering event involves a four-particle
generation process, with the participation of two electrons
plus one hole in the conduction band, and one hole in the
valence band. The wave function for the trion-hole state is
coherently coupled with the exciton wave function, as dis-
cussed in Sec. II. The coupling strength can be connected

to the electron-exciton scattering potential. Recently, two-
dimensional coherent spectra in quantum wells [57] and
TMDCs [58–60] have been studied, and the possible role
of coherent exciton-trion coupling has been invoked in the
context of these experiments. Coherent coupling has been
attributed to exciton-trion many-body interactions [58], but
a microscopic theory of these interactions has not been put
forward. The present theory supports the existence of such
a coupling, and may provide a theoretical foundation for the
study coherent multidimensional spectra in the future.

Note added. After this work was completed, we became
aware of Ref. [61] which presents calculations related to, and
several conclusions similar to, those found in this work.
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