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We present a microscopic theory for electron-phonon energy exchange in Anderson insulators at low
temperatures. The major contribution to the cooling power Je-ph(Tel ) as a function of electron temperature Tel is
shown to be directly related to the correlation function of the local density of electron states K (ω). In Anderson
insulators not far from localization transition, the correlation function K (ω) is enhanced at small ω by the wave
function’s multifractality and by the presence of Mott’s resonant pairs of states. The theory we develop explains
a huge enhancement of the cooling power observed in insulating indium oxide films as compared to predictions
of the theory previously developed for disordered metals.
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I. INTRODUCTION

Energy exchange between electrons and phonons is crucial
to many physical properties of Anderson insulators at low
temperatures: it determines the relatively slow rate of thermal
equilibration. Surprisingly, no theory of such processes seems
to be available. On the contrary, the theory of electron-phonon
inelastic coupling in disordered metals has been known for a
very long time [1–3].

Experimentally, one of the most sensitive methods to study
the electron-phonon cooling rate is based on the results of
Refs. [4,5] where striking jumps by several orders of mag-
nitude in current-voltage characteristics were observed at low
temperatures in insulating indium oxide films. Similar effects
were also observed in other insulating systems [6,7]. These
jumps in resistance are the signatures of thermal bistability
at weak electron-phonon coupling which can be analyzed
using the balance between the Joule heat production and
the electron cooling power [8], and the temperature depen-
dence of electron-phonon cooling rate can be experimentally
obtained [5]. The out-cooling rate at low temperatures of
electron system T = Tel appeared to be J (T ) = A T β , where
β ≈ 6 agreed well with the theory of electron-phonon cooling
presented in [8].

The problem with this result is that the experimentally
observed prefactor A is two to three orders of magnitude
larger than the one predicted by the theory of electron-phonon
cooling in strongly disordered metals employed in [8]. At
first glance it is also strange that in an insulator the tem-
perature dependence of the cooling is a power law, while
the temperature dependence of resistance is exponential or
stretch exponential. However, the most surprising fact is that
the theory of electron-phonon cooling in Anderson insulators
is essentially missing, despite so much effort invested in
studying hopping conductivity.

In this paper we present the theory of electron-phonon
cooling in insulators in proximity to the Anderson localization
transition when the momentum relaxation rate � is of the
order of the Fermi wavelength λF = 2π/kF , and the effects
of multifractality [9,10] are significant. We show that the
temperature dependence of the cooling rate at low temper-
atures is indeed a power law, since the energy exchange
between electron and phonon systems is local and does not
involve electron transport in space. Therefore it is natural
that the additional factor characterizing electron cooling in
Anderson insulators obtained in this paper is given by the
properly normalized correlation function K (ω) of the local
density of states. This correlation function is enhanced due
to multifractality of electron wave functions [9,10], which
results in an increasing cooling rate both in metals and in
insulators close to the Anderson transition (see Fig. 1). An-
other mechanism of enhancement of the cooling rate [also
described by the same correlation function K (ω)] is typical
for insulators and is related with the Mott’s pairs of resonant
states. It is similar to the logarithmic enhancement of the
frequency-dependent conductivity in an Anderson insulator
[11,12] and efficient at low temperatures. It is because of
this effect, enhanced by multifractality, that the enhancement
factor shown in Fig. 1 is drastically asymmetric on both sides
of the Anderson transition.

At the values of the parameters typical to amorphous
indium oxide films used in Refs. [4,5], the total enhancement
factor may be as large as 500–800 in the range of electron
temperatures 20–100 mK and it decreases very slowly as the
system is driven deeper into the insulating phase (see Fig. 1).
Moreover, the temperature dependence of the enhancement
factor is logarithmic, which makes the effective power β in the
out-cooling rate only slightly modified compared to the case
of dirty metal [13]. This makes our theory a very plausible
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FIG. 1. Enhancement factor for the cooling rate in the Anderson
insulator (y > 0) compared to the dirty metal (y < 0) as a function
of temperature and proximity to the Anderson localization transition
at n = nc [parametrized by the ratio of the Fermi wavelength λF

and the localization (ξ > 0) or correlation (ξ < 0) length, with
|ξ |/λF ∼ (1 − n/nc )−ν, ν ≈ 1.6]. Notice a persistent character of
enhancement in insulator at low temperatures even far from the
Anderson transition λF /ξ = 0. This enhancement is caused by the
pairs of Mott’s resonant states with multifractal structure inside
localization volume, while the enhancement close to the Anderson
transition both in metal and in insulator is caused by multifractality
alone.

explanation of enhancement of the prefactor A in the cooling
rate in the experiments [5].

However, the results of this paper are much more general.
They are based on universal properties of random electron
wave functions in the multifractal insulator [9,10] and are
independent of a particular system as well of the presence or
absence of superconductivity in it.

The paper is organized as follows. In Sec. II we present a
general expression for the out-cooling rate in terms of exact
electron wave functions in the presence of strong disorder. In
Sec. III and Appendix B we show that the simple random-
phase approximation for electron wave functions employed in
the theory of Sec. II reproduces all the known results for the
electron-phonon cooling obtained earlier using the impurity
diagrammatic technique. In Sec. III we modify this random-
phase approximation by introducing a nontrivial envelope of
oscillating wave functions which accounts for the effects of
multifractality and localization. The main result of this section
is that the cooling rate is determined by the local density of
states correlation function K (ω). In Sec. IV we review known
properties of function K (ω), in particular the signatures of
multifractality and the effect of Mott’s resonant pair on it. In
Secs. V and VI we compute the enhancement factor for the
cooling rate due to these effects for the transverse and longi-
tudinal phonons, respectively. In the Conclusion we formulate
the main results of the paper and discuss their implications for
low-temperature experiments in Anderson insulators close to
localization transitions.

II. GENERAL EXPRESSION FOR THE COOLING RATE

The out-cooling rate J (T ) is expressed [14] in terms
of the phonon attenuation rate τ−1

ph due to electron phonon
interaction:

J (T ) =
∫ ∞

0
dω ω νph(ω)

Bph(ω)

τph(ω)
, (1)

where Bph(ω) = 1
2 [coth(ω/2T ) − 1] is the phonon energy

distribution function, and νph = ω2/(2π2v3
s ) is the

three-dimensional (3D) phonon density of states. The phonon
attenuation rate and the sound velocity are different for
transverse (t) and longitudinal (l) modes, and the total cooling
rate Jtot (T ) = Jl (T ) + 2Jt (T ), each of the contributions being
described by (1) with the corresponding τ

(t,l )
ph and sound

velocities v(t,l )
s .

Thus the primary object of interest is the phonon attenua-
tion rate:

1

τph
= 1

2ρi ω
Im

(
�R

ω − �A
ω

)
, (2)

where ρi is the lattice mass density, and �R(A) = D̂�
R(A)
RPA D̂

is the (retarded or advanced) phonon self-energy, given
by a proper action of the gradient vertex operators D̂ on
the random-phase approximation (RPA) polarization bubble
�

R(A)
RPA .
In order to take the localized nature of electron wave

functions into account we express the phonon attenuation
rate in terms of the exact electron eigenfunctions ψn(r) and
eigenvalues En. To this end we use the reference frame moving
locally together with the lattice [3,14]. In this frame the
electron-phonon Hamiltonian takes the form [14]

He-ph = −
∑
p,q

pα (vβ∇β uα )q �†
p�(p+q)

= 1

m

∫
dd r [∇β uα (r)] ∂α∂ ′

β �†(r) �(r′)|r=r′ , (3)

where pα = −i∇α, vβ = pβ/m is the electron velocity oper-
ator, �p and �p+q are Fourier components of the Fermionic
operators �†(r) and �(r′), m is the electron mass, and uα is
the phonon-induced local shift of the lattice in the laboratory
frame. The Greek symbols α, β in Eq. (3) and throughout the
paper are the components of 3D vectors, the summation over
repeated indexes being assumed. This Hamiltonian should
be supplemented by the standard electron interaction with
an impurity potential and the electron kinetic energy. The
advantage of the comoving frame is that the cross terms with
electron-phonon impurity interaction do not appear, which
makes calculations much simpler.

This interaction is screened by Coulomb interaction V . In
the RPA approximation the screened phonon self-energy is
given by

� = D̂�D̂ + D̂�
V

1 − �V
�D̂, (4)
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where

D̂� = 1

m
[∇β uα (r)] ∂α∂ ′

β �(r, r′; r1, r′
1)|r=r′,r1=r′

1
, (5)

�D̂ = 1

m
[∇γ uδ (r1)] ∂1,γ ∂ ′

1,δ �(r, r′; r1, r′
1)|r=r′,r1=r′

1
, (6)

and � is the bare polarization bubble in which all effects of
disorder are included but interaction is not.

Note that in the second term in Eq. (4) the fast momenta
corresponding to the left vertex of the leftmost � is com-
pletely decoupled from the fast momenta corresponding to the
right vertex of the rightmost �. As a result the second term in
Eq. (4) is proportional to k4

F δαβ δγ δ and thus its contribution
vanishes for transverse phonons. This is not the case for the
first term in Eq. (4) at distances |r − r1| < �, where � is the
mean free path.

In what follows we first consider the effect of the first
term in Eq. (4). Using (4), (3), and (2) one can express the
corresponding contribution to τph as follows (see Appendix A
for details of derivation):

1

τ
(1)
ph

= π
qβqδ

m2
eαeγ

1

ρi

∫
dd R eiqR Kαβγ δ (R, ω), (7)

where eα is the α component the unit vector of phonon
polarization, qα is the component of the phonon wave vector
q with |q| = q = ω/vs, V is the volume, and the function
Kαβγ δ (R; ω) is defined as

Kαβγ δ (R; ω)=
〈 ∑

nm

[∂αψ∗
m(r)][∂βψn(r)][∂γ ψ∗

n (r′)][∂δψm(r′)]

× δ(E − En) δ(E ′ − Em)

〉
. (8)

In (8) we denote disorder averaging by 〈.〉. After such an
averaging Kαβγ δ (R, ε) becomes a function of r − r′ = R and
E − E ′ = ε in the bulk of a sample and the spectrum.

III. EFFECTS OF LOCALIZATION AND
MULTIFRACTALITY

To further proceed we employ the following ansatz for the
electron wave functions:

ψn(r) =
∫

d�s

4π
a(n)

s (r) eikF s r, (9)

where |s| = 1 and a(n)
s (r) is a Gaussian random variable with

zero mean and the correlation function〈
a(n)

s (r) a(m)
s′ (r′)

〉 = δnm δs,s′ e−|r−r′ |/2� φn(r)φm(r′). (10)

Equations (9) and (10) are essentially a generalization of
the semiclassical Berry’ ansatz [15] for the case of local-
ization and multifractality. The exponential factor with the
momentum relaxation length � in Eq. (10) accounts for the
fast randomization of wave-function phases due to elastic
scattering, while positive functions φn(r) describe normalized
(and smooth at a scale �) envelopes of the wave functions,
averaged over fast de Broglie oscillations:

[φn(r)]2 = ψ2
n (r) V . (11)

Such envelopes φn(r) are equal to 1 in the semiclassical
Berry approximation kF � 	 1 when both localization and
multifractality effects are absent and wave functions are er-
godic. At kF � ∼ 1 when multifractality and/or localization
is present, these envelope functions have a nontrivial shape
which depends on the index n and on the realization of
disorder. Thus the averaging in (10) is incomplete. It involves
only the random-phase averaging and assumes subsequent
disorder averaging of the amplitude. The possibility to sep-
arate nearly universal fast wave-function oscillations from the
slow envelope that contains information about multifractal
behavior was discussed in a different way in Ref. [16]. This
idea has been successfully exploited in Ref. [17] in numerical
computation of the multifractal spectrum f (α) in order to sort
out the effect of nodes which dominate the distribution of
small eigenfunction amplitudes.

It is shown in Appendix B that plugging (9) and (10) with
φn(r) = 1 in (7) one exactly reproduces at q� 
 1 an expres-
sion for τ

(t )
ph obtained earlier for diffusive metals [3,18,19]:

1

τ
(t )
ph

= q2 k4
F �

30π2 ρi
= q2

10

kF �

ρi
ne, (12)

where ne is the total (two-spin) electron density. The corre-
sponding result for Jt (T ) is

Jt (T ) = 4π4

630

(kF �)ne

ρi
[
v

(t )
s

]5 T 6. (13)

Taking now into account φn(r) �= 1 in (10) one obtains from
(7)–(9) the following expression for τ

(1)
ph :

1

τ
(1)
ph

= π ν2
0 k4

F

qβqδ

m2ρi
eαeγ

∫
d3R eiqR e−|R|/�

∫
d�s

4π

×
∫

d�s′

4π
sαsδs′

βs′
γ e−ikF (s−s′ )R K (ω; R), (14)

where ν0 is the mean density of states at the Fermi
level, � = (ν0V )−1 is the mean level spacing in
an entire volume V , and K (ω; R) = �2〈∑n,m φn(r)
φm(r′) φm(r) φn(r′) δ(E − En)δ(E + ω − Em)〉. As the
exponential factor e−|R|/� makes the main domain of
integration over R in (14) to be |R| � � and because of
the smooth behavior of the envelope functions φn(r) at such
scale, one can replace K (ω; R) → K (ω, 0) ≡ K (ω). Then
after angular integration over unit vectors s, s′ and integration
over R in (14), one obtains in the limit |q|� 
 1

1

τ
(1)
ph

= 2π2

15

ν2
0 k2

F �

m2 ρi
(3q2

|| + q2
⊥) K (ω), (15)

where q|| and q⊥ are the longitudinal and the transverse
components of the phonon wave vector and

K (ω) = �2

〈∑
n,m

φ2
n (r) φ2

m(r) δ(E − En)δ(E + ω − Em)

〉

(16)

is the local density-of-states correlation function studied in
Refs. [9,10].
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For transverse phonons (q|| = 0) Eq. (15) gives the total
phonon attenuation rate. It is proportional to the properly nor-
malized electron local density of states correlation function
K (ω) which is course grained at a scale �. All the effects of
localization and/or multifractality are encoded in this correla-
tion function, while the effects of fast randomization of wave
function phases by impurity scattering are taken into account
by averaging over momentum directions s, s′ in Eq. (14).

Equations (15) and (16) are the main result of our paper.
Strictly speaking it is valid in 2 + ε (ε 
 1) dimensions where
the scale separation kF 	 �−1 	 ξ−1 holds even in an insu-
lator close to the Anderson transition where the localization
length ξ is large. As customary, we extend this result (with
the accuracy up to a factor of order 1) for 3D samples and
thick films with kF � ∼ 1.

IV. FUNCTION K(ω) CLOSE TO
LOCALIZATION TRANSITION

The behavior of the correlation function K (ω) was studied
in detail in Refs. [9,10]. It was shown that for E0 	 ω 	 δξ ,
where δξ = (ν0ξ

3)−1 is the level spacing in the volume char-
acterized by the correlation/localization length ξ , and E0 is of
the order of total bandwidth of conduction band, the effects of
multifractality lead to the power-law enhancement of K (ω) =
(E0/ω)γ , where γ = 1 − d2/3 ≈ 0.59 is determined by the
fractal dimension d2 ≈ 1.24 ± 0.03 [20]. This effect is due
to the nonergodicity of wave functions which do not occupy
all the available volume causing the enhancement of their
amplitude by normalization. Furthermore, the support sets of
different wave functions are strongly correlated thus giving
rise to enhancement of the overlap function K (ω). Albeit anal-
ysis in [10] concerned the case of noninteracting electrons, the
subsequent study [21] has shown that localization transition
and multifractality survive almost unchanged when Coulomb
interaction is taken into account.

As ω decreases below δξ the behavior of K (ω) starts to
depend on whether the system is insulating or metallic. In
the latter case K (ω) ∼ (E0/δξ )γ saturates at its value for ω =
δξ . However, in the insulator K (ω) ∼ (E0/δξ )γ lnd−1(δξ /ω)
increases further upon ω decrease [9,10]. This logarithmic en-
hancement is due to the Mott’s pairs of resonant levels which
results in a well-known [11,12] logarithmic enhancement of
frequency-dependent conductivity σ (ω) ∼ ω2 lnd+1(ω) in an
insulator. The difference in the power of logarithm in K (ω)
and σ (ω) is due to the square of the dipole moment matrix
element entering the conductivity. Both limiting cases in a 3D
insulator can be combined in one interpolating expression [9]:

K (ω) = (E0/δξ )γ ln2(δξ /ω)

c + (ω/δξ )γ ln2(δξ /ω)
, (c ∼ 1). (17)

V. ENHANCEMENT OF COOLING IN
A WEAK INSULATOR

Because of the strong dependence of the cooling power J ∝
v−5

s on the sound velocity vs, the cooling is usually dom-
inated by the transverse phonons whose sound velocity is
typically smaller by a factor of about 2. Then neglecting the

FIG. 2. Enhancement factor R(T ) in Eqs. (18) and (20) as a func-
tion of temperature for E0 = 1000 K and δξ = 10 K. The dashed line
represents a power law (T0/T )0.55 with T0 = 1710 K. Both the value
of R(T ) and the exponent in the apparent power-law dependence are
in agreement with experiment Refs. [5,22]. Inset: the enhancement
factor R as a function of δξ for Tel = 30 mK, E0 = 1000 K.

contribution of longitudinal phonons to cooling one obtains
from (1)

Jt (Tel ) = 8

5π2

(kF �) ne

ρi
[
v

(t )
s

]5 T 6
el R(Tel ), (18)

where Tel is the temperature of electron system and the
function

R(T ) =
∫ ∞

0
dx x5 [coth(x) − 1] K (2T x). (19)

Actually the integral in (19) is strongly peaked at 2x ≈ 5, thus
the ratio J (Tel )/T 6

el is proportional to K (5Tel ). In a limited
interval of electron system temperatures Tel = 10–100 mK
the enhancement factor R(Tel ) for typical parameters of in-
dium oxide films E0 = 1000 K, δξ = 10 K, c = 1 is well ap-
proximated by the power law R(T ) ≈ (T0/Tel )0.55 with T0 ≈
1700 K; see Fig. 2. Thus the effective power of temperature in
J (Tel ) should be βeff ≈ 5.5 rather than 6.0, in agreement with
Ref. [22]. The overall enhancement factor for these values of
parameters varies from 700 to 200 at Tel = 10–100 mK which
is consistent with experiment [5]. The dependence of the R(T )
factor on the local level spacing δξ is rather weak; see inset to
Fig. 2.

VI. COOLING BY LONGITUDINAL PHONONS

Considering the contribution of longitudinal phonons to
the cooling rate, one has to take into account the screening
given by the second term in Eq. (4). The simplest case is
the universal limit of screening when V (q)� 	 1 which is
always the case in a 3D metal in the limit q → 0 due to
long-ranged Coulomb interaction V (q) ∝ 1/q2. In Anderson
insulators this limit is approximately controlled by the large
value of the dielectric constant close to the localization transi-
tion [23]. In this limit the electroneutrality condition is strictly
enforced and the second term in Eq. (4) takes the univer-
sal form −(D̂�) �−1 (�D̂). One can approximate D̂� ≈
∇u
m k2

F δαβ �, and �D̂ ≈ ∇u
m k2

F δγ δ �. Now proceeding in the
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same way as above using (9) and (10) and taking into account
also the longitudinal part of (15) we obtain the contribution of
the longitudinal phonons to electron cooling:

Jl (Tel ) = 24

5π2

(kF �) ne

ρi
[
v

(l )
s

]5 T 6
el R(Tel ). (20)

As in Eq. (18), this result differs only by a factor R(Tel ) from
that for a disordered metal [3,18].

Note that the above method of calculation using the ansatz
(10) is valid only for local contributions, as it completely
ignores a possibility of building a density-density propagator,
the “diffuson.” However, in the universal limit of screening the
diffusion cannot be excited, as it is forbidden by electroneu-
trality. The effect of incomplete screening on the longitudinal
phonon decay rate and cooling is much more involved (see,
e.g., Ref. [14]). It may play some role in low-dimensional
cases where the effects of incomplete Coulomb screening are
stronger.

VII. CONCLUSIONS

The main result of this paper is given by Eqs. (15) and (16)
which relates the phonon decay rate 1/τ (ω) due to inelastic
interaction with electrons, and the correlation function of
the local density of states K (ω) characterizing electron wave
functions near the Anderson mobility edge. A direct conse-
quence of this relation is a strong enhancement of the electron-
phonon cooling power in weak insulators, in comparison with
usual diffusive metals, as demonstrated by Eqs. (18) and (19)
and Figs. 1 and 2. For the case of insulating indium-oxide
films, studied in Ref. [5], this enhancement is estimated to be
in the range of 500–1000, in agreement with the experimental
data. In general, our results suggest that measurements of the
cooling rate Eq. (18) or ultrasound attenuation rate Eq. (15)
provide a direct access to the electronic local density of states
(LDOS) correlation function K (ω).

On a more technical side, we expect that the same relation
(15) can be obtained by means of functional “sigma-model”
approach like the one developed in [24].

The above results are general and valid for any 3D Ander-
son insulator with long localization length and relatively weak
Coulomb interaction (a slight modification of our formulas
will also work for 2D Anderson insulators). In particular, one
can use this approach to analyze the data on bistability of
I-V characteristics and switching between high-resistance and
low-resistance branches as a function of applied voltage, as
reported for a number of various semiconductors or insulators;
see Refs. [25–28]. However, one should keep in mind that in
insulators with strong Coulomb interaction it might be diffi-
cult to disentangle Coulomb correlation effects from purely
localization effects. In such a case an effective correlation
function Keff (ω) may differ from its noninteracting version
given in Eq. (17).

Our results for the electron-phonon cooling power make
it possible to establish conditions for the observation of a
many-body localization transition in electronic insulators,
predicted theoretically more than a decade ago [29] but not
yet observed. One of the crucial problems to be solved in this
respect is to find an insulator with an extremely low thermal
coupling between electrons and phonons, yet with measurable

electric conductance. Our theory will be instrumental to solve
this important issue.

The behavior of the cooling power very similar to our
prediction has been recently seen in the resistive state of
moderately disordered superconducting indium oxide films at
strong magnetic field and low temperatures; see Sec. IV of the
Supplemental Material to Ref. [22], where J (Tel ) ∝ T 5.5

el was
observed. An enhancement (compared to the prediction for
dirty metals with kF � ∼ 0.3) by a factor 400–800 of cooling
power per carrier in insulating NbxSi1−x can also be extracted
from the results of Ref. [30].

Finally, we note that the obtained results are not expected
to hold for pseudogapped insulators where single-electron
DOS is strongly suppressed due to local pairing [9]. In-
deed, the electron-phonon cooling rate in the insulating state
of indium-oxide realized at relatively low magnetic field is
known [31] to be much lower (and follow much faster temper-
ature dependence) than the high-field data reported in Ref. [5].
The reason for that difference is that strong magnetic field
(above approximately 10 T) destroys local pairs and makes
the electron spectrum gapless.
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APPENDIX A: GENERAL EXPRESSION FOR PHONON
ATTENUATION RATE IN TERMS OF ELECTRON

WAVE FUNCTIONS

In order to take the localized nature of electron wave
functions into account we express the phonon attenuation
rate in terms of the exact electron eigenfunctions ψn(r) and
eigenvalues En. Using (2) and (3) of the main text one can
express the contribution to τph from the first term of (4) as
follows:

1

τ
(1)
ph

= π

2

qβqδ

m2
eαeγ

1

ρiω

1

V

∫
dE

∫
dE ′

×
∫

dd r
∫

dd r′ eiq(r−r′ ) FE ,E ′ (ω) Kαβγ δ (r, r′; E , E ′),

(A1)

where eα is the α component of the unit vector of phonon
polarization, qα is the component of the phonon wave vec-
tor q with |q| = q = ω/vs, V is the volume, FEE ′ (ω) =
[tanh ( E ′+ω

2T ) − tanh ( E ′
2T )] δ(E ′ − E + ω) is the Fermi distri-

bution factor and the function Kαβγ δ (r, r′; E , E ′) is defined as

Kαβγ δ (r, r′; E , E ′) =
〈∑

nm

[∂αψ∗
m(r)][∂βψn(r)][∂γ ψ∗

n (r′)]

× [∂δψm(r′)] δ(E − En) δ(E ′ − Em)

〉
.

(A2)
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In (A2) we denote disorder averaging by 〈.〉. After such an
averaging Kαβγ δ (r, r′; E , E ′) = Kαβγ δ (R, ε) becomes a func-
tion of r − r′ = R and E − E ′ = ε in the bulk of the spec-
trum. One can use the (approximate) translation invariance in
the energy space and perform integration over E ′:∫

dE ′ FE ,E ′ (ω) = 2ω δ(ε − ω). (A3)

Now the general expression for τ
(1)
ph takes the following form:

1

τ
(1)
ph

= π
qβqδ

m2
eαeγ

1

ρi

∫
dd R eiqR Kαβγ δ (R, ω). (A4)

APPENDIX B: PHONON ATTENUATION RATE IN
DISORDERED METALS

At kF � 	 1 when the effects of multifractality can be
neglected the correlation function K (ω) ≈ 1 at ω 	 �. Here
we consider this limit in order to show that our approach based
on Eqs. (11) and (12) of the main text [in which φn(r) = 1]
reproduces the well-known results of Refs. [18,19] where the
diagrammatic approach was adopted.

We start by evaluating the angular integrals over unit
vectors s and s′ in Eq. (14) of the main text. The result should
have the following form:

I1 δαδδβγ + I2 (δαβδγ δ + δαγ δβδ ), (B1)

as the integrals do not contain any preferential direction.
The quantities I1 and I2 can be found from the following

equations:

9I1 + 6I2 =
∫

d3R e−R/�

∣∣∣∣
∫

d�s

4π
eikF sR

∣∣∣∣
2

, (B2)

3I1 + 12I2 =
∫

d3R e−R/�

∫
d�s

4π

∫
d�s′

4π
eikF (s−s′ )R (ss′)2.

(B3)

The integral under the absolute value sign in Eq. (B2) is
nothing but the Friedel oscillation in 3D space:

�Fried =
(

sin(kF R)

kF R

)
. (B4)

Thus the right-hand side of Eq. (B2) reduces to∫
d3R

(
sin(kF R)

kF R

)2

e−R/� = 8π �3

1 + 4(kF �)2
. (B5)

The double angular integral in Eq. (B3) can also be expressed
in terms of �Fried and its second derivative:

1

2

(
sin y

y

)2

e−y/d +
(

sin y

y

)
∂2

y

(
sin y

y

)
e−y/d

+ 3

2

[
∂2

y

(
sin y

y

)]2

e−y/d , (B6)

where y = kF R and d = kF �.
Now doing the R integral in Eq. (14) of the main text we

obtain∫
d3R e−R/�

∫
d�s

4π

∫
d�s′

4π
eikF (s−s′ )R (ss′)2 = 4π�3 Y (d ),

(B7)

where the function Y (d ) is

Y (d ) = 2

1 + 4d2
+ 1

d4
− 1 + 2d2

4d6
ln(1 + 4d2). (B8)

In the limit d = kF � 	 1 one obtains from Eqs. (B1)–(B3)
and (B7):

I2 ≈ I1 = 2

15
π

�

k2
F

. (B9)

so that the combination of delta symbols in Eq. (B1) is totally
symmetric.

Now plugging this result into Eq. (14) of the main text one
obtains the transverse phonon attenuation rate:

1

τ
(t )
ph

= q2
⊥

30π2

k4
F �

ρi
= q2

⊥
10

kF �

ρi
ne, (B10)

where ne is the total electron density (with both spin direc-
tions).

Correspondingly, the result for the out-cooling rate is

Jt (T ) = 4π4

630

1[
v

(t )
s

]5
ρi

(kF �) ne T 6, (B11)

which coincides with the result of Refs. [18,19].
For longitudinal phonons Eq. (14) of the main text gives

the result which is by a factor of 3 larger than in (B10):

1

τ
(1,l )
ph

= q2
||

10π2

k4
F �

ρi
, (B12)

However, in order to compute the attenuation rate of longitudi-
nal phonons one has to take into account also the second term
in Eq. (4) of the main text. At a complete screening, this term
has an opposite sign compared to (B10) and thus the phonon
attenuation rate for longitudinal phonons is smaller than in
Eq. (B12).

The additional negative contribution should be found from
the expression similar to Eq. (7) of the main text:

1

τ
(1)
ph

= π
qβqδ

m2
eαeγ

1

ρi

∫
dd R eiqR K (2)

αβγ δ (R, ω), (B13)

where R = r − r′, ω = E − E ′, and the correlation function
K (2)

αβγ δ (R, ω) is

K (2)
αβγ δ (R, ω) = −1

9
δαβδγ δ k4

F

〈∑
nm

�∗
m(r) �n(r)

× �∗
n (r′) �m(r′) δ(E − En) δ(E ′ − Em)

〉
.

(B14)

Now substituting Eqs. (9) and (10) of the main text into (B14)
we obtain in the limit q� 
 1

1

τ
(2)
ph

= − q2
||

18π2

k4
F �

ρi
, (B15)

so that

1

τ
(l )
ph

= 1

τ
(1,l )
ph

+ 1

τ
(2)
ph

= 2q2
||

45π2

k4
F �

ρi
. (B16)
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Correspondingly, the out-cooling rate due to longitudinal
phonons is

Jl (T ) = 8π4

945

1[
v

(l )
s

]5
ρi

(kF �) ne T 6. (B17)

Thus the ratio of the total contribution of the transverse
[2Jt (T )] and the longitudinal [Jl (T )] phonons to the cooling
rate is (3/2)[v(l )

s /v(t )
s ]5, in agreement with earlier results [see,

e.g., Eq. (31) of Ref. [18] of the paper].
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