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Analytical theory of second harmonic generation from a nanowire
with noncentrosymmetric geometry

Raksha Singla* and W. Luis Mochán†

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico

(Received 2 January 2019; revised manuscript received 25 February 2019; published 14 March 2019)

We analytically investigate the effect of a noncentrosymmetric geometry in the optical second harmonic (SH)
generation from a nanowire made of a centrosymmetric material, in the interior of which quadratic optical
processes are suppressed. We consider an infinite cylinder with a cross section that is slightly deformed away
from a circle and with a radius much smaller than the wavelength. We calculate the induced linear and nonlinear
fields perturbatively in terms of the deformation parameter, and we obtain the nonlinear dipolar and quadrupolar
hyperpolarizabilities, whose spectra we evaluate for metallic and dielectric materials. We show that for very
small deformations, the dipolar contribution to the response competes with the quadrupolar term, and may even
be dominant. We explore the spectra of the hyperpolarizability and identify the contributions to its structure for
metallic and dielectric nanowires. We also discuss the nature of the SH radiation at various frequencies, and
we find that it may be dominated by the dipolar or the quadrupolar term, or that both may compete yielding
nonsymmetric radiation patterns. Our calculation may be employed to assess, calibrate, and test numerical SH
calculations.
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I. INTRODUCTION

In recent years, the availability of novel techniques to pro-
duce nanoparticles with different shapes has attracted much
attention as they can be engineered to exhibit unique nonlinear
optical properties that are sensitive to their environment as
well as their morphologies [1,2]. Exploring second harmonic
generation (SHG) from nanoparticles and nanostructures has
proven to be an extraordinary tool to probe the properties of
their surfaces and interfaces. The surface sensitivity of the
SH signal is due to the fact that the bulk signal is strongly
suppressed within centrosymmetric systems; within the elec-
tric dipolar approximation, SHG from a centrosymmetric
system takes place only at the surface as the bulk contribution
is forbidden due to symmetry. The surface would also be
expected to dominate the SHG from nanoparticles made of
centrosymmetric materials, but if they possess a centrosym-
metric shape there would be a cancellation of the surface
contributions to the nonlinear electrical dipole moment arising
from opposite sides, leaving only quadrupolar and higher
moments. However, when subjected to a nonuniform polar-
izing field, a symmetrical particle can generate SH due to the
contributions arising from the excitation of a nonlocal dipole
moment [3–5]. On the other hand, a homogeneous external
field would generate a nonvanishing dipolar SH response even
from nanoparticles made of centrosymmetric material if their
geometry is noncentrosymmetric. SHG from nanoparticles,
arrays of nanoparticles, and nanostructured materials with
a variety of geometries have been demonstrated experimen-
tally and with supporting numerical [6–10] investigations.
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Recently, by performing experiments on arrays of differently
shaped nanoparticles [11] it was shown that the effect of a
noncentrosymmetric geometry supersedes that of the local
field enhancement for the efficient generation of a SH signal.
These experiments illustrate that the polarization of light
and the noncentrosymmetric geometry play important roles
in the efficiency of the SHG as the overall SH response as
well as the plasmonic resonance is also governed by the
distribution of the linear and SH near fields. The results have
been qualitatively explained through numerical computations
of the SH near fields. However, in these calculations only
one component of the nonlinear surface susceptibility tensor
was considered, and it was taken as an adjustable parame-
ter. Several theoretical models have been proposed to study
SH scattering in the Rayleigh limit from small symmetrical
nanoparticles [12] and from particles of arbitrary size [13–17]
to include the effects of retardation and to explore SHG
within the framework of Mie theory. An implementation of the
discrete dipole approximation (DDA) model to explore SHG
from small nanoparticles of various kinds was employed to
study the influence of their shapes and sizes on their nonlinear
optical properties [18]. Different studies involving various
numerical computation techniques applied to diverse geome-
tries have since then been reported. Some of them used the
finite-difference time-domain (FDTD) method to investigate
the SHG from nanoholes within a metal film [10], and in
particular, from an array of E-shaped nanoholes [9]. Others
explored the effect of deformations of metallic spheres [19]
on SHG using the finite-element method (FEM). Investigation
of SHG from gold split ring resonators [20] used different
theoretical models and compared their applicability. A surface
integral approach was used to evaluate SH scattering from
periodic metallic-dielectric nanostructures [21], noble metal
nanoparticles of arbitrary shape [22,23], and gold nanorods
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and nanospheres [24]. Another work reported a numerical
computation to explore SHG from a single metallic cylinder,
a one-dimensional (1D) chain, and a periodic or a random
2D array of them based on a multiple scattering matrix
(MSM) algorithm [25]. Recently, a recursive method was
employed to study the SH susceptibility, the tuning of the
resonant structures, and the corresponding nonlinear polar-
ization of metamaterials made of an array of asymmetric
cross-shaped holes within metallic hosts [26]. Valencia et al.
[16] computed and compared numerically the SH response
of infinite cylinders of various cross sections. In another
work [17], the same group performed an analytical calcula-
tion of SH radiated fields from an infinite circular cylinder
within the framework of Mie theory. However, in both of
these works the nonlinear susceptibilities of the material
from which cylinders were made and its surface response
were not calculated but introduced as free parameters. Fur-
thermore, their treatment of the nonlinear polarization lacks
self-consistency, as the linear response to the SH field was
neglected.

As illustrated by the studies mentioned above, most of
the efforts to investigate SHG from nanostructures have em-
ployed experimental or numerical methods. To the best of
our knowledge, there have been no reports of an analytical
calculation to study the SH response of nanostructures with
a noncentrosymmetric geometry. The purpose of this paper
is the calculation of the second-order nonlinear response of
an isolated nanowire made up of a centrosymmetric material
with small deviations from a symmetrical geometry subjected
to a homogeneous external field, obtaining and evaluating an-
alytical expressions for the nonlinear dipolar and quadrupolar
hyperpolarizabilities. We restrict our study to small defor-
mations, which allows us to employ a perturbative scheme
in order to be able to solve the field equations analytically
for linear and SH induced fields within and beyond the
surface of the nanowire. We consider the simplest geometry
for which there is no centrosymmetry, namely a cylinder
having a slightly deformed, near-circular cross section with a
threefold symmetry, and we use a nonretarded approximation
to obtain the near fields, which we use afterward to calculate
the electromagnetic fields in the radiation zone. We discuss the
resonant structure of the nonlinear response for a model metal
and a dielectric nanowire, the relation between the different
components of the response tensor due to the symmetry in
the system, and we study the angular radiation patterns of
the nanowire and their evolution as the frequency sweeps
across the various resonances. As expected, we find the
dipolar response to be highly dependent on the deformation
parameter. Furthermore, a deviation of only 1% away from the
symmetry of the shape of the nanowire results in a strong com-
petition with the quadrupolar response for very small cross
sections.

The structure of the paper is the following. In Sec. II, we
describe our theory to investigate analytically SHG from a de-
formed infinite cylinder, obtaining expressions for the nonlin-
ear dipolar and quadrupolar hyperpolarizabilities (Sec. II A)
and the SH radiation patterns (Sec. II B). Section III illustrates
our results for deformed cylinders made up of a Drude metal
and a resonant dielectric. Finally, we present our conclusions
in Sec. IV.

y

x

rs = r0(1 + d cos(3θ))

d = 0

d = 0.2

FIG. 1. Cross section of a deformed cylinder described by Eq. (1)
for various values of the deformation parameter d = 0.0, . . . , 0.2.

II. NONLINEAR RESPONSE OF A DEFORMED CYLINDER

A. Second-order hyperpolarizabilities

We consider an isolated, infinitely long cylinder placed
in vacuum with its axis along the ẑ direction and a slightly
deformed cross section defined in polar (r, θ ) coordinates as

rs(θ ) = r0(1 + d cos 3θ ) (1)

(see Fig. 1), where r0 is the radius of a symmetric nominal
circular cylinder and d is a small deformation parameter. We
remark that we chose this geometry as it is the most simple
one that lacks inversion geometry. Also note that our system
possesses a mirror (y → −y) and a 120◦ rotational symme-
try. We will study the nonlinear dipolar p and quadrupolar
Q moments induced per unit length along the axis of the
cylinder. We subject the particle to a homogeneous external
electric Eex field oscillating at frequency ω. Due to the overall
noncentrosymmetry of the geometry of the particle, p is
expected to have a local contribution proportional to EexEex,
which we write as

pi = γ d
i jkE ex

j E ex
k , (2)

where γ d
i jk is the dipolar hyperpolarizability, and we use Ein-

stein summation convention. Similarly, the induced quadratic
2D quadrupole moment, defined as

Qi j =
∫

d2r ρ(r)(2rir j − r2δi j ) (3)

(notice the difference with the usual 3D definition), is
given by

Qi j = γ
Q
i jkl E

ex
k E ex

l , (4)

where γ
Q
i jkl is the quadrupolar hyperpolarizability. Here, ρ(r)

is the 2D charge density.
For simplicity, we first assume that the external field is po-

larized along the x̂ direction, Eex = E0x̂. Given the direction
of the external field and the symmetries in the system, the only
nonzero component of the nonlinear dipole moment induced
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in this case is px, which we write as

px = γ d E2
0 (5)

in terms of a dipolar nonlinear response γ d , which is simply
related to all the components of the full dipolar hyperpolariz-
ability γ d

i jk . In this case, the nonlinear quadrupole moment has
only two nonzero components

Qxx = −Qyy = γ QE2
0 , (6)

which we write in terms of a nonlinear response γ Q, related to
the full quadrupolar hyperpolarizability γ

Q
i jkl . In this section,

we calculate analytically γ d and γ Q.
In the nonretarded regime, the linear self-consistent near

field may be obtained by solving Laplace’s equation beyond
and within the particle and applying boundary conditions at
its interface. We start with the general solution of Laplace’s
equation outside

φout
1 = φex +

∞∑
l=0

r−l (sl cos lθ + tl sin lθ ) (7)

and within

φin
1 =

∞∑
l=0

rl (ul cos lθ + vl sin lθ ) (8)

the particle, with multipolar coefficients sl , tl , ul , and vl ,
which we expand as power series on the deformation
parameter d ,

βl =
∞∑

n=0

β
(n)
l dn, (9)

where φex = −E0r cos θ is the external scalar potential, and
the generic coefficients βl stand for any of sl , tl , ul , or vl .
To perform analytical calculations, we will restrict ourselves
to small deformations and consider terms up to linear order
in d only. Thus, solving Laplace’s equation with appropriate
boundary conditions [27] at the origin, the surface of the parti-
cle, and infinity, we obtain the self-consistent linear potential

φout
1

E0
= r cos θ − 1 − ε1

1 + ε1

r2
0

r
cos θ

− d

[(
1 − ε1

1 + ε1

)2 r3
0

r2
cos 2θ + 1 − ε1

1 + ε1

r5
0

r4
cos 4θ

]
, (10)

φin
1

E0
= 2

1 + ε1
r cos θ + 2d

1 − ε1

(1 + ε1)2

r0

r2
cos 2θ, (11)

where εg = ε(gω) is the dielectric response of the particle at
the gth harmonic frequency, g = 1, 2. From these results, we
may obtain the linear electric field E1.

The spatial variation of the self-consistent field within the
particle induces a nonlinear polarization [27]

Pnl = npnl − 1
2 n∇ · qnl, (12)

which includes contributions from the nonlinear dipole pnl

and quadrupole qnl moments of each microscopic polarizable
entity within the material, whose number density is n. Note
that qnl may have a finite trace. Using the dipolium model [28],

we write

pnl = − 1

2e
α1α2∇E2

1 (13)

and

qnl = −1

e
α2

1E1E1 (14)

in terms of the linear electric field and the linear polarizability
αg ≡ α(gω) evaluated at the fundamental (g = 1) and SH
(g = 2) frequencies, related to the dielectric function through
εg = 1 + 4πnαg.

The polarization, Eq. (12), yields a nonlinear bulk charge
density given by

ρnl = −∇ · Pnl, (15)

which evaluates to zero up to linear order in d (it would
be nonzero at order d2). The termination of the nonlinear
polarization at the surface of the particle induces a nonlinear
surface charge with density σ b = Pnl(r−

s ) · n̂, where n̂ is a
normalized outgoing vector perpendicular to the surface and
r−

s = r−
s (θ ) denotes a position at the surface just inside the

particle. We employ the superindex b to denote the bulk origin
of this surface charge. Using Eqs. (10)–(14), we identify

σ b = 4d
n

er0

(1 − ε1)

(1 + ε1)3
α1(2α2 − α1) cos θE2

0 . (16)

As the inversion symmetry of the material is locally lost in
a thin selvedge region around the surface, there is a nonlinear
polarization induced at the surface of the particle, which we
write as

Ps
i = χ s

i jkFjFk, (17)

where χ s
i jk are the components of the local nonlinear surface

susceptibility, and the field F is defined in terms of quantities
that are continuous across the surface to avoid the ambiguity
about the position in the selvedge where the fields are to
be calculated; F is made up of the normal projection of the
displacement field and the parallel projection of the electric
field evaluated at the surface rs(θ ). Thus,

F(rs) = E1(r+
s ) = ε1E⊥

1 (r−
s ) + E‖

1(r−
s ), (18)

where E(r−
s ) = −∇φin(rs) and E(r+

s ) = −∇φout (r+
s ), and ⊥

and ‖ denote the projections normal and parallel to the surface.
We will assume that the thickness of the selvedge region

is much smaller than the radius of the cylinder, and thus
that the surface can be considered as locally flat. We will
further assume local invariance under rotations around the
surface normal. Hence, the surface susceptibility may be para-
metrized as

χ s
i jk = (ε1 − 1)2

64π2ne

(
δi⊥δ j⊥δk⊥

a

ε2
1

+ [(1 − δi⊥)(1 − δ j⊥)δk⊥

+ (1 − δi⊥)δ j⊥(1 − δk⊥)]
b

ε1

+ δi⊥(1 − δ j⊥)(1 − δk⊥) f

)
, (19)

in a local reference frame where one of the Cartesian di-
rections is perpendicular and the others are parallel to the
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surface. Here, a, b, and f are dimensionless functions of ω

used to parametrize the response of the surface [29] given in
the dipolium model [28] by

a(ω)=2
(ε2 − ε1)(2ε1 − ε2 − ε1ε2) + ε2

1 (1 − ε2) log(ε1/ε2)

(ε2 − ε1)2
,

(20)

b = −1, (21)

f = 0. (22)

The normal component of the nonlinear polarization in-
duced on the surface of the cylinder is obtained by substituting
Eqs. (18) and (19) in Eq. (17),

Ps
⊥ = 1

32π2ne

(
1 − ε1

1 + ε1

)2{
(a + f ) + (a − f ) cos 2θ

− d

[(
4

1 − ε1

1 + ε1
+ 3(a − f )

)
cos θ

+ 4
1 − ε1

1 + ε1
cos 3θ − 3(a − f ) cos 5θ

]}
E2

0 . (23)

The variation of the tangential component of the non-
linear surface polarization along the surface yields another
contribution to the surface charge σ s beyond that due to the
termination of the bulk nonlinear polarization σ b, where we
use the superscript s to denote its surface origin. It is given by

σ s = −∇‖ · Ps
‖, (24)

where ∇‖ is the gradient operator projected along the surface,
and Ps

‖ is the projection of Ps along the surface. Substituting
Eqs. (17) and (19) in Eq. (24), we obtain

σ s = b

8π2ner0

(
1 − ε1

1 + ε1

)2[
cos 2θ + d

(
cos θ

− 6
1 − ε1

1 + ε1
cos 3θ + 7 cos 5θ

)]
E2

0 . (25)

The screened scalar potential φ2 induced at the SH fre-
quency has ρnl (= 0) as an external bulk source and the total
nonlinear charges induced at the surface, σ b and σ s, as exter-
nal surface sources, together with the normal polarization Ps

⊥,
which are accounted for through the boundary conditions. The
external sources have to be screened by the linear response of
the particle at SH frequency ε2. Thus the equation to be solved
for the quadratic scalar potential is

∇2φ2 =
{

0 (outside),
−4πρnl/ε2 = 0 (inside)

(26)

subject to the boundary conditions

n̂ · ∇φ2(r+
s ) − ε2n̂ · ∇φ2(r−

s ) = −4π (σ b + σ s), (27)

φ2(r+
s ) − φ2(r−

s ) = 4πPs
⊥. (28)

Equation (27) is the discontinuity of the normal component
of the displacement field due to the presence of the nonlinear
surface charge. Equation (28) is the discontinuity of the scalar
potential due to the presence of the normal nonlinear surface

polarization Ps
⊥, which is a dipole layer across the selvedge

of the particle. Solving Laplace’s equation perturbatively to
obtain the self-consistent scalar potential at the SH frequency
with terms up to linear order in d , we obtain on the outside

φout
2

E2
0

= d

4πne

(1 − ε1)2

(1 + ε2)(1 + ε1)2

(
4
ε1 − 2ε2 + 1

1 + ε1

+ 2b
1 + 3ε2

1 + ε2
+ ε2

2

(ε2 − 3)(a − f )

1 + ε2

+ ε2

2

(7ε1 − 1) f + (ε1 − 7)a

1 + ε1

)
r0

r
cos θ

+ 1

8πne

(
1 − ε1

1 + ε1

)2
ε2(a − f ) + 2b

1 + ε2

r2
0

r2
cos 2θ + · · · ,

(29)

where we only kept the dipolar and quadrupolar contributions,
and we neglected higher multipoles, all of which are at least
of order d , as their contribution to the radiation fields would
be insignificant for small particles, at least by a factor of order
r0/λ, with λ the wavelength.

Finally, we compare Eq. (29) to the general expression of
the 2D scalar potential in polar coordinates, we identify the
corresponding components of the multipolar moments, and
from Eqs. (5) and (6) we obtain the dipolar

γ d = dr0

4πne

(1 − ε1)2

(1 + ε2)(1 + ε1)2

(
4
ε1 − 2ε2 + 1

1 + ε1

+ 2b
1 + 3ε2

1 + ε2
+ ε2

2

(ε2 − 3)(a − f )

1 + ε2

+ ε2

2

(7ε1 − 1) f + (ε1 − 7)a

1 + ε1

)
(30)

and quadrupolar

γ Q = r2
0

8πne

(
1 − ε1

1 + ε1

)2
ε2(a − f ) + 2b

1 + ε2
(31)

nonlinear response functions.
To the lowest order in the deformation parameter, γ d is

proportional to d , and thus, as expected, the dipolar response
would disappear for a centrosymmetric circular cross section.
On the other hand, γ Q is independent of d with no con-
tribution proportional to d . Thus, it equals the result for a
centrosymmetric circular cylinder with d = 0, and therefore
is the nonlinear response for a symmetric circular cylinder.
An analytical calculation in the retarded regime of the fields
radiated at the SH frequency by an infinite circular cylinder
can been found in the work by Valencia et al. [17]. However,
their results cannot be directly compared with Eq. (31) as their
calculation was performed for a radius comparable with the
wavelength, they took the nonlinear bulk and surface response
as parameters, and their calculation is not self-consistent in
the SH frequency. From Eqs. (30) and (31) we can identify
the contributions arising from the bulk and the surface to the
nonlinear hyperpolarizabilities, as the latter are proportional
to the surface parameters a, b, and f . Thus, γ d has both
surface and bulk contributions, while γ Q has only surface
contributions. Both γ d and γ Q inherit the spectral structure
of the surface parameters, namely of a(ω), and they also
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FIG. 2. Direction of the quadratic dipole moment induced in a
deformed cylinder by an external field with different directions with
respect to the horizontal. As the field rotates clockwise by an angle
θ , the dipole rotates counterclockwise by 2θ .

exhibit additional resonances corresponding to the excitation
of surface plasmons or surface plasmon-polaritons at the fun-
damental and second harmonic frequencies, given by ε1 = −1
and ε2 = −1, respectively.

Above we have explicitly shown the calculation of the
nonlinear response of the particle with the external field in
the x̂ direction. One can similarly evaluate the response of
the particle to the external field pointing in other directions.
However, due to the mirror and the 120◦ rotation symmetry
in our system, all the in-plane components of the dipolar
hyperpolarizability are zero except for γ d

xyy = γ d
yxy = γ d

yyx =
−γ d

xxx = −γ d . We have verified these results by repeating the
calculations above for external fields pointing along different
directions. It turns out that given these symmetry-related
relations, the nonlinear dipole moment induced in the de-
formed cylinder rotates anticlockwise by an angle 2θ when
the external electric field is rotated clockwise by θ (see Fig. 2).
The symmetry in our system leads to an isotropic quadrupolar
response given by Qi j = γ Q(2EiEj − E2δi j ), the quadratic
quadrupolar moment has a principal axis along the external
field, and the only non-null components of the quadrupo-
lar hyperpolarizability are γ Q

xxxx = −γ Q
xxyy = −γ Q

yyxx = γ Q
yyyy =

γQ and γ Q
xyxy = γ Q

yxxy = γ Q
xyyx = γ Q

yxyx = 2γQ. Thus, for this
system our calculations of γ d and γ Q using an external
field along x̂ are sufficient to obtain the full response of the
particle. We remark that the shape of the radiation pattern
and the total efficiency depend on the polarization of the
incident light. This has previously been demonstrated in the
work of Czaplicki et al. [11]. Their T-shaped particles are

somewhat similar to the ones we have considered, but with a
large deformation and without the 2π/3 rotational symmetry.
The hyperpolarizability tensor χi jk of both would have the
same set of nonzero components, due to a mirror symmetry,
but the lack of rotational symmetry of the T shapes intro-
duces more independent components and a richer resonant
structure. The differences are more pronounced for their
L-shaped particles. This results in a very different SH local
field distribution around the particles and a stronger depen-
dence on the polarization of the incident field. The exis-
tence of an inversion symmetry y → −y and 2π/3 rotational
symmetry also ensures that no nonlinear magnetic dipole is
induced in our nanowire in the nonretarded regime. Hence, it
is not included in our work. However, we remark that as the
particle size increases, retardation effects become important,
and the different nonlinear response terms require the incor-
poration of the gradient of the field leading to nonlocal contri-
butions to the dipolar and quadrupolar response. A nonzero
nonlinear magnetic dipole may also be induced. For large
particles, the magnetic contribution to the SH response may
prove to be dominant over others. This has been demonstrated
in the work by Klein et al. [30], where SHG from differ-
ent metamaterials formed of arrays of split ring resonators
(SRRs), T-shaped inclusions, and straight wire fragments was
measured, and it was found that the SHG for the SRR structure
was largely dominated by the magnetic dipole resonance, but
not for the straight wire fragments nor the T-shaped structures.

B. SH radiation

Now we turn our attention toward the calculation of the
SH angular radiation pattern. Following a procedure similar
to the 3D case, one can write down the expressions for the
radiated electromagnetic fields in 2D due to localized distri-
butions of charges and currents. Using the vector potential
from Eqs. (A7) and (A9) (see the Appendix), we calculate the
radiated electromagnetic fields,

B = (1 + i)k3/2

(
(r̂ × p) − i

4
k[r̂ × (Q · r̂)]

)
eikr

√
π

r
, (32)

E = B × r̂, (33)

where k is the wave number and r̂ is the unit vector in the
direction of observation. The time-averaged power radiated
per unit angle θ due to these radiated fields is

dP

dθ
= rc

8π
Re[E × B∗] · r̂. (34)

From Eqs. (30) to (34) we obtain

dP

dθ
= cE4

0 k3

16
(4|γ d |2 sin2 θ − 4k Im(γ dγ Q∗) sin2 θ cos θ

+ k2|γ Q|2 sin2 θ cos2 θ ). (35)

The first and last terms correspond to dipolar and quadrupo-
lar radiation, while the middle term corresponds to their
interference.
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FIG. 3. Normalized absolute value (solid) and phase (dashed) of
the dipolar (upper panel) and quadrupolar (lower panel) nonlinear
response functions γ d and γ Q for a cylinder with deformation
parameter d = 0.01 made of a Drude metal as a function of the
normalized frequency ω/ωp. The irrelevant abrupt 2π phase jumps
are indicated with dotted vertical lines.

III. RESULTS

We consider a particle made up of a Drude metal character-
ized by its bulk plasma frequency ωp and electronic relaxation
time τ , with dielectric function [31] ε(ω) = 1 − ω2

p/(ω2 +
iω/τ ), with size r0 = c/4ωp, with a small deformation pa-
rameter d = 0.01 and with a small dissipation 1/ωpτ = 0.01.
We remark that while the nonlinear dipolium model [28]
was developed for insulating materials, as it corresponds to
a continuous distribution of small polarizable entities around
which the electrons are localized, its results agree with those
of a nonlinear hydrodynamical calculation [32] on a local jel-
lium model of a conduction electronic fluid with a continuous
electronic density profile at the surface. Thus, the results of the
dipolium model may as well be applied to metals as to semi-
conductors and insulators as long as the results are written in
terms of the linear dielectric response evaluated at the funda-
mental and SH frequencies. Note that there may be corrections
arising from the spatial dispersion of the electron gas when the
nonlocal character of the jellium model is incorporated [33].
In Fig. 3 we show the absolute values and phases of the non-
linear dipolar and quadrupolar response functions γ d and γ Q.
Notice that both display very large resonant peaks correspond-
ing to the surface plasmon resonance of the cylinder ωsp =
ωp/

√
2 and to its subharmonic. Beyond abrupt changes at the
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FIG. 4. Normalized absolute value (solid) and phase (dashed) of
the dipolar (upper panel) and quadrupolar (lower panel) nonlinear
response functions γ d and γ Q for a cylinder made of a dispersive
dielectric with a Lorentzian resonance characterized by a longitudi-
nal ωL and a transverse ωT frequency with ωL = √

2ωT , a lifetime
τ = 100/ωT , and a deformation parameter d = 0.01, as a function
of the normalized frequency ω/ωT . The irrelevant abrupt 2π phase
jumps are indicated with dotted vertical lines.

resonances, the phase of γ d shifts away from 0 in a wide
region that spans from ωp/2 up to ωp. This is due to the
logarithm term in Eq. (20), whose argument changes sign as ω

or 2ω sweeps across the plasma frequency [28]. The phase of
γ Q also displays a smooth variation of around 2π in the same
region.

In Fig. 4 we show the absolute values and phases of γ d

and γ Q for a similar deformed cylinder but made up of an
insulator. We assume its dielectric function is dispersive, and
for simplicity we assume it has a single resonance described
by a simple Lorentzian [31] form given by ε(ω) = (ω2

L −
ω2 − iω/τ )/(ω2

T − ω2 − iω/τ ), where ωL and ωT are the
frequencies of the longitudinal and transverse optical modes,
respectively, and we included a small dissipation character-
ized by τ . For definitiveness, we took ωL = √

2ωT and ωT τ =
100. Both γ d and γ Q show strong resonant peaks corre-
sponding to the excitation of the surface plasmon-polariton
at ω = ωspp = ωT

√
3/2 and its subharmonic. The dielectric

function crosses zero at ωL and has a pole at ωT = 1. The
phase of both γ d and γ Q grows smoothly between ωT /2
and ωL/2, and between ωT and ωL, save for abrupt jumps
at ωspp/2, ωT , and ωspp, and it remains constant otherwise.
Some features in the phase of γ d and γ Q are inherited from

125418-6



ANALYTICAL THEORY OF SECOND HARMONIC … PHYSICAL REVIEW B 99, 125418 (2019)

FIG. 5. Angular radiation pattern for a deformed metallic cylin-
der with deformation parameter d = 0.01 described by a Drude
response for frequencies ω approaching ωsp or to its subharmonic:
ω < ωsp/2 (upper left), ωsp/2 < ω (upper right), ω < ωsp (bottom
left), and ω > ωsp (bottom right). As ω approaches a resonance, the
total radiated power increases.

those of the parameter [28] a. We remark that close to a simple
resonance, a Lorentzian response displays a rapid change of
phase of π due to the change of sign of its real part across
a pole. For a double or triple resonance, the corresponding
change in phase would be 2π or 3π . We note that in our
expressions for γ d and γ Q [Eqs. (30) and (31)] there are
different terms displaying resonances of order 1, 2, and 3
and hence the total phase across a resonance depends on the
competition between them. A logarithmic contribution to the
phase is also present due to the existence of the parameter a in
some terms. The above leads to distinct changes of the phase
across the different resonance peaks in Figs. 3 and 4, with
a magnitude that depends on which term was dominant. On
the other hand, the vertical −2π abrupt jumps are irrelevant
as they arise trivially from the fact that the phase is defined
modulo 2π .

In Fig. 5 we plot the pattern dP/dθ versus the polar
angle θ corresponding to a deformed metallic cylinder as
that in Fig. 3, described by the Drude response and with
a deformation parameter d = 0.01, illuminated by a TM
electromagnetic wave propagating along the y axis with an
electric field pointing along the x axis, assuming that the
nominal radius r0 = c/4ωp of the cylinder is small compared
to the wavelength, so we may assume the incoming field to be
constant within the particle and use the expressions obtained
in the previous section corresponding to a homogeneous ex-

FIG. 6. Angular radiation pattern for a deformed dielectric cylin-
der with deformation parameter d = 0.01 described by a simple
Lorentzian response with negligible dissipation for frequencies ω

close to ωspp or its subharmonic: ω < ωspp/2 (upper left), ωspp/2 < ω

(upper right), ω < ωspp (bottom left), and ω > ωspp (bottom right).
As ω approaches a resonance, the total radiated power increases.

ternal field. Notice there is a competition between the dipolar
and quadrupolar contributions to the radiation, and that their
relative strength varies as the frequency increases. We remark
that the SH dipole would be zero for the nondeformed cylin-
der, but for deformations as small as 1% its contribution to
the radiation is comparable to the quadrupolar contribution.
Figure 5 shows that for low frequencies, ω < ωsp/2 displayed
in the top left panel, the radiation is completely dominated
by the dipolar term, and it displays the typical pattern con-
sisting of two symmetrical lobes. As the frequency moves
toward the resonance the total radiated power increases, hence
the outermost curve in the top left panel corresponds to a
frequency slightly below the resonance at ωsp/2. For higher
frequencies the pattern becomes largely quadrupolar. The top
right panel corresponds to ω > ωsp/2 for which the quadrupo-
lar contribution overshadows the dipolar contribution and a
four-lobed pattern emerges. It is somewhat asymmetrical due
to the interference with the dipolar field. Also note the shift
in the size of the lobes from front to back as one moves
away from the resonance at ωsp/2. The bottom left panel
illustrates the radiation pattern for frequencies approaching
ωsp from below and is predominantly dipolar with an influence
of the quadrupolar contribution, which makes it asymmetrical.
Radiation at frequencies above that of the surface plasmon
ω > ωsp is shown in the bottom right panel. In this region
too, the pattern is mostly quadrupolar displaying four lobes
that are asymmetrical due to the interference with the dipolar
contribution to the radiation.

In Fig. 6 we show the SH angular radiation pattern as in
Fig. 5 but corresponding to a dielectric particle as in Fig. 4.
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Here, we also see the competition between the dipolar and the
quadrupolar radiation with the variation in frequency and the
asymmetry in the different lobes of the quadrupolar pattern
arising due to the phase difference between the two terms.
Similar to Fig. 5, as the frequency approaches a resonance
the total radiated power increases. However, the quadrupolar
contribution to the radiation is stronger at lower frequencies in
this case, unlike the metallic case (Fig. 5). In the top left panel,
we plot the patterns for ω < ωspp/2 where the quadrupolar
contribution to the radiation dominates the dipolar one and is
therefore almost symmetric. The top right panel illustrates the
radiation for frequencies ω > ωspp/2. The outermost curve,
closest and slightly above the resonance at ωspp/2, displays
a slightly distorted dipolar pattern. Moving away from the
resonance, the quadrupolar term gets relatively stronger and
the competition between the two terms gives rise to an
asymmetry in the pattern. The bottom left panel shows the
pattern for ω < ωspp, and it shows asymmetrical quadrupo-
lar patterns with the asymmetry appearing in the outermost
curves, just below the resonance frequency. The bottom right
panel shows the radiation at higher frequencies ω > ωspp,
which is also symmetric and almost pure quadrupolar-like
radiation.

We remark that our calculation above is strictly in 2D,
while experimental realizations would most certainly be 3D,
and we expect any nanowire to be of finite length. Never-
theless, our results may still be partially applicable for finite
cylinders. Our calculation of the dipolar and quadrupolar
nonlinear hyperpolarizabilities will hold true as long as the
length l of the finite cylindrical nanowire is much larger than
its nominal radius r0, a condition that is mostly obeyed in
the experimental realization of nanowires. The 2D electro-
magnetic radiation in the plane of the cross section of the
infinite cylinder was obtained in the radiation zone, where
we assumed the distance r to the axis of the cylinder to
be much larger than the wavelength. However, it must hold
that this distance is smaller than the length of the cylinder.
Thus, our calculated patterns would only be observable where
r0 � λ, λ � r � l and only if both conditions may be sat-
isfied together. Farther away, the 3D nature of the radiation
pattern ought to be accounted for, and it might be calculated
using antenna theory. Nevertheless, we emphasize that we
expect that the relative magnitude between the dipolar and
quadrupolar contributions to the radiation will remain as
calculated above. A discussion of the effect of the finite length
of the cylinder can be found in the work by Dadap [15].

IV. CONCLUSIONS

We developed an analytical formalism to study the second-
order nonlinear optical response of isolated particles made of
centrosymmetric materials with a cross section slightly de-
formed away from that of a centrosymmetric particle. To this
end, we chose the most simple geometry that lacks inversion
symmetry, namely a cylinder with an almost circular cross
section with three small protuberances separated by an angle
of 2π/3. We employed a perturbative approach choosing
the extent of the deformation away from the symmetrical
geometry as the smallness parameter. This allowed us to
obtain simple closed-form expressions for the electric fields

within and beyond the particles and on their surfaces at both
the fundamental and second harmonic (SH) frequencies. The
self-consistent field near the surface of the particle was used
to calculate the induced nonlinear polarization employing the
results of the dipolium model [28]. Within the framework of
that model, the nonlinear response of the surface is only due
to the abrupt variations of the electric field across its selvedge,
and the bulk and surface response are determined completely
by the linear dielectric function of the material evaluated at the
fundamental and second harmonic frequencies. Thus, intrinsic
surface effects, such as those due to transitions to and from
the surface states, surface reconstructions, and relaxation, are
neglected. Local field effects and crystal structure have also
been ignored in the model. Hence, we must point out that
we expect our calculation to fail to describe spectral features
arising from such effects. However, the comparison of our
calculation with experimental results may allow us to identify
the strength of those contributions we left out.

The induced nonlinear polarization was used to calculate
the self-consistent SH fields and the nonlinear hyperpolariz-
abilities. The zeroth-order term in their expansion in powers
of the deformation parameter corresponds to the case of a
symmetric cylinder yielding no SH dipole but a nonzero
quadrupolar response. At the first order in the deformation,
the effect of a small deviation from centrosymmetric geometry
yields a dipolar contribution proportional to the deforma-
tion parameter, which increases with the size of deformation
and competes with that of the quadrupole already for very
slightly deformed metallic and dielectric particles. We have
only considered the dominant dipolar and quadrupolar con-
tributions to the nonlinear hyperpolarizabilities in this work,
as the higher-order multipoles generate a much weaker SH
signal.

The dipolar and quadrupolar nonlinear responses were
obtained in terms of the linear dielectric response of the
material at the fundamental and SH frequencies and were
found to have resonant structures corresponding to the poles
and zeros of the dielectric function, and to the surface plasmon
or surface plasmon-polariton frequencies of the undeformed
particle, and to their subharmonics, as well as additional
structure due to the normal nonlinear surface parameter a. We
showed results for particles made up of a Drude metal and
of a dielectric characterized by a simple Lorentzian response,
as they allow a simple interpretation of the resulting spectra
and radiation patterns. Nevertheless, as the input to our cal-
culations is the dielectric functions of the particles, they may
be applied to particles made of arbitrary materials for which
ε is known. Our approach can also be generalized to other
geometries. Finally, we showed that the dipolar SH radiation
is comparable and may overshadow the quadrupolar contribu-
tion for deformations as small as 1%. On the other hand, at
resonance, the dipolar hyperpolarizabilities (per unit length)
reached values several orders of magnitude larger than r0/ne,
with r0 the nominal size of the particle, n the polarizable entity
or the electronic number density, and e the electronic charge
(see Figs. 3 and 4). Thus, we expect that the dipolar nonlinear
susceptibility of a metamaterial made up of these particles
could be much larger than 1/ner0. As the typical susceptibility
of noncentrosymmetric materials is of order 1/neaB with aB

the Bohr’s radius, a metamaterial made of centrosymmetric
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materials with a noncentrosymmetric geometry may be a com-
petitive source of SH provided aB/r0 is not too small. Finally,
we remark that our calculation of the nonlinear response of a
particle showed that there are some subtleties to be accounted
for: bulk contributions, bulk induced surface charges, surface
originated surface charges, and surface dipolar layers. All
of these have to be appropriately screened to get consistent
expressions for the hyperpolarizabilities. Analytical results
for simple models that take all of these contributions into
account are important in order to calibrate and test numerical
calculations, which may then, if proven to be correct, be
applied to a larger class of systems. We expect that the present
results will be useful for this purpose.
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APPENDIX

In this Appendix, we calculate the fields in the radiation
zone due to localized systems of oscillating charge and current
densities in 2D in order to obtain the corresponding angular
radiation patterns. We will only consider electric dipole and
quadrupole radiation. The treatment is predominantly similar
to that of 3D [27], but using the Green’s function for the 2D
wave equation, and we follow Ref. [34].

We will consider a harmonically varying monochromatic
current distribution J(r, t ) = J(r)e−iωt . In the Lorentz gauge,
the vector potential is also monochromatic and obeys a wave
equation that becomes a Helmholtz equation for its amplitude
A(r) with a source −4πJ(r)/c. To solve it, we first find
the corresponding Green’s function in 2D G(|r − r′|), which
obeys

(∇2 + k2)G(r) = −4πδ(r). (A1)

Beyond the singularity, G(r) = R(kr), where

s2 d2

ds2
R(s) + s

d

ds
R(s) + s2R(s) = 0. (A2)

The solution is proportional to an outgoing Hankel function
H (1)

0 (s), which in the near zone, (s → 0), takes the form

lim
s→0

H (1)
0 (s) = 2i ln(s)/π. (A3)

As the nonretarded Green’s function in 2D is G = −2 ln(r) +
const, a comparison with Eq. (A3) yields G(r) = iπH (1)

0 (kr).
Thus, using the asymptotic expression for Hankel’s func-
tion for large arguments, we obtain in the radiation zone
(kr → ∞),

G(r) = eiπ/4

√
2π

kr
eikr . (A4)

The retarded vector potential is then

A(r) = 1

c

∫
d2r′eiπ/4

√
2π

k|r − r′|eik|r−r′|J(r′). (A5)

For a localized source in the long-wavelength approximation
r′ � λ � r one can approximate Eq. (A5) as

A(r) ≈ 1

c

√
2π

kr
eiπ/4eikr

∫
d2r′ J(r′)

∑
m=0

(−ik)m

m!
(r̂ · r′)m.

(A6)

The first term (m = 0) in the series (A6) may be integrated to
obtain the dipolar contribution to the potential,

A(0) = (−ieiπ/4)
√

2π

√
k

r
eikr p, (A7)

where p is the amplitude of the oscillating dipole moment per
unit length. The second term (m = 1) is

A(1)(r) = 1

c

√
2π

kr
eiπ/4eikr (−ik)

∫
d2r′ J(r′)(r̂ · r′). (A8)

Within the integral, we can write J(r′)(r̂ · r′) = (1/2){J(r′)(r̂ ·
r′) + r′[r̂ · J(r′)]} + (1/2){J(r′)(r̂ · r′) − r′[r̂ · J(r′)]} as a sum
of a symmetric and an antisymmetric part. The former can be
manipulated to yield

A(1s)(r) = (
√

2πeiπ/4)
eikr

4
√

r
k3/2Q · r̂, (A9)

where Q is the 2D quadrupolar tensor [Eq. (3)]. The antisym-
metric part yields the magnetic dipolar radiation, which we
ignore as in our system there is no magnetic dipole.

As usual, we may obtain the electromagnetic radiation
field as B = ∇ × A ≈ ikr̂ × A and E = B × r̂, so that from
Eqs. (A7) and (A9) we obtain Eqs. (32) and (33).
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