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The impact of electron-hole pairing on the spectrum of plasma excitations in double layer systems is
investigated. The theory is developed with reference to a double monolayer graphene. Taking into account the
coupling of scalar potential oscillations with oscillations of the order parameter �, we show that the spectrum of
antisymmetric (acoustic) plasma excitations contains two modes: a weakly damped mode below the gap 2� and a
strongly damped mode above the gap. The lower mode can be interpreted as an analog of the Carlson-Goldman
mode. This mode has an acoustic dispersion relation at small wave vectors and it saturates at the level 2� at
large wave vectors. Its velocity is larger than the velocity of the Anderson-Bogoliubov mode vAB = vF /

√
2,

and it can be smaller than the Fermi velocity vF . The damping rate of this mode strongly increases under
increase of temperature. Out-of-phase oscillations of two order parameters in two spin subsystems are also
considered. This part of the spectrum contains two more modes. One of them is interpreted as an analog of the
Anderson-Bogoliubov (phase) mode and the other as an analog of the Schmid (amplitude) mode. With minor
modifications the theory can be extended to describe collective modes in a double bilayer graphene as well.
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I. INTRODUCTION

Electron-hole pairing is a phenomenon analogous to the
Cooper pairing that may occur in double layer systems con-
sisting of an electron-doped layer and a hole-doped layer
[1,2] (see also Ref. [3] for a review). In the paired state the
system may support dissipationless counterflow—a flow of
oppositely directed superconducting electric currents in adja-
cent layers. The phenomenon is referred to as the superfluidity
of spatially indirect excitons, exciton condensation in bilayers,
or the counterflow superconductivity.

A strong increase of the counterflow conductivity at low
temperature caused by the electron-hole pairing was observed
[4–6] in quantum Hall bilayers with the total filling factor
of 1 [νT = 2π�2

B(n1 + n2) = 1, where ni is the electron
density in the ith layer and �B is the magnetic length].
The current state of art in experimental investigations of
exciton condensation in νT = 1 quantum Hall bilayers is
described in Ref. [7]. Quantum Hall bilayers demonstrate
a zero bias peak in the differential tunneling conductance
[8] and a strong interlayer drag resistance [9]. These two
features are considered as experimental signatures of the
electron-hole pairing. Similar features were observed in
double layer systems in zero magnetic field. The increase of
the interlayer drag resistance at low temperature was detected
in a double quantum well in AlGaAs heterostructures [10,11]
and in hybrid double layer systems comprising a monolayer
(bilayer) graphene in close proximity to a quantum well
created in GaAs [12]. Experimental observation of strongly
enhanced tunneling between two graphene bilayers at equal
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occupation of adjacent bilayers by electrons and holes was
reported recently [13]. The registered tunneling conductance
at small bias voltage was many orders of magnitude greater
than that predicted for uncorrelated electrons and holes.

Theoretical consideration shows that promising candidates
for a realization of electron-hole pairing in zero magnetic
field are double monolayer [14–19], double bilayer [20–22],
and double multilayer [23] graphenes, double transition metal
dichalcogenide monolayers [24–26], a phosphorene double
layer [27,28], and topological insulators [29,30].

In recent papers [31–33] we have predicted the effects that
can be considered as additional hallmarks of the electron-
hole pairing. It was shown [31] that the electron-hole pairing
suppresses the ability of a double layer graphene system to
screen the electrostatic field of an external charge. In the
paired state at T = 0 the electrostatic field remains completely
unscreened at large distances. It was found [32] that the
electron-hole pairing influences significantly the spectrum
of plasma excitations in a double layer graphene system.
Namely, instead of one optical (symmetric) plasmon mode
two symmetric modes emerge. The frequency of the lower
mode is restricted from above by the inequality h̄ω < 2�,
where 2� is the gap in the electron spectrum caused by the
electron-hole pairing. This mode is a weakly damped one and
its frequency is very sensitive to the temperature. At T = 0 the
lower mode disappears. In contrast, the upper mode belongs
to the frequency domain h̄ω > 2�, it is strongly damped
mode, its frequency is less sensitive to the temperature, and
it survives at T = 0. It was also established [33] that the
electron-hole pairing provokes a huge increase of efficiency
of the third-harmonic generation in double monolayer and
double bilayer graphenes.
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The results [31–33] were obtained within an approach that
does not account for the oscillations of the order parameter
of the electron-hole pairing. It is known from the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [34,35]
that neglecting the order parameter oscillations results in a
violation of the gauge invariancy of the polarization matrix.
The gauge invariance is restored by “dressing” of the vertexes.
The “dressed” vertexes should satisfy the generalized Ward
identity. In Ref. [32] we proposed a heuristic approach to the
problem. We obtained the gauge invariant polarization matrix
using the vertex functions obtained as particular solutions of
the generalized Ward identity.

In this paper we present an approach in which the order
parameter oscillations are accounted for explicitly. Our ap-
proach is close to one developed in Ref. [36] for conventional
superconductors.

In Sec. II we introduce the model, in which the electron-
hole pairing is described by the order parameter, which is
independent of the momenta of paired quasiparticles. The
perturbation Hamiltonian that accounts for the order parame-
ter oscillations is given in Sec. III. In Sec. IV the analytical
expressions for the response functions and the polarization
matrix are obtained. In Sec. V we derive the dispersion
equation and calculate the eigenmode spectrum. We identify
six modes. Two modes correspond to in-phase oscillations
of the scalar potentials of two layers. It reproduces the re-
sult of Ref. [32]. Two other modes correspond to out-of-
phase oscillations of the scalar potentials coupled to in-phase
oscillations of two order parameters (two order parameters
describe pairing in two spin subsystems). One of these modes
is interpreted as an analog of the Carlson-Goldman mode
in superconductors. The remaining two modes correspond to
out-of-phase oscillations of two order parameters. They can
be considered as analogs of the Anderson-Bogoliubov (phase)
and Schmid (amplitude) modes in neutral superfluids and
superconductors.

II. THE MODEL

We consider the electron-hole pairing in a double mono-
layer graphene system where the concentration of electrons
in one layer is equal to the concentration of holes in the
other layer. We specify the case of two graphene layers with
zero relative twist. The graphene layers are separated by a
dielectric layer with the dielectric constant ε and surrounded
by a medium with ε = 1. The hopping between graphene
layers is neglected.

We describe the pairing by the order parameter, which
is independent of the momentum. Such an order parameter
can be defined self-consistently in the case of contact in-
teraction between electrons and holes [16,17]. In the model
with contact interaction the problem of finding the collective
mode spectrum can be reduced to a set of algebraic equations
(in the general case for the momentum-dependent order pa-
rameter the algebraic equations are transformed into integral
ones).

We describe the system by the Hamiltonian

H = H1 + H2 + H12, (1)

FIG. 1. Graphene lattice. The red (dark) and yellow (light) cir-
cles correspond to the A and B sublattices. The unit cells are shown
by dashed lines and two primitive lattice vectors are shown by
arrows.

where

Hn = −t
∑

σ

∑
i

∑
j=1,2,3

(c+
n,i,A,σ cn,i+δ j ,B,σ + H.c.)

−μn

∑
i,σ

∑
α

c+
n,i,α,σ cn,i,α,σ (2)

is the single-layer Hamiltonian, c+
n,i,α,σ and cn,i,α,σ are the cre-

ation and annihilation operators of electrons, n = 1, 2 is the
layer index, i is the unit cell index, α = A, B is the sublattice
index, σ =↑,↓ is the spin index, t is the nearest-neighbor
hopping energy, μn is the electron chemical potential in the
nth layer, and the index i + δ j stands for the unit cell with the
coordinate Ri + δ j . Here Ri is the radius vector of the ith unit
cell, vectors (δ1, δ2, δ3) = (0, a1, a2) connect a given unit cell
with unit cells where the nearest-neighbor B sites are located,
a1(2) = (±√

3a/2,−3a/2) are the primitive lattice vectors,
and a is the distance between the nearest-neighbor atoms in
graphene (see Fig. 1).

The chemical potentials are counted from the Dirac points
and satisfy the condition μ1 = −μ2 = μ that corresponds to
equal concentrations of electrons and holes. The interaction
part of the Hamiltonian reads

H12 = V
∑
i,α,σ

c+
1,i,α,σ c+

2,i,α,σ c2,i,α,σ c1,i,α,σ , (3)

where V is the interaction constant (V > 0).
The order parameter of the electron-hole pairing is

defined as

�i,α,σ = V 〈c+
2,i,α,σ c1,i,α,σ 〉. (4)

The order parameter can be presented as a sum of the
equilibrium part �

(0)
i,α,σ and the fluctuating part �

( f l )
i,α,σ (t ).

We consider the paired state with the lowest energy [16,17]
that corresponds to the choice �

(0)
i,A,σ = −�

(0)
i,B,σ = �. The

property �i,A = −�i,B provides the opening of the gap in the
quasiparticle spectrum. The contact interaction model with
�i,A = −�i,B [16,17] and the model based on a treatment
of the long-range Coulomb interaction (bare or screened)
[14,15,18,19] give similar results. In addition, keeping in
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mind that in the Dirac approximation the conduction-band
and valence-band states are described by the sublattice spinors
(1/

√
2, eiθk/

√
2) and (1/

√
2,−eiθk/

√
2) respectively (h̄k is

momentum measured from the Dirac point and θk is the an-
gular orientation of this momentum), one can see [17] that the
order parameter with �i,A = −�i,B couples the conduction-
band and valence-band states with equal strength at all θk.

Neglecting the order parameter oscillations we obtain the
mean-field Hamiltonian

HMF = H1 + H2 −
∑
i,σ

(�c+
1,i,A,σ c2,i,A,σ − �c+

1,i,B,σ c2,i,B,σ

+ H.c.). (5)

Applying the Fourier transformation to the Hamiltonian (5)
and considering one spin component, we get

HMF =
∑

k

�+
k hk�k =

∑
k

(c+
1,A,k c+

1,B,k c+
2,A,k c+

2,B,k )

×

⎛
⎜⎜⎜⎝

−μ fk −� 0

f ∗
k −μ 0 �

−� 0 μ fk

0 � f ∗
k μ

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

c1,A,k

c1,B,k

c2,A,k

c2,B,k

⎞
⎟⎟⎟⎠, (6)

where cn,A(B),k = (1/
√

N )
∑

i cn,i,A(B)e−ikRi is the Fourier-
transformed annihilation operator, N is the total number of
unit cells and the creation operator is given by the Hermitian
conjugate, and fk = | fk|eiχk = −t

∑
j=1,2,3 exp(ikδ j ). Here

we omit the spin index.
The Hamiltonian (6) is diagonalized by the unitary trans-

formation

HMF =
∑

k

�+
k Û −1

k ÛkhkÛ −1
k Ûk�k =

∑
k

�̃+
k h̃k�̃k, (7)

where h̃k = ÛkhkÛ −1
k and �̃k = Ûk�k. The matrix Ûk can be

written in a form of the product

Ûk = ÛuvÛbÛχ . (8)

The matrix

Ûχ = 1√
2

⎛
⎜⎜⎜⎝

1 eiχk 0 0

1 −eiχk 0 0

0 0 1 eiχk

0 0 1 −eiχk

⎞
⎟⎟⎟⎠ (9)

diagonalizes the single-layer parts of the Hamiltonian. The
matrix

Ûb =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ (10)

rearranges the elements of the matrix ÛχhkÛ −1
χ into two

blocks:

ÛbÛχhkÛ −1
χ Û −1

b =

⎛
⎜⎜⎜⎝

ξk,+1 −� 0 0

−� −ξk,+1 0 0

0 0 ξk,−1 −�

0 0 −� −ξk,−1

⎞
⎟⎟⎟⎠,

(11)

where ξk,λ = λ| fk| − μ is the electron spectrum of a single
graphene layer, and λ = ±1 corresponds to the conduction
(valence) band.

Each block can be diagonalized by the u-v transformation.
The matrix

Ûuv =

⎛
⎜⎜⎜⎝

uk,+1 −vk,+1 0 0

vk,+1 uk,+1 0 0

0 0 uk,−1 −vk,−1

0 0 vk,−1 uk,−1

⎞
⎟⎟⎟⎠ (12)

is expressed through the coefficients of this transformation:

uk,λ =
√

1

2

(
1 + ξk,λ

Ek,λ

)
, vk,λ =

√
1

2

(
1 − ξk,λ

Ek,λ

)
, (13)

where Ek,λ =
√

ξ 2
k,λ

+ �2.

The transformed Hamiltonian has the diagonal form

HMF =
∑

ν

Eνα
+
ν αν, (14)

where ν = (k, λ, m) is the full set of the quasiparticle quan-
tum numbers, excluding spin, Eν = mEk,λ is the quasiparticle
energy, m = ±1 corresponds to the states above (below) the
gap, and α+

ν , αν are the quasiparticle creation and annihilation
operators.

Applying to Eq. (4) the Fourier-transformation and the
unitary transformation Ûk, we obtain the following equation
for the order parameter:

� = − V

2N

∑
ν

muk,λvk,λ〈α+
ν αν〉. (15)

Replacing the average 〈α+
ν αν〉 with the Fermi distribution

function and calculating the sum over m, we arrive at the
self-consistence equation

� = V �0

2S

∑
k,λ

�

2Ek,λ

tanh
Ek,λ

2T
, (16)

where �0 is the area of the unit cell and S is the area of the
system.

We emphasize that Eq. (16) differs from one obtained in the
model with a long-range Coulomb interaction [14,15,18,19].
In the latter case the self-consistence equation has the form

�k,λ = 1

S

∑
k′,λ′

V (k − k′)
1 + λλ′ cos(χk − χk′ )

2

�k′,λ′

2Ek′,λ′

× tanh
Ek′,λ′

2T
, (17)

where V (q) is the Fourier component of the interlayer
Coulomb interaction. Differently from Eq. (16), the order
parameter independent of k and λ does not satisfy Eq. (17).

III. PERTURBATION HAMILTONIAN

Now we add to the Hamiltonian (6) the perturbation part
Hint . The perturbation Hamiltonian Hint describes the oscilla-
tions of the order parameter and the interaction of electrons
with the scalar potential ϕ(r, t ). We consider the oscillations
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for which �
( f l )
i,A,σ (t ) = −�

( f l )
i,B,σ (t ) = �

( f l )
i,σ (t ) and do not take

into account oscillations with �
( f l )
i,A,σ = +�

( f l )
i,B,σ . The latter

ones are decoupled from the scalar potential oscillations and
do not modify the response to the electromagnetic field.

The Fourier components of the real and imaginary parts of
the order parameter oscillations are defined as

�1(q, ω) = �0

∑
i

∫
dt eiωt−iqRi Re

[
�

( f l )
i (t )

]
, (18)

�2(q, ω) = �0

∑
i

∫
dt eiωt−iqRi Im

[
�

( f l )
i (t )

]
. (19)

We specify the case of real-valued � [it is accounted for
in the Hamiltonian (6) and in the coefficients (13)]. Then
the quantities �1 and �2 describe small oscillations of the
amplitude and the phase of the order parameter, respectively.

The perturbation Hamiltonian can be presented in the
matrix form

Hint (t ) = − 1

2πS

∑
k,q

∫
dω e−iωt�+

k+q

[
e

2
ϕ+(q, ω)T̂ (0)

+�1(q, ω)T̂ (1) + �2(q, ω)T̂ (2)

+ e

2
ϕ−(q, ω)T̂ (3)

]
�k, (20)

where the operators �+
k and �k are defined by Eq. (6),

ϕ±(q, ω) = �0

∑
i

∫
dt eiωt−iqRi [ϕ1(Ri, t ) ± ϕ2(Ri, t )]

(21)
is the Fourier-component of the sum (difference) of the scalar
potentials in two graphene layers, and ϕn(Ri, t ) is the scalar
potential in the nth layer in the ith unit cell. The matrices T̂ (s)

in Eq. (20) are expressed through the Pauli matrix σ̂z and the
identity matrix Î:

T̂ (0) =
(

Î 0

0 Î

)
, T̂ (1) =

(
0 σ̂z

σ̂z 0

)
,

T̂ (2) =
(

0 iσ̂z

−iσ̂z 0

)
, T̂ (3) =

(
Î 0

0 −Î

)
. (22)

We apply the transformation (7) to the Hamiltonian (20)
and write it through the operators of creation and annihilation
of quasiparticle excitations:

Hint (t ) = 1

2πS

∑
ν1,ν2

∫
dω e−iωtα+

ν1
[hint (ω)]ν1,ν2αν2 , (23)

where

[hint (ω)]ν1,ν2 = − e

2
ϕ+(k2 − k1, ω)R(0)

ν1,ν2
− �1(k2 − k1, ω)

× R(1)
ν1,ν2

− �2(k2 − k1, ω)R(2)
ν1,ν2

− e

2
ϕ−(k2 − k1, ω)R(3)

ν1,ν2
, (24)

the matrices R(s)
ν1,ν2

(s = 0, 1, 2, 3) are given by the equation

R(s)
k1,λ1,m1;k2,λ2,m2

= 1 + λ1λ2ei(χk1 −χk2 )

2

× [M (s)(k1, λ1, k2, λ2)]im1 ,im2
, (25)

(i+1 ≡ 1, i−1 ≡ 2), and the matrices M̂ (s) are expressed
through the product

M̂ (s)(k1, λ1, k2, λ2) =
(

uk1,λ1 −vk1,λ1

vk1,λ1 uk1,λ1

)
σ̂ (s)

×
(

uk2,λ2 vk2,λ2

−vk2,λ2 uk2,λ2

)
(26)

with σ̂ (0) = Î , σ̂ (1) = σ̂x, σ̂ (2) = −σ̂y, σ̂ (3) = σ̂z.

IV. POLARIZATION MATRIX

Taking into account two spin components, we write the
Hamiltonian in the form

H (t ) = HMF + Hint (t ) =
∑
ν,σ

Eνα
+
ν,σ αν,σ + 1

2πS

×
∑

ν1,ν2,σ

∫
dω e−iωtα+

ν1,σ
[hint,σ (ω)]ν1,ν2αν2,σ , (27)

where [hint,σ (ω)]ν1,ν2 is given by Eq. (24) with �1(2)(k, ω) ≡
�1(2),σ (k, ω).

To calculate the response of the system to the scalar po-
tential and to the order parameter oscillations, we define the
response functions

η(s)
σ (q, ω) =

∫
dt eiωt

∑
k

〈�+
k−q,σ T̂ (s)�k,σ 〉, (28)

where �+
k,σ

and �k,σ are the same operators as in Eq. (6) with
restored spin indexes. The angle brackets mean the quantum
mechanical and thermodynamic average. We compute the
averages in Eq. (28) using the density matrix formalism. The
density matrix ρ̂(t ) satisfies the equation

∂ρ̂(t )

∂t
= 1

ih̄
[H (t ), ρ̂(t )] − γ (ρ̂(t ) − ρ̂0), (29)

where ρ̂0 is the density matrix of the system described by the
Hamiltonian HMF , and γ is the relaxation rate. The quantity
γ is the phenomenological parameter. In what follows we
consider small γ (h̄γ 
 μ). It corresponds to the pure limit.
Accounting for the term with γ in Eq. (29) allows to calculate
numerically the integrals in the expressions for the polariza-
tion matrix and to evaluate the Landau damping.

The averages in Eq. (28) are calculated as

〈�+
k−q,σ T̂ (s)�k,σ 〉 = Tr

(
[ρ̂(t )]k,σ ;k−q,σ T̂ (s)

)
, (30)

where the trace is taken over the sublattice and layer indexes.
In the quasiparticle basis the response functions (28) are

expressed as

η(s)
σ (q, ω) =

∑
ν1,ν2

[ρ̂(ω)]ν1,σ ;ν2,σ R(s)
ν2,ν1

δk1−q,k2 , (31)

where ρ̂(ω) = ∫
dt exp(iωt )ρ̂(t ) and the matrixes R(s)

ν1,ν2
are

given by Eq. (25).
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The density matrix is sought in a form of expansion
in powers of the perturbation Hamiltonian: ρ̂(ω) = ρ̂0(ω) +
ρ̂1(ω) + · · · . The zero-order term in this expansion is the
equilibrium density matrix

[ρ̂0(ω)]ν1,σ1;ν2,σ2 = 2πδ(ω)δν1,ν2δσ1,σ2 fν1 , (32)

where fν = (eEν/T + 1)−1 is the Fermi distribution function.
The first-order term reads

[ρ̂1(ω)]ν1,σ1;ν2,σ2 = 1

S

fν1 − fν2

Eν1 − Eν2 − h̄(ω + iγ )

× [hint,σ1 (ω)]ν1,ν2δσ1,σ2 . (33)

The response functions η(0) and η(3) at q �= 0 correspond
to the charge density oscillations ρ±,σ = ρ1,σ ± ρ2,σ :

ρ+,σ (q, ω) = −eη(0)
σ (q, ω), ρ−,σ (q, ω) = −eη(3)

σ (q, ω).

(34)

Taking into account the definition of the order parameter
Eq. (4), we obtain the relation between the order parameter
oscillations and the response functions η(1(2)) at q �= 0:

�1,σ (q, ω) = gη(1)
σ (q, ω), �2,σ (q, ω) = gη(2)

σ (q, ω),

(35)

where g = V �0/4 is the coupling constant.
Restricting with the linear response approximation we ob-

tain from Eqs. (31), (33), (34), and (35) the following matrix
equation:

⎛
⎜⎜⎜⎝

e−1ρ+,σ (q, ω)

−g−1�1,σ (q, ω)

−g−1�2,σ (q, ω)

e−1ρ−,σ (q, ω)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�00(q, ω) �01(q, ω) �02(q, ω) �03(q, ω)

�10(q, ω) �11(q, ω) �12(q, ω) �13(q, ω)

�20(q, ω) �21(q, ω) �22(q, ω) �23(q, ω)

�30(q, ω) �31(q, ω) �32(q, ω) �33(q, ω)

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

eϕ+(q, ω)/2

�1,σ (q, ω)

�2,σ (q, ω)

eϕ−(q, ω)/2

⎞
⎟⎟⎟⎠, (36)

where the components of the polarization matrix are given by the expression

�s1s2 (q, ω) = 1

S

∑
ν1,ν2

δk1−q,k2�
s1s2
ν1ν2

1 + λ1λ2 cos(χk1 − χk2 )

2

fν1 − fν2

Eν1 − Eν2 − h̄(ω + iγ )
. (37)

The factors �s1s2
ν1ν2

in Eq. (37) are expressed through the matrix (26):

�s1s2
ν1ν2

= [M̂ (s2 )(k1, λ1, k2, λ2)]im1 ,im2
[M̂ (s1 )(k2, λ2, k1, λ1)]im2 ,im1

(38)

[there is no summation over repeated indexes in Eq. (38)].
From Eq. (38) we obtain the following explicit expressions for �s1s2

ν1ν2
:

�00
ν1ν2

= 1

2

(
1 + ξ1ξ2 + �2

E1E2

)
, �01

ν1ν2
= −�

2

(
1

E1
+ 1

E2

)
, �02

ν1ν2
= i

�

2

ξ2 − ξ1

E2E1
, �03

ν1ν2
= 1

2

(
ξ2

E2
+ ξ1

E1

)
,

�11
ν1ν2

= 1

2

(
1 − ξ1ξ2 − �2

E1E2

)
, �12

ν1ν2
= i

2

(
ξ1

E1
− ξ2

E2

)
, �13

ν1ν2
= −�

2

ξ1 + ξ2

E1E2
,

�22
ν1ν2

= 1

2

(
1 − ξ1ξ2 + �2

E1E2

)
, �23

ν1ν2
= i

�

2

(
1

E2
− 1

E1

)
,

�33
ν1ν2

= 1

2

(
1 + ξ1ξ2 − �2

E1E2

)
,

(39)

and �s2,s1
ν1ν2

= (�s1,s2
ν1ν2

)∗. Here we use the notations ξi ≡ ξνi and
Ei ≡ Eνi .

Taking into account symmetry properties of the expres-
sion under summation in Eq. (37), one can show that
some elements of the polarization matrix, namely, �01(q, ω),
�02(q, ω), �03(q, ω), �10(q, ω), �20(q, ω), and �30(q, ω),
are equal to zero exactly.

V. COLLECTIVE MODES

In the nonretarded approximation the scalar potential satis-
fies the Poisson equation

∇[ε(r)∇ϕ(r, t )] = −4πρ(r, t ), (40)

where

ε(r) =

⎧⎪⎨
⎪⎩

1, z < −d/2,

ε, −d/2 < z < d/2,

1, z > d/2

(41)

is the space-dependent dielectric constant (we specify the case
of two graphene layers separated by a dielectric layer with the
dielectric constant ε and surrounded by a medium with ε = 1),
d is the distance between graphene layers, and the z axis is
directed perpendicular to graphene layers.

To obtain the eigenmode spectrum, we account for the
charges induced in graphene layers by the scalar potential and
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by the order parameter oscillations in Eq. (40):

ρ(r, t )=
∑

σ

[ρ1,σ (rpl , t )δ(z − d/2)+ρ2,σ (rpl , t )δ(z + d/2)],

(42)

where rpl is two-dimensional radius vector in the (x, y) plane.
Making the Fourier transformation of Eq. (40),

we obtain the equation for ϕ(q, z, ω). Its solution
yields the relation between the potentials ϕ±(q, ω) =
ϕ(q, d/2, ω) ± ϕ(q,−d/2, ω) and the charge densities
ρ±(q, ω) = ∑

σ ρ±,σ (q, ω):

e2ϕ±(q, ω) = V±(q)ρ±(q, ω), (43)

where

V±(q) = 4πe2

q

1 ± e−qd

(ε + 1) ∓ (ε − 1)e−qd
(44)

are the Fourier-components of the Coulomb interaction ener-
gies V±(rpl ) = V11(rpl ) ± V12(rpl ). Here V11(rpl ) and V12(rpl )
are the energies of interaction of two electrons located in
the same and different layers, correspondingly [we account
for that in the uniform dielectric environment, V11(rpl ) =
V22(rpl )].

From Eqs. (36) and (43) we get the equation for the scalar
potential and order parameter oscillations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2�00 − 2
V+(q) 0 0 0 0 0

0 �11 + 1
g �12 0 0 �13

0 �21 �22 + 1
g 0 0 �23

0 0 0 �11 + 1
g �12 �13

0 0 0 �21 �22 + 1
g �23

0 �31 �32 �31 �32 2�33 − 2
V−(q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eϕ+(q, ω)/2

�1,↑(q, ω)

�2,↑(q, ω)

�1,↓(q, ω)

�2,↓(q, ω)

eϕ−(q, ω)/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (45)

where �αβ ≡ �αβ (q, ω).
We calculate the polarization functions Eq. (37) in the

Dirac approximation for the electron spectrum. In this approx-
imation the sum over k is replaced with the integral over two
separate circles in the Brillouin zone centered at the Dirac
points K and K ′. In these circles | f (k)| ≈ h̄vF k′, and χk ≈
∓θk′ , where k′ is counted from the corresponding Dirac point,
θk′ is the angle between k′ and the x-axis, and vF is the Fermi
velocity in graphene. In the Dirac approximation the integrals
in the expressions for �11(q, ω) and �22(q, ω) diverge at
k′ → ∞. This divergence is unphysical one and emerges as
a result of the approximations used. The same (unphysical)

divergence emerges in the self-consistence equation (16) if
it is evaluated in the Dirac approximation. Fortunately the
quantities �11(22)(q, ω) + 1/g that enter into Eq. (45) can be
presented in a form that is free from such a divergence. Indeed
Eq. (16) can be rewritten as

1

g
= 1

S

∑
k,λ

1

Ek,λ

tanh
Ek,λ

2T
= −1

S

∑
m,k,λ

fm,k,λ − f−m,k,λ

Em,k,λ − E−m,k,λ

.

(46)

Using the relation (46) we get

�ss(q, ω) + 1

g
= �(R)

ss (q, ω) = 1

S

∑
ν1,ν2

[
δk1−q,k2�

ss
ν1ν2

1 + λ1λ2 cos(χk1 − χk2 )

2

fν1 − fν2

Eν1 − Eν2 − h̄(ω + iγ )

− δk1,k2δm1,−m2δλ1,λ2

fν1 − fν2

Eν1 − Eν2

]
(47)

that do not diverge in the Dirac approximation [divergencies
in �11(22) and in Eq. (46) cancel each other].

Equating the determinant of the matrix in Eq. (45) to
zero, we obtain the dispersion equation for the eigenmode
spectrum. The determinant is factorized into three multipliers.
The first multiplier yields the equation

ε+(q, ω) = 1 − V+(q)�00(q, ω) = 0. (48)

Equation (48) is the dispersion equation for the symmetric
plasma excitation in the double layer system.

The dielectric function ε+(q, ω) describes the screening of
the scalar potential of a test charge ρ test

+ (q, ω):

e2ϕscr
+ (q, ω) = V+(q)

ε+(q, ω)
ρ test

+ (q, ω). (49)

Equation (49) follows from Eq. (43) written in the
form e2ϕscr

+ (q, ω) = V+(q)[ρ test
+ (q, ω) + ρ ind

+ (q, ω)], where
ρ ind

+ (q, ω) = e2�00(q, ω)ϕscr
+ (q, ω) is the induced charge.

From the continuity equation for the charge we obtain the
relation between the polarization function �00(q, ω) and the
longitudinal parallel current conductivity σ+,xx(q, ω):

σ+,xx(qix, ω) = ie2ω

q2
�00(qix, ω), (50)

where ix is the unit vector along the x axis.
Considering the Maxwell’s equations with the correspond-

ing boundary conditions and the matter equation for the
current, one can get the following dispersion equation for the
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T=0.1
T=0.07
T=0.05

ћ /

L
(q
,
)

+

FIG. 2. Frequency dependence of the dielectric loss function
(52) at T = 0.1μ, 0.07μ, 0.05μ, q = 0.1kF , � = 0.2μ, and h̄γ =
10−3μ.

symmetric plasmon modes [32,37]:

1 + 4π iκ1

ω
σ+,xx(qix, ω) + εκ1

κ2
tanh

κ2d

2
= 0, (51)

where κ1 =
√

q2 − ω2/c2 and κ2 =
√

q2 − εω2/c2. Equation
(51) accounts for retarded effects, and due to this it differs
from Eq. (48). In the limit κ1 = κ2 = q that corresponds to
nonretarded (plasmon) approximation, Eq. (51) is reduced to
Eq. (48).

Thus, we have shown that the order parameter oscillations
are decoupled from the oscillations of ϕ+ and do not influence
the spectrum of symmetric plasmon modes. The same result
was obtained in Ref. [32] based on the observation that
the generalized Ward identity for the vertex function �μ,+
is satisfied with bare vertexes (the vertexes �μ,+ describe
interaction of electrons with ϕ+ and A+, the sum of vector po-
tentials of two layers). Therefore the Feynman diagram with
the bare vertexes (which do not account for order parameter
oscillations) gives a gauge invariant polarization function �00.
The gauge invariance of �00 can be also checked directly (see
the Appendix).

In the general case Eq. (48) has two solutions [32]: one
is below the gap (h̄ω < 2�) and the other is above the gap
(h̄ω > 2�). It can be seen from the frequency dependence of
the dielectric loss function. This function is defined as

L+(q, ω) = −Im

[
1

ε+(q, ω)

]
. (52)

It determines relative losses of energy of oscillations of a test
charge ρ test

+ . The positions of peaks in the ω dependence of
L+(q, ω) at fixed q correspond to the eigenmode frequencies.
A half-width of the peak at its half-height gives the damping
rate for the corresponding mode.

To compare the properties of symmetric and antisymmetric
(see below) modes it is instructive to illustrate changes in
the frequency dependence of L+(q, ω) under variation of
temperature (Fig. 2) and the wave vector (Fig. 3). One can see
that the peak that corresponds to the lower mode disappears
at small T and for large q. One can also see in Figs. 2 and 3
a wide peak that corresponds to the upper (strongly damped)
mode. Note that at � → 0 the damping rate of the upper mode
decreases, and this mode is transformed into the normal state
optical plasmon mode.

L
(q
,
)

+ q=0.02k

q=0.2k
q=0.1k

q=0.3k

F

F
F

F

ћ /

FIG. 3. Frequency dependence of the dielectric loss function (52)
at T = 0.1μ, q = 0.02kF , 0.1kF , 0.2kF , 0.3kF , � = 0.2μ, and
h̄γ = 10−3μ.

The second multiplier in the determinant of the matrix in
Eq. (45) yields the equation

�
(R)
11 (q, ω)�(R)

22 (q, ω) + [�12(q, ω)]2 = 0. (53)

It is the dispersion equation for the excitations where only the
difference �↑ − �↓ oscillates. Such oscillations are decou-
pled from the scalar potential oscillations.

In the theory of superconductivity the eigenmodes that
correspond to oscillations of the phase and the modulus of
the order parameter are known as the Anderson-Bogoliubov
(AB) mode [38,39] and the Schmid [40] mode. Since in
common superconductors the oscillations of the phase of
the order parameter are coupled to plasma (scalar poten-
tial) oscillations, a genuine Anderson-Bogoliubov mode can
emerge in neutral Fermi superfluids. In double layer systems
with electron-hole pairing the presence of two supercon-
ducting components allows us to realize the AB mode. To
visualize the AB and the Schmid modes we introduce the
functions

L11(q, ω) = 1

g
Im

⎡
⎣ 1

�
(R)
11 (q, ω) + [�12(q,ω)]2

�
(R)
22 (q,ω)

⎤
⎦, (54)

L22(q, ω) = 1

g
Im

⎡
⎣ 1

�
(R)
22 (q, ω) + [�12(q,ω)]2

�
(R)
11 (q,ω)

⎤
⎦. (55)

These functions can be interpreted as analogs of the energy
loss function (52). The functions L11 and L22 describe losses
of energy under externally driven oscillations of the amplitude
and the phase of the order parameter, respectively.

The frequency dependencies of L11(q, ω) and L22(q, ω) at
three different q and T = 0.1μ are shown in Fig. 4. One can
see that the function L22(q, ω), Fig. 4(b), has a peak at h̄ω <

2�. The function L11(q, ω), Fig. 4(a), has two peaks: one is
at h̄ω < 2� (at the same frequency as the peak in Fig. 4(b))
and the other at h̄ω > 2�. Two peaks in Fig. 4(a) appear due
to the coupling of oscillations of the amplitude and the phase
of the order parameter (in conventional superconductors these
oscillations are decoupled from each other [36]). In Fig. 5
we present the same dependencies as in Fig. 4 at T = 0.
One can see that the positions of the peaks remain practically
unchanged under lowering of temperature (at � = const). At
the same time an essential narrowing of the low-frequency
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peak at T = 0 signals a decrease of the damping rate of the
lower mode. It is connected with the fact that the Landau
damping in the frequency domain h̄ω < 2� is proportional to
exp(−�/T ). In contrast, in the frequency domain h̄ω > 2�

the Landau damping remains strong even at T = 0. Therefore
the high-frequency peak is not changed under lowering of
temperature.

The spectra of the modes determined by Eq. (53) are shown
in Fig. 6. The dependencies presented are obtained from the
position of the maximum of the functions (54) and (55) at
T = 0. At small wave vectors the dispersion relation for the

lower mode is approximated by the expression ω = qvF /
√

2,
that is the spectrum of the AB mode in two dimensions. At
large q the frequency of this mode approaches ω = 2�/h̄.
The frequency of the upper mode approaches 2�/h̄ at q → 0.
This mode can be recognized only in the limit q/kF 
 1. At
q/kF � 0.2 the peak that corresponds to that mode washes
out. The lower mode in Fig. 6 should be interpreted as an
analog of the AB mode, and the upper mode as the analog
of the Schmid mode.

The third multiplier in the determinant of the matrix in
Eq. (45) yields the equation

[
�

(R)
11 (q, ω)�(R)

22 (q, ω) + [�12(q, ω)]2
]
[1 − V−(q)�33(q, ω)] − V−(q)

[
�

(R)
11 (q, ω)[�23(q, ω)]2 − �

(R)
22 (q, ω)[�13(q, ω)]2

+ 2�12(q, ω)�13(q, ω)�23(q, ω)
] = 0. (56)

One can see that at V−(q) = 0 (that corresponds to d = 0), Eq. (56) coincides with Eq. (53).
At V−(q) �= 0 Eq. (56) can be rewritten in the form

ε−(q, ω) = 1 − V−(q)�−(q, ω) = 0, (57)

where

�−(q, ω) = �33(q, ω) + �
(R)
11 (q, ω)[�23(q, ω)]2 − �

(R)
22 (q, ω)[�13(q, ω)]2 + 2�12(q, ω)�13(q, ω)�23(q, ω)

�
(R)
11 (q, ω)�(R)

22 (q, ω) + [�12(q, ω)]2
. (58)

The function �−(q, ω) can be understood as the polariza-
tion function “dressed” by the order parameter oscillations.
Numerical evaluation confirms the gauge invariance of the
function (58) in the limit γ → 0 (see the Appendix).

Equation (57) is the dispersion equation for antisymmetric
plasma oscillations coupled to the order parameter oscilla-
tions. The dielectric function ε−(q, ω) determines screening

(a)

(b)

q=0.2k
q=0.1k

q=0.3k
F
F

F

ћ /

ћ /

L
(q
,
)

L
(q
,
)

11
22

FIG. 4. Frequency dependence of the energy loss functions (54),
(55) in μ/gk2

F units at T = 0.1μ, q = 0.1kF , 0.2kF , 0.3kF , � =
0.2μ, and h̄γ = 10−3μ.

of the scalar potential of a test charge ρ test
− : e2ϕscr

− (q, ω) =
V−(q)ρ test

− (q, ω)/ε−(q, ω).
The relation between the polarization function �−(q, ω)

and the counterflow conductivity is given by the equation

σ−,xx(qix, ω) = ie2ω

q2
�−(qix, ω). (59)

Using the condition of the gauge invariance (A5) and the
expressions (A3) and (A4) in the Appendix, one can show

ћ /

ћ /

(a)

(b)

FIG. 5. The same as in Fig. 4 at T = 0.
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q/kF

ћ
/

ћ =2

FIG. 6. The spectra of the Anderson-Bogoliubov (solid curve)
and Schmid (dashed curve) modes in the double layer graphene
system.

that at small q the quantity �−(qix, ω) ∝ q2. Therefore the
conductivity σ−,xx(qix, ω) given by Eq. (59) is finite at q → 0.
Also from the physical reasons the real part of σ−,xx(qix, ω)
should be positive. We have checked numerically the fulfill-
ment of the latter condition.

The dispersion equation for the antisymmetric (acoustic)
plasmon mode that accounts for retarded effects has the form
[32,37](

1 + 4π iκ1σ−,xx(qix, ω)

ω

)
tanh

κ2d

2
+ εκ1

κ2
= 0. (60)

In the nonretarded approximation (κ1 = κ2 = q) Eq. (60)
reduces to Eq. (57).

We analyze Eq. (57) considering the energy loss function

L−(q, ω) = −Im

[
1

ε−(q, ω)

]
. (61)

The frequency dependencies of L−(q, ω) at four different
wave vectors (q = 0.2kF , 0.4kF , 0.6kF , 0.8kF ), � = 0.2μ,
T = 0.1μ, and T = 0 are shown in Fig. 7. The parameters
used for the calculations are ε = 4, dkF = 0.1, and h̄γ =
10−3μ. One can see that in similarity with L+(q, ω) the
function L−(q, ω) contains two peaks: one is below the gap
2� and the other is above the gap. The low-frequency peak
is narrower than the high-frequency one. Differently from the
L+(q, ω) dependence, the position of the lower peak of the
L−(q, ω) dependence remains practically unchanged under
variation of temperature (at � = const). This peak does not
disappear at T = 0.

In conventional superconductors the mode that corre-
sponds to coupled oscillations of the scalar potential and
the phase of the order parameter is known as the Carlson-
Goldman (CG) mode [41]. The frequency of the CG mode
satisfies the inequality h̄ω < 2�. The mentioned similarities
allow us to interpret the lower antisymmetric mode as an
analog of the Carlson-Goldman mode.

Lowering of temperature results in a considerable decrease
of the damping rate of the lower mode but does not influence
the damping rate of the upper mode. As in the case of the AB
and Schmid modes, it is connected with the specific tempera-
ture and frequency dependence of the Landau damping in the
state with electron-hole pairing [32].

The dispersion curves calculated from the positions of two
maxima of the function (61) at T = 0 are shown in Fig. 8.

ћ /

ћ /

ћ /

(a)

(b)

FIG. 7. Frequency dependence of the energy loss function (61)
at T = 0.1μ (a) and T = 0 (b). The high-frequency peaks at T = 0
are shown in the inset in another scale.

The lower mode has the acoustic dispersion relation at small
wave vectors. At large q its frequency approaches 2�/h̄.
The dispersion curve for the acoustic plasmon mode in the
normal state (� = 0) calculated at the same parameters is
also shown in Fig. 8. It is known [42] that the velocity va

of the acoustic plasmon in a double-layer graphene system
can be very close to vF , but it is always larger than vF

irrespective of the values of d and ε. For ε and d specified
above va ≈ 1.016vF . The velocity of the CG mode vCG can
be smaller than vF . In our case vCG ≈ 0.77vF . The velocity
vCG is larger than the velocity of the AB mode vAB = vF /

√
2

but there is no requirement for vCG to be larger than vF . It is
correlated with the fact that in the normal state the mode with
the phase velocity vph < vF should experience strong Landau

q/kF

ћ
/

ћ =2

FIG. 8. The dispersion curves for the Carlson-Goldman mode
(solid curve) and for the upper antisymmetric plasmon mode (dashed
curve). The spectrum of the antisymmetric (acoustic) plasmon mode
in the normal state is shown by the dash-dotted line.
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damping, but in the paired state the modes with h̄ω < 2� do
not experience Landau damping at T = 0.

At q/kF > 0.9 the peak at the L−(q, ω) dependence that
corresponds to the CG mode disappears. In contrast, the upper
mode peak is well recognized at large q, while at small q
this peak almost disappears. At � → 0 the upper mode is
transformed into the acoustic plasmon mode. It allows us to
interpret the upper antisymmetric mode as a residual acoustic
plasmon mode.

It is instructive to compare the CG mode in conventional
superconductors and in counterflow superconductors. Under
the two-fluid picture, the CG mode is regarded as out-of-
phase motion of the superfluid and normal components. In
conventional s-wave superconductors the CG mode can be ob-
served only at a temperature close to the critical temperature
Tc [36,43]. At such temperatures the density of the normal
component is comparable to the density of the superfluid
component. But in clean s-wave superconductors at T close
to Tc the CG mode is smeared out due to the Landau damping
of the quasiparticles, and it can be clearly seen only in
dirty systems [43]. In d-wave superconductors, due to the
presence of four Fermi points at the nodes of the d-wave
order parameter the CG mode can be registered in clean
systems and it survives at much lower temperatures, down
to T ∼ 0.1Tc [44,45]. The CG mode was also predicted for
a color-flavor locked (CFL) phase of color superconducting
dense quark matter [46]. The presence of two different types
of quarks with nonequal gaps in the CFL phase causes a partial
suppression of the Landau damping. As a consequence, the
CG mode can be observed in the pure limit at temperature
close to the critical one (T/Tc � 0.986) [46]. The situation
in counterflow superconductors differs from ones in s-wave
and d-wave superconductors and for a CFL phase of super-
conducting quark matter. In the counterflow superconductors
the CG mode can be interpreted as in-phase motion of the
superfluid and normal components, and due to that the CG
mode can be observed at all temperatures below the critical
one, in particular at T = 0 (Fig. 8). At low temperature
the Landau damping is suppressed. Therefore we consider
pure counterflow superconductors as more appropriate for the
observation of the CG mode.

In this study we consider the contact pairing potential. For
more careful analysis the contact potential should be replaced
with a screened Coulomb potential. In this case one should
take into account a dependence of the order parameter on
the momentum (see Sec. II). To describe the state with the
momentum-dependent order parameter, one can approximate
the screened Coulomb interaction by a function which is sep-
arable in the incoming and outgoing momenta, as was done in
Refs. [17,47]. Restricting with the separable pairing potential
and considering the close-band pairing (the pairing of carriers
in the conduction band in layer 1 with carriers in the valence
band in layer 2), we arrive at the polarization functions with
the additional momentum dependent factor under the integral
over k. Similar factor emerges in the polarization functions for
d-wave superconductors [44] (in the latter case this factor is
angle dependent). Evaluating the polarization functions with
the additional factor, we obtain dispersion curves that are very
close to ones obtained for the model with the contact pairing
potential. It can be understood as follows. The collective

mode spectra presented in Figs. 6 and 8 are determined in
the main part by two parameters: the Fermi velocity vF and
the gap in the quasiparticle spectrum 2�. The parameter 2�

is sensitive to the form of the pairing potential, and it depends
on the interlayer distance and on the density of the carriers.
But in our study we do not evaluate this parameter. We just
fix its value. If the parameter 2� is fixed, accounting for
a momentum dependence of the order parameter does not
influence significantly the collective mode spectrum. Thus
we conclude that the model with the contact pairing po-
tential adequately describes collective modes in counterflow
superconductors.

VI. CONCLUSION

In conclusion, we have shown that explicit accounting
for the order parameter oscillations is crucial in obtaining
the spectra of antisymmetric plasma modes in double layer
systems with electron-hole pairing. At the same time the
approach [32] based on a particular solution of the generalized
Ward identity cannot describe a number of important features.
In particular, taking into account the order parameter oscilla-
tions, we predict the existence of two antisymmetric modes.
The upper mode can be interpreted as a residual normal
state acoustic plasmon, and the lower mode as an analog
of the Carlson-Goldman mode. Two more modes interpreted
as analogs of the Anderson-Bogoliubov and Schmid modes
are also identified. The latter modes are associated with out-
of-phase oscillations of the order parameters of two spin
subsystems.

While the results are obtained with reference to a double
monolayer graphene, one can expect that they reflect the
general collective mode behavior in double layer systems with
electron-hole pairing. Our approach can be easily extended to
the double bilayer graphene systems [20,21]. The polarization
functions for the double bilayer graphene are obtained from
Eq. (37) under substitutions ξk,λ ≈ λh̄2k′2/2m − μ and χk ≈
∓2θk′ , where m is the effective mass. Preliminary calculations
show that the collective mode systematics for the double
bilayer graphene systems is the same as for the double mono-
layer ones. At the same time we emphasize that our approach
is not applied to the systems with low density of carriers and
a large gap between the valence and conduction bands. The
counterflow superconductivity in the low density limit is de-
scribed by the interacting boson model [24,48,49]. Such sys-
tems also have two superfluid components but the frequency
of the mode that corresponds to out-of-phase oscillations of
two components becomes imaginary-valued under increase of
the interlayer distance [24,49]. It signals an instability with
respect to spatial separation of the components. The system
considered in the present paper does not show softening of
the out-of-phase mode and it is stable with respect to spatial
separation.
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APPENDIX: GAUGE INVARIANCE OF THE
POLARIZATION FUNCTIONS

Assuming that the x components of the vector potential
A± = A1 ± A2 are nonzero, one can obtain the following
expression for the charge density oscillations:

ρ±(qix, ω) = e2[�±,0(qix, ω)ϕ±(qix, ω)

+�±,x (qix, ω)A±,x (qix, ω)]. (A1)

Here �+,0(q, ω) ≡ �00(q, ω) and �−,0(q, ω) ≡ �−(q, ω)
are the polarization functions given by Eqs. (37) and (58). The

functions �±,x(qix, ω) in Eq. (A1) describe the response to
the vector potential (the interaction with the vector potential
is given by the Hamiltonian HA = −(1/2c)

∫
dr[ j+,xA+,x +

j−,xA−,x]). The explicit expressions for these quantities are
the following:

�+,x(q, ω) = 1

S

∑
ν1,ν2

δk1−q,k2�
03
ν1ν2

λ1 cos χk1 + λ2 cos χk2

2

× fν1 − fν2

Eν1 − Eν2 − h̄(ω + iγ )
(A2)

and

�−,x(q, ω) = vF

c

[
�33,x − �31,x

[
�13�

(R)
22 − �12�23

]+ �32,x
[
�23�

(R)
11 − �21�13

]
�

(R)
11 �

(R)
22 − �12�21

]
, (A3)

where the functions �ss′ (q, ω) and �(R)
ss (q, ω) are given by

Eqs. (37), (47), and

�3s,x (q, ω) = 1

S

∑
ν1,ν2

δk1−q,k2�
s0
ν1ν2

λ1 cos χk1 + λ2 cos χk2

2

× fν1 − fν2

Eν1 − Eν2 − h̄(ω + iγ )
(A4)

(s = 1, 2, 3).
The gauge invariance requires that

ω�±,0(qix, ω) − qvF �±,x(qix, ω) = 0. (A5)

Numerical evaluation of the left-hand part of (A5) with the
upper as well as with the lower sign shows that it goes to
zero at γ → 0. Thus we conclude that in the pure limit our
approach yields the gauge invariant polarization functions.
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