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Quantum anomalous Hall (QAH) multilayers provide a platform for topological materials with high Chern
numbers. We investigate the localization routes of bilayer QAH systems with Chern number C = 2 during the
process of increasing disorder, by numerical simulations on their quantum transport properties and the Chern-
Simons axion coupling. The localization trajectories present richer behaviors than those in the monolayer with
C = 2. For example, there exists a stable intermediate state with C = 1 before localization, which was always
unstable in a monolayer. In some cases, this C = 1 state is “weak” in the sense that its Hall plateau is hardly
visible in a mesoscopic sample, but is still stable in the sense of renormalization group. The underlying physics
is discussed. During the localization process, the Chern-Simons axion coupling shows a surprising peak which
is even more remarkable in the large size limit. The physical origin of this peak is understood by a real-space
analysis of the electronic states. As a result, the disordered QAH multilayers can be good candidates for this
nontrivial magnetoelectric coupling mediated by orbital motions.
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I. INTRODUCTION

The research of topological materials recovers the interests
of searching the quantum anomalous Hall (QAH) effects, i.e.,
Chern insulators without an external magnetic field [1]. QAH
effects in different materials have been theoretically proposed
[2–6] and experimentally observed [7–11]. The Chern insu-
lator, as a topological state, is robust against weak disorder,
manifested as a plateau of Hall conductance σxy = e2

h C with
C the Chern number, and a vanishing longitudinal conduc-
tance σxx [12–14]. Nevertheless, it can still be localized into
Anderson insulators with C = 0 ultimately, by sufficiently
strong disorder. This can be regarded as a disorder induced
topological transition with Chern number from nonzero to
zero [15–17]. On the other hand, this trajectory towards
localization can also be understood in the context of scaling
and renormalization group (RG), i.e., the Pruisken formalism
[18,19], where all the quantized Hall conductances (associ-
ated with all nonzero Chern numbers) correspond to stable
fixed points attracting all nearby RG flows in the conductance
plane (σxy, σxx ). Besides the analytical RG treatment, these
trajectories along scaling transformation can also be observed
by experiments [20–22] or simulated by numerical calcula-
tions [17,23–25].
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QAH states with different Chern numbers are topologically
distinct from each other. The localization trajectory of the
monolayer (two-band) QAH state with Chern number C = 2
has been numerically investigated [17,26]. The novelty is
that the intermediate state with C = 1 is not stable during
the process towards localization, no matter how the model
parameters are tuned. Microscopically this has been attributed
to a C = 1 state rooted in broad statistical tails, which cannot
manifests itself after statistical averaging and size scaling
[17].

In additional to transport properties, the orbital mediated
magnetoelectric coupling attracts many attentions in topolog-
ical materials. The axion electrodynamics [27] introduces a
non-Abelian Lagrangian term [28–32]

Lθ = e2

h

θ

2π
E · B, (1)

where θ is a dimensionless parameter, which is determined
by the electronic structure of the material, and E and B are
the electric and magnetic fields, respectively. This quantity
reflects a deep magnetoelectric connection mediated by the
electronic orbital motions in solids, especially remarkable
in topological materials. Due to the involvement of three-
dimensional motions [see Eq. (13) below], a bilayer system,
investigated in this paper, is the simplest lattice with a nonzero
Chern-Simons axion coupling [32].

2469-9950/2019/99(12)/125414(10) 125414-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.125414&domain=pdf&date_stamp=2019-03-11
https://doi.org/10.1103/PhysRevB.99.125414


WANG, ZHANG, GUAN, YU, XIA, AND LI PHYSICAL REVIEW B 99, 125414 (2019)

An important knowledge from (quasi-) two-dimensional
(2D) systems is that a bilayer system may possess quite
different properties from its monolayer counterpart [33,34].
Few layer QAH systems have been experimentally fabricated
recently by molecular beam epitaxy [35]. The bilayer QAH
system with C = 2, which we will discuss, is essentially
different from a monolayer one in at least two aspects. First, it
is a four-band model or a model with two pairs of bands with
each pair contributing one Chern number. Second, each pair
corresponds to one layer which is distinguishable in the real
space, and their coupling is tunable.

In this paper, we will investigate the trajectory towards
localization of such a bilayer system with increasing disorder,
by performing numerical simulations on the two terminal
conductance, two-parameter scaling, and the axion magne-
toelectric coupling. We find that there is a stable Hall con-
ductance plateau with C = 1, in a region of intermediate
disorder strength. For some model parameters, this state may
be hardly visible (imperfect plateau of σxy and nonzero σxx)
at finite sample size, but scaling shows that it is still on
the way towards (σxy = 1 × e2

h , σxx = 0). The existence of
such a stable intermediate Chern state has been ruled out
for single layer QAH systems [17,26]. Through numerical
scaling, we also find that some trajectories cannot be perfectly
fitted into the Pruisken flows, especially in the limit of strong
interlayer coupling. Finally, the disorder induced collapse of
the quantum Hall plateau is shown to correspond to a peak of
axion magnetoelectric coupling.

II. THE MODEL

The general form of a spinless bilayer QAH system can be
expressed as

Hbi = H1 + H2 + Hc, (2)

where HL (L = 1, 2) is the Hamiltonian for the Lth layer and
Hc is the coupling between them. Here, we choose each layer
to be the spin up component of the Bernevig-Hughes-Zhang
(BHZ) model [36] defined on a square lattice, with one s
orbital and one p orbital on each site. This is one of the
minimum models of the QAH state. In the k space, the layer
Hamiltonian reads

HL =
∑
k,αβ

c†
L;kα

HL;αβ (k)cL;kβ, (3)

where c†
L;kα

(cL;kα) creates (annihilates) an electron with wave
number k and orbital α ∈ {s, p} in layer L ∈ {1, 2}. For BHZ
model, HL;αβ (k) is a 2 × 2 matrix as [36]

HL(k) = εL(k)I2×2 +
∑

i

d i
L(k)σi,

εL(k) = − 2DL
[
2 − cos

(
kx − qx

L

) − cos
(
ky − qy

L

)]
,

(4)
d1

L (k) = AL sin
(
kx − qx

L

)
, d2

L (k) = AL sin
(
ky − qy

L

)
,

d3
L (k) = ML − 2BL

[
2− cos

(
kx − qx

L

)− cos
(
ky − qy

L

)]
,

where σi are the Pauli matrices acting on the orbital space
{s, p}. We have included a layer dependent momentum shift
qL = (qx

L, qy
L ) of the band structure in the Brillouin zone,

FIG. 1. The band structure of the quasi-one-dimensional ribbon
with width Ny = 80 in the clean limit, for (a) A1 = 1 and (b) 0.3. The
rest model parameters are identical for both panels: A1 = 0.3, B1 =
0.2, D1 = 0, M1 = 0.2, A2 = 1.0, B2 = 0.6, D2 = 0, M2 = 1.0,
and t = 0.3. The red lines are edge states.

so that two groups of edge states (originated from two lay-
ers) can be better distinguished visually, as can be seen
in Fig. 1(a). We have checked that this shift does not
affect the transport properties investigated in the follow-
ing. The real-space version of the layer Hamiltonian HL =∑

i j,αβ c†
L;iαHL;αβ (i, j)cL; jβ can be obtained from Eqs. (3) and

(4) by performing a straightforward inverse Fourier transfor-
mation cL;kβ = 1√

V

∑
j cL; jβe−ik·x j , where i is the site index.

The size of such a finite sample is characterized by the length
Nx and the width Ny measured in units of the lattice constant.

In the absence of the interlayer coupling Hc, the band
structure and Chern number of each layer can be tuned inde-
pendently by varying the parameters. For example, the band
gap is 2|ML|, and the layer Chern number

CL =
⎧⎨
⎩

+1, 0 < ML/2BL < 2
0, ML/2BL < 0
−1, otherwise

. (5)
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The interlayer coupling is considered to be the simple form in
real space as

Hc =
∑

iα

(tc†
1;iαc2;iα + H.c.), (6)

where t is the strength of the coupling. Without interlayer
coupling, the Chern number of this “bilayer” system is triv-
ially C = C1 + C2. Consequently, if the adiabatic turning on
of the interlayer coupling term (6) does not close the bulk gap,
the Chern number C of the bilayer system will not change.
Throughout this paper, we focus on this case with C = 2,
constructed from coupling two layers with CL = 1.

In Fig. 1, we present the band structures of the bilayer
systems in the ribbon geometry, with two typical groups of
model parameters. Two groups of edge states (red lines) in
the bulk gap can be clearly seen, reflecting the Chern number
C = 2 at half filling. To have a direct visual comparison with
the case of a single layer [17,26], we have appropriately tuned
the model parameter qL [see Eq. (4)], so that two groups of
edge states (originated from two layers respectively) are cen-
tered at different locations with two local gaps, respectively.
Furthermore, the magnitudes of these two local gaps can
be similar [Fig. 1(a), with A1 = 1.0] or different [Fig. 1(b),
A1 = 0.3]. In the following, we will see that these two patterns
correspond to different quantum transport properties. The
effect of disorder is modeled in real space by adding a random
onsite potential term

∑
L;iα

c†
L;iαUL;icL;iα (7)

to the Hamiltonian Hbi, where UL;i are independent random
numbers uniformly distributed in (−W

2 , W
2 ), and W is the

disorder strength.

III. METHODS

At zero temperature, the two-terminal conductance of a fi-
nite sample can be expressed by Green’s functions as [37–39]

G = e2

h
Tr[�SGr�DGa], (8)

where Gr/a is the retarded/advanced Green’s function,
and �S(D) = i(	r

S(D) − 	a
S(D) ) with 	

r/a
S(D) being

retarded/advanced self energies due to the source (drain)
lead, respectively. For a Chern insulator, this two-terminal
conductance just equals the Hall conductance, G = σxy

[37]. To plot the two-parameter scaling trajectories,
longitudinal and transverse conductances should be
calculated, respectively, which will be described below.

For a finite 2D sample with disorder, the concept of the
wave number k = (kx, ky) can be restored if twisted boundary
conditions are adopted along both directions [14–17,40]. This
is simply equivalent to treating this finite sample as the super-
cell of an infinite superlattice. In this sense, hereafter, we call
these finite samples as supercells and the energy bands of this
superlattice as subbands. Now, the longitudinal conductance
σxx of the supercell is calculated as the Thouless conductance

FIG. 2. Disorder averaged two-terminal conductance G as a
function of disorder strength W , at Fermi energy EF = 0.05. (a) Fix-
ing t = 0.3 while changing A1. (b) Fixing A1 = 0.3 while changing
t . (c) Fixing A1 = 1 while changing t . The blue and black curves in
panel (a) correspond to the cases of Figs. 1(a) and 1(b), respectively.
The sample size is 100 × 100 and the average is over 500 disorder
configurations. The rest model parameters are identical to Fig. 1.

[41,42]

σxx(En) = e2

h
πρ(En)

∂2En

∂k2
x

∣∣∣
kx=0

, (9)

where ρ is the density of states, and En is the subband at the
Fermi energy.

In this context of disordered supercell, the (intrinsic) Hall
conductance σxy is found to be proportional to the integration
of the Berry curvature F z

n over the Brillouin zone (BZ) under
the Fermi energy EF [14,24,43–45]

σxy(En) = e2

h

∑
n

1

2π i

∫
BZ

d2kF z
n (k) f0[En(k)],

Fn = ∇k × An, (10)

An = 〈n(k)|∇k|n(k)〉,
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FIG. 3. Red arrows are supercell size driven scaling flows for t = 0.3, with sample sizes 10 × 10 → 15 × 15: (a) A1 = 1.0, (b) 0.7, (c) 0.5,
and (d) 0.3, which respectively correspond to four curves in Fig. 2(a). Each arrow is an average over 10 000 to 30 000 disorder configurations.
The disorder strength W varies from 0 to 12, and the Fermi energy EF = 0.05 near the gap center. Grey (main panels, for class �T) and blue
(inset, for class �R) curves are illustrative configurations of Pruisken RG trajectories [18,32] for fitting (see text for details).

where f0(E ) is the Fermi distribution at zero temperature and
|n(k)〉 is the normalized wave function of the nth subband
which satisfies H (k)|n(k)〉 = En(k)|n(k)〉. If EF is within
the bulk gap, σxy = e2

h C with C the total Chern number of
occupied (sub)bands, where σxy carried by the edge states
and C determined by the bulk bands are related through the
bulk-boundary correspondence [13,14]. The Hall conductance
σxy may not be quantized if some subbands are only partly
filled [14,45]. This relation between Berry curvature and
Hall conductance has been used to design and control the
anomalous Hall effect in magnetic Heusler compounds [46].
Our numerical evaluations of Eqs. (9) and (10) are based on
the methods used in previous works [17,24,47]. Hereafter, all
conductances will be expressed in units of e2/h.

In the presence of disorder, an ensemble average of these
transport quantities over disorder configurations should be
performed to obtain physically meaningful results, for a cer-
tain group of model parameters and supercell size. Then, by
enlarging the supercell size, the ensemble averaged conduc-
tance vector σ ≡ (σxy, σxx ) forms a flow in this 2D parameter
space [17,19,24]. Throughout this paper, we will call this a
“scaling flow” (or a “scaling trajectory”), while that calculated
from RG theories [18] an “RG flow” (or an “RG trajectory”).

These flows offer the information of transport properties in the
thermodynamic limit.

Now we introduce the calculation of orbital magneto-
electric coupling. Due to the close relation between θ in
Eq. (1) and the linear orbital magnetoelectric response αi j =
(∂Pi/∂Bj )E = (∂Mj/∂Ei )B, with P and M the macroscopic
polarization and magnetization [32], it is adequate to focus
on the Chern-Simons axion (CSA) coupling [31,32]

ᾱCS = e2

h

θCS

2π
, (11)

where θCS is a part of θ with a 2π ambiguity. For an in-
finite three-dimensional (3D) crystalline material, the CSA
coupling can be expressed as [48]

θCS = − 1

4π

∫
dkεi jl Tr

(
Ai

k∂k j A
l
k − i

2

3
Ai

kAj
kAl

k

)
, (12)

where Ai
k is the matrix of Berry connection between subbands

in direction i, and the trace is over occupied bands.
Moreover, the expression of the CSA coupling has been

carefully generalized to an infinite 2D slab as θ2, and to a finite
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FIG. 4. Similar to Fig. 3 but for fixed A1 = 0.3 and different t : (a) t = 0.1, (b) 0.3, (c) 0.5, and (d) 1.0, which correspond to the cases of
four curves shown in Fig. 2(b), respectively.

(zero-dimensional) crystal as [32,49–51]

θ0 = −8π2 Im Tr[PxPyPz], (13)

where P = ∑
n |ψn〉〈ψn| is the projection operator onto the

occupied subspace in the ground state. It has been verified
that in the thermodynamic limit [32],

θ0

NxNy
→ θ2, for Nx, Ny → ∞. (14)

This θ0 defined by Eq. (13) is convenient for treating dis-
ordered and finite samples in which we are interested here.
Moreover, θ0 is demonstrated to be a more fundamental defi-
nition of CSA than those in k space [32]. The CSA coupling
[Eqs. (12) and (13)] involves responses in all three directions
and thus it is meaningless for single-layer systems.

IV. RESULTS

A. Appearance of the intermediate state with C = 1

A Chern insulator (with C 
= 0) manifests itself as a robust
Hall conductance plateau at weak disorder, but it can be
localized at strong disorder. For a monolayer QAH system
(with two bands) with Chern number C = 2, it has been found
that, the intermediate state with C = 1 is not a stable plateau
on the route towards localization [17,26]. Here we try to test
the stability of the intermediate state C = 1 of the bilayer
system (3). Due to the adjustability of each constituent layer,

we can make these two layers (especially their gaps) quite
asymmetric to each other, by tuning model parameters distinct
on two layers.

To have a first glance at the quantum transport property
in the presence of disorder, we calculate the two-terminal
conductance by using Eq. (8), which is equal to the Hall
conductance for a Chern insulator [37]. In Fig. 2, the disorder
averaged conductance G is plotted as a function of the disorder
strength W , with different A1 (tuning layer gaps), or different
t (tuning the interlayer coupling). Figure 2(a) is the results
with fixed t = 0.3 but different A1. When A1 = 1.0 (blue
line), corresponding to the case of similar local gaps shown
in Fig. 1(a), the conductance decays from 2 to 0 persistently,
without a visible intermediate plateau with G = 1, similar to
the monolayer case [17]. However, with decreasing A1, so that
two local gaps are more and more different [see Fig. 1(b)],
an intermediate plateau with G = 1 emerges gradually. This
plateau with G = σxy = 1 seems shorter if the interlayer cou-
pling t is very large, as shown in Fig. 2(b). On the other hand,
in the case of similar local gaps (A1 = 1), as one can imagine,
changing t will never give rise to a stable plateau with σxy = 1.

B. Scaling flows

In Pruisken’s pioneering work based on field theory [18],
the RG flows of the integer quantum Hall effect on the σ ≡
(σxy, σxx ) plane is found to form a periodic pattern, which is
illustrated as grey curves in Figs. 3 and 4. For these RG flows,
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σ = (n, 0) are stable fixed points attracting all surrounding
flows, corresponding to the robust nth QHE plateau states.
On the other hand, σ = (n + 1

2 , σ ∗
xx ) (with σ ∗

xx ∼ 1) are saddle
points (unstable fixed points) practically repelling most sur-
rounding flows. There are main semicircles connecting neigh-
boring stable and saddle points. It is observed that this nested
hierarchical structure of fixed points can be described by
the modular group �(1), which is infinite, discrete, and non-
Abelian. Indeed, a very wide range of experimental quantum
Hall data of scaling flows have been found to perfectly match
just a few universality classes, and each class corresponds to a
certain subgroup of the modular group [52]. In this context,
the above Pruisken picture corresponds to the class of �T

[52].
Another class of RG flow, �R, is just a size doubling of

the above �T flow pattern [52], with even Chern number
states σ = (2n, 0) as stable fixed points, and with odd Chern
number states σ = (2n + 1, 2σ ∗

xx ) as saddle points [see the
blue curves in the inset of Fig. 3(a)]. Numerical simulations
have shown that the scaling flows of the monolayer QAHE
with C = 2 match this �R pattern, with flows going away from
σ = (1, 2σ ∗

xx ) [17].
In order to test the modular symmetry of our bilayer model,

we plot the supercell size driven scaling flows on the σ plane,
by numerical simulations of conductances using Eqs. (9) and
(10), as in previous works [17,24,25]. We remind again that
in this paper, the flows from the RG techniques and from
the conductance simulations are termed as “RG flows” and
“scaling flows,” respectively. The results of scaling flows for
different A1 are displayed in Fig. 3 as red arrows, where
each data point is an average over at least 10 000 disorder
configurations (30 000 configurations around transitions). For
comparison, RG flow curves of the Pruisken pattern [18] are
also illustrated in Fig. 3. These RG flows are just plotted
by fitting the original RG equations [18] with a few free
parameters (including zooming factors in two directions),
instead of by a rigorous RG treatment of our bilayer model.
Due to the critical slowing down and large fluctuations near
the transitions, it is rather difficult to have a precise and global
reproduction (or prediction) of the RG flows from numerical
scaling flows [19]. However, intuitive insights can still be
drawn.

Figure 3(a) is the scaling flows for the case of A1 = 1, with
two local gaps similar. Here, we simultaneously fit the same
group of scaling flows (red arrows) to the RG flows of �T class
(grey curves in the main panel) and to those of �R class (blue
curves in the inset), respectively.

The profile of this large semicircle of red arrows seems
to follow the RG pattern of the modular symmetry �R [blue
curves in inset of Fig. 3(a)], i.e., with σ = (1, 2σ ∗

xx ) a saddle
point [52], as in the monolayer case of C = 2 [26]. However,
something is different if we scrutinize the orientations of
the red arrows around σxy = 1: although far away from σ =
(1, 0), they show an obvious tendency towards σxy = 1, which
is opposite to the �R RG flows (blue curves in the inset)
going away from σxy = 1 on the main semicircle. Instead,
the orientations of these red scaling arrows around σxy = 1
comply more with the �T RG flows in the main panel, within
the waterfall converging towards σ1 ≡ (1, 0). In brief, the
scaling flows around σxy = 1 are more likely to match the RG

FIG. 5. Distribution of the Hall conductance σxy corresponding
to the case of Fig. 3(a) with t = 0.3 and A1 = 1, where the state
with σxy = 1 is weak. Four panels correspond to different disorder
strengths W : (a) 2.0, (b) 5.0, (c) 7.0, and (d) 9.0.

flows of class �T instead of class �R, although some of the
scaling flows are not on the main semicircles.

Here in Fig. 3(a), we meet an example of badly observable
C = 1 state in the modular symmetry class �T, manifested as
nonquantized σxy and nonzero σxx at finite sample size. This
can be attributed to some residual bulk states in the system
[see following analysis on Fig. 5(b)]. Since this state is still on
the route towards the stable fixed point σ = (1, 0), a quantized
Hall plateau should be observed in an extremely large sample,
which may significantly exceed the quantum coherence length
in practice. We call such Chern states hardly visible in a
mesoscopic sample (although it is stable in the RG sense) as a
“weak quantum (anomalous) Hall effect.”

Another issue should be addressed here. In Pruisken’s
formalism [18], there is always a definite flow vector at any
position of the upper half of the (σxy, σxx ) plane, except
at isolated fixed points. For an experiment or a numerical
simulation, one cannot predict a priori where a certain flow
will start [19,52]. In other words, the key information of
the scaling flows is the orientation configuration at differ-
ent positions, instead of the positions themselves, because
the Pruisken theory does not prohibit or prefer any posi-
tion for the flows to appear. Indeed, in many experimental
results, the scaling flows are not on the main semicircles
[19,21,52].

When A1 is decreased, in Figs. 3(b) to 3(d), with two local
gaps different, the state with σxy = 1 becomes more and more
attractive for scaling flows, suggesting that it is a stable state
during the route towards localization.

The emergence of this stable intermediate plateau with
σxy = 1 is the first finding of this work. Since this state is
much more stable and significant when the magnitudes of
two local gaps (each accommodating a group of edge states)
are extremely different [Fig. 1(b)], this can be illustrated
as disorder induced band inversion [16,17] at the smaller
local gap. This is completely different from the monolayer
QAH effect with C = 2 [17,26]. In that case, changing model
parameters, e.g., making two local gaps (each of which carries
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FIG. 6. Similar to Fig. 5 but corresponding to the case of
Fig. 4(a) with t = 0.1 and A1 = 0.3, where the state with σxy = 1
is a stable fixed point.

a group of edge states) different will never give rise to a stable
plateau with σxy = 1, and the scaling flows around σxy = 1 are
going away from it [17].

Another notable feature can be seen in the most asym-
metric case with small A1 = 0.3 [Fig. 3(d)]; besides straying
away from the main semicircles between σxy = 1 and σxy = 2,
the orientations of these scaling flows seem to deviate from
the typical Pruisken RG configuration [18,52]. This tendency
becomes more remarkable when the interlayer coupling t is
increased, as can be seen in Figs. 4(c) and 4(d). For example,
the orientations of the scaling flows remarkably deviate from
those of the standard Pruisken RG flows, especially when
σxy � 1.5. When σ is high above the semicircle, RG trajec-
tories (grey lines) should be flowing down straightly, but the
scaling flows (red arrows) in Fig. 4(d) are not the case. We

FIG. 7. Solid curves: the area normalized finite size CSA cou-
pling θ0/(NxNy ) as a function of disorder for different A1. Each
data point is an average over 4000 disorder configurations with
size Nx = Ny = 20. For comparison with the transport property, the
corresponding two-terminal conductances are also plotted in dashed
curves. The interlayer coupling t = 0.3, and the other parameters are
same as Fig. 1

FIG. 8. Similar to Fig. 7 but for different sample size N ≡ Nx =
Ny [(a) A1 = 0.3 and (b) 1]. The insets are the corresponding peak
value θ0(max) as a function of sample size.

conjecture that when the interlayer coupling is much larger
than the intralayer hopping, the in-plane electronic motions
might be suppressed, which leads to some competition in-
duced instability of in-plane electronic transport. This may
have an nonignorable impact on the in-plane transport, which
was, however, only understood in a purely 2D regime in
traditional RG analysis [18].

C. Distributions of σxy

The above results were based on transport quantities aver-
aged over disorder ensembles. To obtain more insights from
another angle, now we investigate the statistical distributions
of the Hall conductance at different disorder strength W .
Figure 5 is the statistical histograms of σxy at different disorder
strength, corresponding to the scaling flows of Fig. 3(a), with
just one semicircle profile of scaling flows and with a weak
σxy = 1 state. On the other hand, Fig. 6 corresponds to the
case of Fig. 4(a), with two semicircles and with a visible
σxy = 1 plateau. When the disorder is weak, W = 1.5 [panels
(a) in both figures], both cases show isolated narrow peaks
with quantized Hall conductances, among which the σxy = 2
peak is the most prominent. This suggests that the system
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FIG. 9. Real-space distribution of θ0(r) for a single typical dis-
order configuration with A1 = 0.3, corresponding to the case of
Fig. 8(a). The sample size is 20 × 20. The left (right) column corre-
sponds to θ0(r) on the first (second) layer, and three rows correspond
to three different disorder strengths W .

is in a well defined insulating state with an extremely high
probability of σxy = 2. Such a distribution gives rise to a
visible σxy = 2 plateau after ensemble average, as we have
seen above.

The most remarkable difference between Figs. 5 and 6
appears at the intermediate disorder strength W = 5 [panels
(b)]. In Fig. 6(b), similarly, an isolated and prominent narrow
peak at σxy = 1 results in a visible transport plateau of σxy = 1
which is the stable fixed point in Fig. 4(a). On the other hand,
the pattern is different in Fig. 5(b). Here although the σxy = 1
peak is still very high, it is rooted in continuous and broad
tails, where σxy is not quantized. This suggests that there exist
considerable bulk states at this fermi level, making σxy = 1
only a “weak topological state,” which is hardly visible in a
mesoscopic system, as stated above.

D. Chern-Simons axion coupling

In this section, we explore how CSA coupling strength
θCS behaves during the process towards localization. Due to
the size relation, Eq. (14), what makes sense for different
sizes is the finite size CSA coupling (13) normalized by
the sample area, θ0/(NxNy). In Fig. 7, solid curves are the
θ0/(NxNy) as a function of disorder strength W for different
A1. For a comparison with the transport properties, we also

FIG. 10. Similar to Fig. 9 but for A1 = 1, corresponding to the
case of Fig. 8(b).

plot the corresponding two-terminal conductance [identical
to Fig. 2(a)] as dashed curves. It is interesting to notice
that θ0 starts to increase sharply just before the collapse of
the conductance plateau with G = σxy = 2. Then it climbs
to a peak after which the tendency of localization begins
to dominate. However, the decay of θ0 is slower than that
of G after W > 10. Another distinct feature is that there is
also only one peak for all these cases, even for the case of
A1 = 0.3 where there are two visible transitions of the Hall
conductance: σxy = 2 → 1 and 1 → 0. These facts suggest
that during the process of localization, the variation of CSA
coupling is closely related to the disorder induced topological
phase transition, but not a simple “one to one” correspondence
with transport properties.

To obtain the information in the thermodynamic limit, we
present the CSA coupling θ0/(NxNy) for increasing sample
sizes in Fig. 8, for A1 = 0.3 and A1 = 1, respectively. In
both cases, the peak shapes of CSA become sharper with the
increasing of the sample sizes. The peak value θ0(max)/(NxNy)
as a function of the sample size is plotted in the corresponding
inset respectively. These peak values do not seem to converge
until the largest size we can calculate, Nx × Ny = 30 × 30.
With the size axis in the logarithmic scale, one can see that its
dependence on sample size N is as fast as (or a little bit slower
than) θ0(max)/(N2) ∼ ln N . This scaling growth makes this
CSA coupling experimental observation possible in realistic
materials. Therefore, besides intrinsic materials previously

125414-8



LOCALIZATION TRAJECTORY AND CHERN-SIMONS … PHYSICAL REVIEW B 99, 125414 (2019)

FIG. 11. Disorder averaged θ0(r) along the central cross section
of 20 × 20 samples, for different disorder strength W . The upper
(lower) row is for the case of A1 = 0.3 (A1 = 0.3), and the left (right)
column corresponds to the first (second) layer. The average is over
5000 disorder configurations.

proposed [53–55], we find that multilayer QAH systems with
disorder are also candidates for high θ materials.

The unexpected peak of θ0 prior to localization leads to
a question about the underlying physics: how the electronic
states are reorganized in the system during this process? To
answer this, it is helpful to map θ0 to the real space. The
zero-dimensional (finite sample) expression of θ0, Eq. (13),
is believed to be a more fundamental definition of the CSA
coupling than those k-space versions, and is free from the
ambiguity of 2π and the subtleties of boundary conditions
[32]. Therefore, in the spirit of Refs. [56–58], it is reasonable
to define the “local marker” of the CSA coupling for a
real-space site r as

θ0(r) = −8π2 Im Trr[PxPyPz], (15)

The only difference from Eq. (13) is that the trace Trr is
only over the freedom degrees within the site r, which is two
orbitals in our model (4). The sum of θ0(r) over all r of the
whole finite sample is just θ0.

To have a first impression, let us see the development
of the real-space distribution of the local marker θ0(r) with
the increasing of disorder strength W , for a single disorder
configuration. Here, “a single disorder configuration” means
that the onsite potentials (7) of the sample have the form

UL;i = W εL;i, (16)

where {εL;i} are a specific realization of random numbers on
2NxNy sites of the sample, which are uniformly distributed
in (−0.5, 0.5), and W is the single variable to control the
disorder strength. The results are shown in Figs. 9 and 10.

Then afterwards, to smooth out disorder fluctuations and
also for a more quantitatively and statistically reliable obser-
vation, similar to Refs. [56,57], we plot the disorder averaged

θ0(r) along the central cross section of the sample in Fig. 11,
with different colors for different disorder strengths.

In the absence of disorder, W = 0, as shown in Figs. 9 and
10 [panels (a) and (b)], and in Fig. 11, the local marker of
the CSA coupling θ0(r) on the edges is negative to that in
the bulk, leading to a small positive value of total θ0 due to
the compensation. Such negative contribution from the edges
reflects the peculiar property of the edge states [56,57]. With
the increasing of disorder, the typical magnitude of θ0(r) on
the edges is suppressed much faster than that in the bulk,
as can be clearly seen in panels (c) and (d) of Figs. 9 and
10. The statistically averaged data in Fig. 11 also tells the
same story. For example in Fig. 11(b) and 11(d) associated
with the second layers (which contribute |θ0(r)| dominantly)
in both cases, when W is increased from 0 (black curves) to
2 (red curves), the local values of θ0(r) in the bulk almost
remain intact, but those on the edges are reduced by half. This
reduction of compensation results in a rise of the total θ0 and
a subsequent peak observed in Figs. 7 and 8. Finally in the
strong disorder limit, in panels (e) and (f), all types of orbital
motions will be localized, and θ0(r) tend to vanish uniformly.

V. SUMMARY

In summary, the localization trajectories of the bilayer
QAH systems with C = 2 are investigated numerically. Dis-
tinct to the monolayer counterpart in modular class �R [17],
this bilayer system is in class �T, where there is a stable
state with C = 1 before the complete localization. When
the bulk gaps associated with two layers are similar, this
intermediate state with C = 1 is weak at finite size but still
stable in the extremely large size limit. These pictures are
confirmed by numerical simulations of two-parameter scal-
ing flows on the conductance plane. However, some of the
scaling flows deviate from the standard Pruisken pattern, es-
pecially in the case of strong interlayer coupling. Microscop-
ically, different performances of this intermediate state with
C = 1 correspond to different types of distribution of the
Hall conductance, and the weakness of the intermediate state
C = 1 can be attributed to residual bulk states in the system.
These numerical findings can be tested by state of the art
experimental techniques [20–22] and raise new topics for
renormalization group theories [18,32]. Finally, we find the
CSA coupling θ of such systems can be significantly high in
the transition window with medium disorder strength. This
phenomenon is understood by a real-space analysis of the
corresponding local marker, by which we find that responses
of the edge and the bulk to the disorder are different, and
that the weak disorder leads to a suppression of edge-bulk
compensation and gives rise to an increase of θ0. Therefore
we propose a new way of finding candidate axion insulators.
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