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Second-harmonic generation in nanostructured metamaterials
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We conduct a theoretical and numerical study on the second-harmonic (SH) optical response of a nanostruc-
tured metamaterial composed of a periodic array of inclusions. Both the inclusions and their surrounding matrix
are made of centrosymmetrical materials, for which SH is strongly suppressed, but, by appropriately choosing the
shape of the inclusions, we may produce a geometrically noncentrosymmetric system which does allow efficient
SH generation. Variations in the geometrical configuration allow tuning the linear and quadratic spectra of the
optical response of the system. We develop a theory that allows the calculation of the nonlinear polarization from
the geometry of the system and its linear dielectric function at the fundamental and second-harmonic frequencies,
and we implement an efficient scheme for its numerical computation, extending a formalism for the calculation
of the macroscopic dielectric function using Haydock’s recursion method. We apply our formalism to an array
of holes within an Ag matrix, but it can be readily applied to any metamaterial made of arbitrary materials and
for inclusions of any geometry within the long-wavelength regime.
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I. INTRODUCTION

The advent of structured metamaterials has allowed the
design of new materials, with an unprecedented amount of
control over their intrinsic properties. These metamaterials
are typically composite systems that consist of two or more
ordinary materials, that are periodically structured or arranged
in such a manner that the resulting properties differ from
those of the constituent materials. These systems have been
widely explored both theoretically and experimentally, with
a plethora of new applications under development [1–6]. The
variety of available fabrication techniques such as electron-
beam lithography [7–9], ion milling [10,11], and even con-
ventional three-dimensional (3D) printing [12–14], allow for
extremely precise designs of structured systems featuring
arrays of inclusions (or holes) with specific shapes. These
methods allow the fabrication of new devices with highly
tunable optoelectronic properties [3,15]. A wide variety of
applications using metamaterials have now been developed.
Materials can be designed to have a negative index of refrac-
tion [16]. This has been implemented using periodic noble
metal inclusions within a dielectric matrix [17]. Flat lens-like
devices can be fabricated using metamaterials that can ma-
nipulate the propagation of light with subwavelength focusing
capabilities [15]. This type of device has been implemented
for cloaking [18–20] and shielding applications [21]. The fab-
rication of these materials is not restricted to specific ranges
of the electromagnetic spectrum, permitting, for example, the
development of new devices designed to work in the terahertz
regime [22–24].

Metamaterials display a wide variety of optical phenomena
[25]. Of particular interest to us are their nonlinear optical
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properties. The nonlinear response is strongly sensitive to
the natural atomic structure. For second-harmonic generation
(SHG) a material must have a noncentrosymmetric crystalline
structure in order to have a strong dipolar nonlinear response.
Structured metamaterials can be designed with almost lim-
itless configurations and make for a promising alternative
for nonlinear optical applications [26]. There have been nu-
merous theoretical [6,27,28] and experimental [5,21,29] stud-
ies concerning the development of nonlinear devices using
metamaterials. Some examples of nonlinear metamaterials
have been fabricated using split-ring resonators [30,31] and
nano-rod inclusions [32], producing SHG-active, magnetic,
and left-handed materials. Other inclusions can be intrinsi-
cally noncentrosymmetric [33], thus creating a strong SHG
response. Tailored metamaterials allow tuning the nonlinear
optical response [34–37] through changes of the geometrical
configuration. Plasmonic metamaterials may further enhance
the nonlinearities through the field amplification associated
to plasmonic resonances [38]. These systems can be varied
geometrically, changing their degree of noncentrosymmetry,
thus allowing for the second-harmonic (SH) signal to be even
further enhanced.

An even richer set of possibilities opens up when 2D plas-
monic metasurfaces are considered. These are made of arrays
of structures with a subwavelength thickness known as meta-
atoms, which permit the manipulation of the polarization,
amplitude and phase of light. For example, a simple rotation of
a noncentrosymmetric pseudo-atom allows a change of phase
of the second harmonic field it generates, so that a metasurface
whose atoms have a position dependent orientation may pro-
duce SHG beams propagating into specific angles according
to its polarization. For a review of phenomena such as giant
circular dichroism, nonlinear Berry phase and wavefront engi-
neering and many others at nonlinear plasmonic metasurfaces
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see Ref. [39]. Instead of plasmonic systems, for which dissi-
pation may be problematic, all dielectric structures made of
materials with a high index of refraction (high n) have also
been proposed, where there are Mie-like resonances which
yield large localized field amplitudes which produce nonlinear
optical effects. Devices based on these resonances include
controllable directional radiators due to the interference of
electric and magnetic multipolar resonances, high efficiency
metalenses, metasurface holograms and active nanophotonics
[40,41]. It has been shown that in metasurfaces made of
noncentrosymmetric high-n meta-molecules, made of pairs
of slightly different meta-atoms, quasibound electromagnetic
modes that coexist with the continuum of propagating electro-
magnetic waves may be excited, where the bound character
arises due to the destructive interference between the far
field of two modes whose frequencies display an avoided
crossing as the geometric parameters of the system are varied.
In this situation, the electric field in the neighborhood of
the metamolecule is amplified, producing nonlinear effects,
and, in particular, an orders-of-magnitude enhancement of the
SHG [42].

The required physical parameters (namely, the electric
permittivity and magnetic permeability) that are used for
calculating the linear optical response can be obtained via
a homogenization procedure [3,43,44]. The formalism pre-
sented in Refs. [45] and [46] is used in this work to describe
the macroscopic linear response of inhomogeneous systems in
terms of an average of certain specific microscopic response
functions of the system. We first extend this formalism to
calculate not only the linear but also the nonlinear optical
second order susceptibility of metamaterials of arbitrary com-
position [47–51] in terms of its linear response and allowing
for dispersion and dissipation. We illustrate the formalism
exploring the nonlinear SH response of a periodic nanos-
tructured 2D metamaterial comprised of an array of holes
of a noncentrosymmetric shape within a matrix made of a
centrosymmetric material, for which we chose silver. In this
case, the SH generation from a homogeneous matrix would
be strongly suppressed, but the noncentrosymmetric geometry
of the holes allows a strong signal whose resonances may
be tuned and enhanced through variations of the geometrical
parameters [52,53]. We systematically study the evolution of
the nonlinear susceptibility tensor due to variations in the
shape and position of the holes. Last, we elucidate the origin
of the produced SH response by calculating and analyzing the
charge density and polarization field at the metallic surface.
We have built computational packages for the calculation
of the surface and bulk nonlinear polarization of nanostruc-
tured metamaterials and we have added them to the publicly
available modular computational software PHOTONIC [54]
developed by our group.

The paper is organized as follows. In Sec. II we present the
theoretical approach used to calculate the dielectric response
of the metamaterial that is then used to obtain the nonlinear
SH polarization. In Sec. III we present results for a nanostruc-
tured metamaterial consisting of empty holes within a silver
matrix. We explore a variety of geometric configurations to
fine tune the SH response. Finally, in Sec. IV we present our
conclusions.

II. THEORY

The quadratic polarization forced at the second-harmonic
(SH) frequency 2ω by an inhomogeneous fundamental field
Eω at frequency ω within an isotropic centrosymmetric mate-
rial system made of polarizable entities within the nonretarded
regime may be written as [55]

P f (2ω) = np(2ω) − 1
2∇ · nQ(2ω), (1)

where n is the number density of polarizable entities, p(2ω) is
their electric dipole moment, given within the dipolium model
[56] by

p(2ω) = − n

2e
α(ω)α(2ω)∇E2(ω), (2)

Q(2ω) is their electric quadrupole moment, given by

Q(2ω) = 1

2e
nα2(ω)E(ω)E(ω), (3)

and α(νω) are the the linear polarizabilities of each entity at
the fundamental (ν = 1) and at the SH (ν = 2), related to the
dielectric function ε(νω) through

ε(νω) = 1 + 4πnα(νω). (4)

The nonlinear current density may be obtained from the
polarization through j f = ∂P f /∂t . We could expect an addi-
tional contribution c∇ × M f from a magnetization M f = nm,
with m the second-order magnetic dipole moment of each
polarizable entity. However, within the dipolium model the
quadratic magnetic dipole induced in each polarizable entity
is null for SHG [57–59].

We allow the density n, the polarizability α, the dielectric
response ε, and the field to depend on position. The total
polarization induced at the SH is then

P(2ω) = nα(2ω)E(2ω) + P f (2ω)

= nα(2ω)E(2ω) − n

2e
α(ω)α(2ω)∇E2(ω)

+ 1

2e
∇ · nα2(ω)E(ω)E(ω), (5)

where we added to Eq. (1) the polarization linearly induced by
the self-consistent electric field E(2ω) produced by the total
SH polarization P(2ω).

The equations above were developed for an insulating
material, for which the polarizable entities are atoms whose
electronic dynamics are described by harmonic forces, but
by writing the linear polarizability at the fundamental and
second-harmonic frequencies in terms of the dielectric func-
tion of the material, they can be applied to arbitrary insulators
or semiconductors. An alternative model for the description of
metals starts from the Euler hydrodynamic equation for their
conduction electrons,

nm

(
∂

∂t
vvv + vvv · ∇vvv + vvv

τ

)
= −enE − ne

vvv

c
× B, (6)

where n, vvv, and τ are the electronic density, velocity, and
lifetime respectively, and in which the nonlinearity arises from
the magnetic interaction and the convective contribution to
the time derivative. It has been shown that this model yields
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the same result as the dipolium model when we identify j =
−nevvv with the time derivative of the polarization j = ∂P/∂t
and write the resulting response in terms of the linear dielec-
tric function [57]. Thus, Eq. (5) describes the contributions
of both bound and free electrons to the nonlinear polarization
and can be used for metallic as well as dielectric systems.

We want to apply the equations above to obtain the nonlin-
ear susceptibility of a binary metamaterial consisting of two
phases: a host made up some material A in which inclusions
made up of a material B are embedded forming a periodic
lattice. In our actual calculations we will replace material B by
vacuum. We denote by εγ , αγ , and nγ the dielectric function,
polarizability and number density corresponding to material
γ = A, B. We may describe the geometry of the metamaterial
through a periodic characteristic function B(r) = B(r + R)
which takes the values 1 or 0, according to whether the
position r lies within the region occupied by material B or
A, respectively, and where R is a lattice vector. Thus, we may
write the dielectric function as

ε(r) = εA

u
[u − B(r)], (7)

where we introduced the spectral variable

u = 1

1 − εB/εA
, (8)

which takes complex values in general and accounts for
the composition of the materials and for their frequency-
dependent response.

In the long-wavelength approximation, assuming that the
unit cell of the metamaterial is small compared to the wave-
length of light in vacuum and the wavelength or decay length
within each of its components, the spatial fluctuations of the
electric field are longitudinal [45] and the transverse or lon-
gitudinal nature of the macroscopic field is irrelevant, so we
may take the electric field within a single cell as longitudinal
E = EL and we may identify the longitudinal part DL of the
displacement field D as an external field, which therefore
has no fluctuations originating in the spatial texture of the
metamaterial, and is thus a macroscopic field DL = DL

M . Then,
if we excite the system with a longitudinal external field, we
may write

E = (ε̂LL )−1DL (9)

and

EM = (
ε̂LL

M

)−1
DL

M, (10)

where ε̂LL = P̂L ε̂P̂L is the longitudinal projection of the
dielectric function ε interpreted as a linear operator;

(
ε̂LL

M

)−1 = 〈(ε̂LL )−1〉 (11)

is the inverse of the macroscopic longitudinal dielectric op-
erator, given by the spatial average [45,46] 〈· · · 〉, of the
microscopic inverse longitudinal dielectric operator; and P̂L is
the longitudinal projector operator, which may be represented
in reciprocal space by the matrix

PGG′ = ĜĜδGG′ , (12)

where G and G′ are reciprocal vectors of the metamaterial,
δGG′ is Kronecker’s delta,

Ĝ = k + G
||k + G|| (13)

is a unit vector in the direction of the wave vector k + G, and
k the conserved Bloch’s vector of the linear field which we in-
terpret as the relatively small wave vector of the macroscopic
field.

From Eq. (7) we may write

(ε̂LL )−1 = u

εA
(uP̂L − B̂LL )−1, (14)

in which we may interpret the inverse of the operator within
parentheses in terms of a Green’s function

Ĝ(u) = (u − Ĥ)−1, (15)

the resolvent of a Hermitian operator Ĥ with matrix
elements

HGG′ = Ĝ · B(G − G′)Ĝ′
(16)

in reciprocal space, where B(G − G′) is the Fourier coeffi-
cient of the periodic characteristic function B(r) with wave
vector (G − G′). Notice that BLL

GG′ = ĜHGG′Ĝ
′
, (εLL )−1

GG′ =
(u/εA)ĜĜ(u)Ĝ′, and (εLL

M )−1 = (u/εA)k̂〈Ĝ(u)〉k̂.
To obtain the macroscopic dielectric response and the

microscopic electric field we proceed as follows. We define
a normalized macroscopic state |0〉 that represents a longitu-
dinal field propagating with the given small wave vector k,
and we act repeatedly on this state with the operator Ĥ to
generate an orthonormal basis set {|n〉} through Haydock’s
[60] recursion

Ĥ|n〉 = bn+1|n + 1〉 + an|n〉 + bn|n − 1〉. (17)

In this basis, Ĥ may be represented by a tridiagonal matrix
with elements

(Hnn′ ) =

⎛
⎜⎜⎜⎜⎝

a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ (18)

given by Haydock’s coefficients an and bn. Thus, the macro-
scopic inverse longitudinal response may be obtained as a
continued fraction [48,49]

(
εLL

M

)−1 = k̂k̂
u

εA
〈0|(u − Ĥ )−1|0〉

= k̂k̂
u

εA

1

u − a0 − b2
1

u−a1− b2
2

u−a2− b2
3

...

(19)

and the microscopic electric field (9) may be represented in
reciprocal space by

EG =
∑

ζn〈G|n〉 (20)
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with coefficients ζn obtained by solving the tridiagonal system∑
n′

(uδnn′ − Hnn′ )ζn′ = δn0DL, (21)

where we write the fields in real space as

DL(r) = k̂DLeik·r (22)

and

E(r) =
∑

G

ĜEGei(k+G)·r. (23)

Notice that the results of the calculation above depend on
the direction k̂ chosen as the propagation direction of the
external field. As we may identify

(
εLL

M

)−1 = k̂k̂

k̂ · εM · k̂
, (24)

all the components of the macroscopic dielectric tensor may
be efficiently obtained from Eq. (19) by repeating the calcu-
lation of its longitudinal projection for different propagation
directions k̂, such as along all independent combinations
êi + ê j of pairs of Cartesian directions êi and ê j (i, j = x, y,
or z).

We remark that the small-scale fluctuations of the elec-
tric field within a nanostructured system within the long-
wavelength regime are mostly longitudinal, as the transverse
contributions are of an order a2/λ2 smaller [45,46], where a
is the lattice parameter and λ the free-space wavelength. On
the other hand, the macroscopic field is almost constant within
the small unit cell, so its transverse or longitudinal character
is irrelevant. For these reasons, after having identified all of
the components of the dielectric tensor, the results above are
suitable for the common case of electromagnetic waves for
which the macroscopic field is actually transverse, not longitu-
dinal. These remarks have been verified by comparing the full
numerical solution of the wave equation within a metamaterial
with the efficient solution proposed above [47,61].

Once we obtain the microscopic field from Eqs. (20), (21),
and (23), we may substitute it in Eqs. (1)–(3) to obtain the
forced SH polarization, which we may then substitute in
Eq. (5) to obtain the self-consistent quadratic polarization
in the SH. However, in order to solve Eq. (5) we need
the self-consistent SH field, which in the long-wavelength
approximation is simply given by the depolarization field

E(2ω) = −4πPL(2ω) (25)

produced only by the longitudinal part of the SH polarization.
Thus we write Eq. (5) as

P(2ω) = −4πnα(2ω)PL(2ω) + P f (2ω). (26)

By taking its longitudinal projection, we obtain a closed
equation for PL(2ω) which we solve formally as

PL(2ω) = (ε̂LL(2ω))−1P f L(2ω) (27)

using Eq. (4). Plugging this result back into Eq. (26), we
finally obtain the SH polarization P(2ω).

In order to perform the operation indicated in Eq. (27)
we perform a Haydock recursion as in Eq. (17) but using

FIG. 1. Unit cell of a metamaterial made up of a horizontal and
a vertical rectangular hole within a conducting matrix. We indicate
the lattice parameter a of the square array, the length Lβ and width
Wβ of each rectangle (β = h, v), and the offset O of the center of
the vertical rectangle with respect to that of the horizontal one. We
indicate the directions x, y of the crystalline axes. The shaded regions
correspond to masks of width �m used to single out the surface,
edge, and corner contributions to the SH response.

P f L(2ω) to construct a new initial normalized state |0̃〉, with
components 〈G|0̃〉 in reciprocal space given by

P f L
G (2ω) = Ĝ〈G|0̃〉 f , (28)

where f is a normalization constant. From this state, we
build a new Haydock orthonormal basis |ñ〉 using the same
procedure as in Eq. (17). Thus, we write the self-consistent
longitudinal SH polarization as

PL(2ω; r) =
∑

G

PL
G (2ω)Ĝei(k+G)·r, (29)

with

PL
G (2ω) = u2

εA2

∑
ñ

ξñ〈G|ñ〉 (30)

and with coefficients ξñ obtained by solving the tridiagonal
system ∑

ñ′
(u2δññ′ − Hññ′ )ξñ′ = δñ0̃ f , (31)

where u2 and εA2 are the spectral variable (8) and the dielectric
response εA but evaluated at the SH frequency 2ω.

Substitution of ξñ from Eq. (31) into Eqs. (30) and (29)
yields the SH longitudinal polarization, which may then be
substituted into Eq. (26) to obtain the total SH polarization
in the long-wavelength limit when the system is excited by
a longitudinal external field along k̂. Averaging the result,
or equivalently taking the G = 0 contribution in reciprocal
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FIG. 2. Normalized absolute value of the non-null components of the SH susceptibility neaχi jk , with i jk = xxx (upper left), xyy (upper
right), and yyx = yxy (lower left), for a square lattice of rectangular holes, as in Fig. 1 within an Ag matrix, with geometrical parameters
Lh = Lv = a/2, Wh = Wv = a/6, for different values of the offset O = 0, . . . , a/3. The lower right panel displays the geometry corresponding
to the largest offset. Notice that for these cases the holes overlap.

space, we obtain the macroscopic SH polarization PM (2ω).
Notice that we may not obtain yet the nonlinear quadratic sus-
ceptibility from this polarization, as it contains a contribution
from the linear response to the second harmonic electric field.
Thus, we write

PM (2ω) = 1

4π
(εM (2ω) − 1)EM (2ω) + P f

M (2ω), (32)

where the first term is the contribution of the linear response
at 2ω to the SH macroscopic field, and the second term

P f
M (2ω) = χ

(2)
M : EM (ω)EM (ω) (33)

is the sought after contribution to the SH macroscopic po-
larization forced by the fundamental macroscopic electric
field, and χ

(2)
M is the corresponding SH quadratic macroscopic

susceptibility, given by a third-rank tensor. Within our long-
wavelength longitudinal calculation the macroscopic field
EM (2ω) is simply given by the longitudinal depolarization

field

EM (2ω) = EL
M (2ω) = −4πPL

M (2ω), (34)

so that, taking the longitudinal projection of Eq. (32), we
obtain

P f L
M (2ω) = k̂k̂ · P f

M (2ω) = εLL
M (2ω)PL

M (2ω). (35)

Substituting P f L
M (2ω) from Eq. (35) into (34) and then into

(32) we obtain the macroscopic forced quadratic SH polar-
ization P f

M (2ω) produced by a longitudinal external DL field
pointing along k̂. As in the linear case, we finally repeat
the calculation above, for several independent directions of
propagation k̂ so that Eq. (33) becomes a system of lin-
ear equations in the unknown Cartesian components χ

(2)
M i jk

(i, j, k = x, y, or z), which we solve to obtain the third-rank
second-order susceptibility tensor χ

(2)
M of the metamaterial.

Notice that a quadratic macroscopic electric quadrupolar den-
sity, as well as a possible quadratic macroscopic magnetic
dipolar density, could also produce a nonlocal contribution to
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FIG. 3. Non-null components of the macroscopic dielectric re-
sponse, εxx

M and ε
yy
M , of a metamaterial made up of a square array

of horizontally oriented single rectangular holes with the same
dimensions as in Fig. 2 within an Ag matrix.

the polarization, described by a fourth-order tensor which acts
on EM∇EM . This terms would be negligible within the long-
wavelength regime, except for centrosymmetric systems with
a centrosymmetric geometry, for which the local contribution
is suppressed.

In summary, to obtain the quadratic response we first
obtain the nonretarded microscopic field and the macroscopic
dielectric tensor using a Haydock’s recursion starting from
a macroscopic external longitudinal field; then we use the
dipolium model to obtain the microscopic source of the SH
polarization, and we screen it using Haydock’s scheme again

to obtain the full microscopic polarization, which we average
to obtain the full macroscopic SH polarization. As this in-
cludes a contribution from the macroscopic SH depolarization
field, we subtract it before identifying the quadratic suscep-
tibility tensor projected onto the longitudinal direction. We
repeat the calculation along different independent directions
so that we can extract all the components of the quadratic
susceptibility.

In the process above we assumed that the unit cell of
the metamaterial is small with respect to the wavelength
at frequency ω, and thus we introduced a long-wavelength
approximation and assumed the external field and the electric
field to be longitudinal. After obtaining all the components of
the macroscopic response, we should not concern ourselves
anymore with the texture of the metamaterial; the unit cell
disappears from any further use we give to the macroscopic
susceptibility. Thus, we can solve any macroscopic SH related
electromagnetic problem using the susceptibility obtained
above without using again the long-wavelength approxima-
tion. Once we have the full macroscopic susceptibility tensor
we may use it to calculate the response to transverse as well
as longitudinal fields. Thus, we may use our susceptibility
above to study the generation of electromagnetic waves at the
SH from a propagating fundamental wave, in which case the
macroscopic fields can no longer be assumed to be longitu-
dinal; it is only their spatial fluctuations, which have been
homogenized away, that are necessarily longitudinal.

III. RESULTS

In the present section we apply the formalism developed
in the previous section to obtain the nonlinear response of
a system with a simple geometry for which we can control
the degree of centrosymmetry. To that end, we incorporated
the scheme described in the previous section into the publicly

FIG. 4. Non-null components εxx
M and ε

yy
M of the macroscopic dielectric tensor εM of a metamaterial made up of a square lattice of pairs of

horizontally and vertically oriented single rectangular holes within an Ag matrix as in Fig. 1 with the same parameters as in Fig. 2 for different
values of the offset O = 0, . . . , a/3.
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FIG. 5. Magnitude (color coded) and direction (arrows) of the microscopic linear electric field (left) and induced charge density ρ (right)
for a metamaterial made of a square lattice of rectangular holes within an Ag matrix with the same parameters as in Fig. 2 with an offset
O = a/3, excited by a macroscopic field along the y (vertical) direction for h̄ω ≈ 3 eV and h̄ω ≈ 3.4 eV corresponding to the two peaks in ε

yy
M

shown in Fig. 4. The field and the charge distribution correspond to a vertical polarization for the horizontal rectangle, a vertical polarization
for the vertical rectangle, and a nondiagonal quadrupole with opposite horizontal polarizations above and below the symmetry plane.

available package PHOTONIC [54], which is a modular, object-
oriented system based on the Perl programming language,
its Perl Data Language (PDL) [62] extension for efficient
numerical calculations, and the Moose [63] object system.
The package implements Haydock’s recursive procedure to
calculate optical properties of structured metamaterials in the
nonretarded as well as in the retarded regime.

Our system consists of a square array of pairs of holes in
the shape of prisms with a rectangular cross section within a
metallic host (Fig. 1). Each rectangle is aligned with one of
the crystalline axes x, y of the metamaterial and is character-
ized by its length Lh or Lv and its width Wh or Wv , where h de-
notes horizontal (along x) and v vertical (along y) alignment.
The center of the vertical rectangle is shifted horizontally with
respect to the center of the horizontal rectangle by an offset O.
Thus, when O = 0 our system is centrosymmetric and as O
increases it becomes noncentrosymmetric in varying degrees.

We remark that we have chosen an essentially 2D system,
assuming full translational invariance along the third dimen-
sion, as this choice allows a full analysis of the ensuing results
below. Nevertheless, our formalism may also be applied to
periodical binary 1D and 3D systems [48]. Furthermore, we
can generalize our results to systems with an arbitrary number
of phases [64] and we can apply them to finite systems such
as metasurfaces.

In order to simplify our analysis, we have chosen a sys-
tem that has mirror symmetry y ↔ −y. Thus, the only in-
plane non-null components of the SH susceptibility are [65]
χxxx, χxyy, and χyxy = χyyx. We omit the subindex M and
the superindex (2) that indicate these are components of the
quadratic macroscopic susceptibility in order to simplify the
notation, as we expect it yields no confusion. In Fig. 2 we
show the spectra of the magnitude of these non-null compo-
nents for an Ag host [66] and for different values of the offset
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EM ‖ x̂ @ �ω = 1.62 eV EM ‖ ŷ @ �ω = 1.62 eV

EM ‖ x̂ + ŷ @ �ω = 1.5 eV EM ‖ x̂ + ŷ @ �ω = 1.72 eV

FIG. 6. Magnitude and direction of the quadratic polarization induced in the same system as in Fig. 2 for the largest offset O = a/3 at the
resonant energy h̄ω = 1.62 eV and the fundamental macroscopic field EM along the direction x̂ (upper left), at h̄ω = 1.62 eV and EM along y
(upper right), and at h̄ω = 1.5 eV and h̄ω = 1.72 eV with EM along x̂ + ŷ (bottom).

O. The parameters we used were Wh = Wv = a/6, Lh = Lv =
a/2, O = 0, . . . , a/3. Notice that when O = 0 the system is
centrosymmetric and there is no SH signal. As O increases
towards ±a/3 the system becomes noncentrosymmetric. Two
resonances become clearly visible and they grow in size as
O increases and the system moves farther away from the
centrosymmetric case. The lower energy resonance of χyyx

is at a different frequency than those of χxxx and χxyy and is
redshifted as the offset increases. If O increases beyond a/3
(not shown) the two rectangles would cease to overlap and the
quadratic susceptibility would rapidly decay, until O = a/2
for which the system becomes exactly centrosymmetric again
and the quadratic susceptibility becomes exactly null.

According to Fig. 2, the order of magnitude of the SH
susceptibility at resonance is around 102/nea. For typical
noncentrosymmetrical materials, such as quartz, AlGaAs or
LiNbO3, the corresponding order of magnitude is around
1/neaB, where aB is Bohr radius [67]. Thus, a centrosym-

metric metallic material with a noncentrosymmetric geometry
can achieve at resonance susceptibilities as large as 102aB/a
times that of noncentrosymmetrical materials, even account-
ing for their large dissipation; for a unit cell of around 100 nm
this would be just one order of magnitude below those of the
above mentioned systems [68].

In order to understand the origin of the structure of the
spectra discussed above, in Fig. 3 we plot the non-null com-
ponents εxx

M and ε
yy
M of the macroscopic linear dielectric tensor

εM of a metamaterial made up of a square lattice of single
rectangular holes with a horizontal orientation. Notice that
there is a very weak resonance close to 3.4 eV corresponding
to polarization along the length of the rectangle (x direc-
tion) and a strong resonance corresponding to polarization
along the width of the rectangle (y direction) at a slightly
smaller frequency. Although there is a strong linear reso-
nance in the y direction, this system is centrosymmetrical and
would yield no SH signal. When we combine horizontal and
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vertical rectangles (Fig. 4) with a null offset O = 0 to make
a centrosymmetric array of crosses, both resonances appear
for both polarizations, although they now interact, partially
exchange their strengths and repel so that both become clearly
visible close to 3.4 and 3.2 eV.

As the offset O increases, there are only small changes to
the spectra corresponding to εxx

M , consisting in changes to the
weights of the peaks. However, a new strong mode develops
in the spectra of ε

yy
M . This mode is due to the strong coupling

of a quadrupolar oscillation in the vertical rectangle to the
vertical dipolar oscillation of the horizontal rectangle. This
quadrupole may be visualized as a horizontal polarization
in the upper part of the vertical rectangle and a horizontal
polarization in the opposite direction in the lower part of the
rectangle, as illustrated by Fig. 5. The coupling is symmetry
allowed as for a finite offset O �= 0 the system looses the
x ↔ −x symmetry.

We expect the resonant structure of the quadratic suscep-
tibility to have peaks corresponding to the resonances of the
linear response at the fundamental and at the SH frequency.
Thus, we expect peaks at the fundamental and at the sub-
harmonics of those of the linear response. As there is no
structure in the linear response within the region from 1.4 to
1.9 eV shown in Fig. 2, in our system we can only expect
structure at the subharmonics, due to a resonant excitation
of the polarization at the SH frequency. For a macroscopic
field oriented along the Cartesian directions x or y the SH
harmonic polarization can only point along the x direction,
due to the y ↔ −y mirror symmetry of our system. Thus, the
subharmonics of the resonances of εxx

M (Fig. 4) appear in the
susceptibility components χxxx and χxyy (Fig. 2). On the other
hand, a macroscopic field that points along an intermediate
direction between x and y may excite a quadratic polarization
along y. Thus, the subharmonics of the resonances of ε

yy
M

(Fig. 4) appear in the susceptibility components χ yxy = χ yyx

(Fig. 2).
To gain further insight into the nature of the resonances, in

Fig. 6 we show the polarization maps evaluated at the maxima
of the SH spectra corresponding to different directions of
the macroscopic linear field, and for the offset O = a/3 that
yields the largest signals. We notice that when the funda-
mental macroscopic field points along the x or along the y
direction, the magnitude of the SH polarization is symmetric
with respect to the mirror plane, and the y component of the
polarization points towards opposite directions on either side
of the mirror plane, yielding a macroscopic SH polarization
along x. In these cases, the polarization has maxima near the
four concave vertices of the vertical hole and near the convex
vertex where the horizontal and vertical rectangles meet.
On the other hand, when the fundamental macroscopic field
points along the direction of x̂ + ŷ, the resulting quadratic po-
larization has no symmetry at all, and it yields a macroscopic
SH polarization that has a y component.

Finally, in Fig. 7 we illustrate the contributions of the
surface region to the total quadratic susceptibility by adding
only the contributions within bands of varying widths �m
around the surface. We notice that although there is a very
strong surface polarization, its contribution to the macro-
scopic quadratic susceptibility is relatively small, as it is
confined to a very narrow region and it is partially canceled
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|ne
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x
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|
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a/60
a/12
Full

FIG. 7. Contributions to the quadratic susceptibility χxyy of
the same system as in Fig. 6 from the region within a distance
�m from the surface, as defined in Fig. 1 for values of �m =
a/120, a/60, a/12, and the full susceptibility.

by the polarization at other parts of the surface, so that for the
geometry studied here most of the SH signal comes from the
bulk of the host.

IV. CONCLUSIONS

We have developed a formalism for the calculation of
the second-order susceptibility of structured binary metama-
terials formed by a lattice of particles embedded within a
host, for the case where both components consists of cen-
trosymmetric materials but where the geometry is not cen-
trosymmetric. Although SH is strongly suppressed within a
homogeneous centrosymmetric material, the noncentrosym-
metric surface is capable of sustaining a surface nonlinear
polarization and inducing a strongly varying linear field which
produces a multipolar nonlinear polarization within the meta-
material components.

We implemented our formalism using the Haydock recur-
sive scheme within the freely available PHOTONIC modular
package and applied it to the calculation of the second-
order nonlinear susceptibility of a structured metamaterial
composed of a homogeneous Ag host with a lattice of pairs
of rectangular holes. Although the chosen system is 2D, the
formalism may be applied as well to 1D or 3D systems and
may be generalized to multicomponent finite systems such
as metasurfaces. By modifying the geometry of the holes,
we modify the degree of noncentrosymmetry of the material,
allowing us to fine tune both the peak position and intensity of
the SH response. The SH signal is very sensitive to changes in
the geometrical parameters of the structure.

After establishing the inclusion shape that most enhances
this signal, we analyzed the polarization field and showed that
the SH response is largest at resonance close to the concave
and convex corners but it extends well into the host material.
The order of magnitude of the susceptibility obtained in this
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calculation is comparable to that of typical noncentrosymmet-
ric materials.

Although this study was carried out for one particular
combination of materials, the employed procedure is equally
valid for calculating the nonlinear properties for any metama-
terial composed of arbitrary materials and inclusions. Only a
priori knowledge of the dielectric function of each constituent
material is required. This approach affords the opportunity
to quickly and efficiently study a limitless range of possible

metamaterial designs, with manifold optical applications in
mind. Our hope is that this methodology will prove to be an
important tool for future metamaterial design and fabrication.
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