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Spin-orbit coupling and spin relaxation of hole states in [001]- and [111]-oriented quantum
dots of various geometry
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We study the influence of spin-orbit coupling on the hole states in InAs/GaAs quantum dots grown on [001]-
and [111]-oriented substrates belonging to symmetry point groups: C2v, C3v, and D2d. We investigate the impact
of various spin-orbit mechanisms on the strength of coupling between s- and p-shell states, which is a significant
spin-flip channel in quantum dots. We calculate spin relaxation rates between the states of lowest Zeeman doublet
and show that the [111]-oriented structure offers one order of magnitude slower relaxation compared to the
usual [001]-oriented self-assembled QD. The magnetic-field dependence of the hole states is calculated using
multiband (up to 14 bands) k·p model. We identify the irreducible representations linked to the states and discuss
the selection rules, which govern the avoided-crossing pattern in magnetic-field dependence of the energy levels.
We show that dominant contribution to the coupling between some of these states comes from the shear strain.
On the other hand, we demonstrate no coupling between s- and p-shell states in the [111]-oriented structure.
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I. INTRODUCTION

The properties of nanostructures related to the spin degree
of freedom are interesting from the point of view of possible
applications in quantum information processing and spintron-
ics [1–4]. Coupling of spin to orbital degrees of freedom via
the spin-orbit coupling (SOC) influences the carrier spectrum
and could provide a channel of quantum coherent spin control
[5]. On the other hand, it may mix spin configurations, which
leads to spin relaxation and dephasing processes [6–11]. The
lack of inversion symmetry, on the level of crystal lattice [bulk
inversion asymmetry (BIA)], in the shape of a nanostructure,
or induced by external electric field [structure inversion asym-
metry (SIA)] gives rise to Dresselhaus and Rashba spin-orbit
coupling, respectively [12]. Furthermore, recent investigations
show hidden spin polarization in centrosymmetric crystals
[13].

Dresselhaus and/or Rashba interactions are commonly ac-
counted for theoretically within effective models [14–17].
While the parameters are available and well established for
bulk materials, in the case of nanostructures the coupling
strength is determined by their shape, composition profile,
substrate orientation, strain, and abrupt material interfaces.
In consequence, a reliable quantitative description of the SIA
effects requires advanced modeling. The impact of Dressel-
haus and Rashba couplings on carrier states in a quantum dot
(QD) were studied in various approaches [14–18]. In the case
of InAs/GaAs self-assembled QDs, the influence of spin-orbit
coupling is more complicated due to the presence of interfaces
abrupt and symmetry-breaking shear strain. The latter gives
spin admixture leading to electron spin relaxation [10] and
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this is one of the most important factors determining the
splitting between hole p-type states [18]. Symmetry of the
self-assembled QD plays crucial role for its optical properties
and exchange interaction [19,20]. It has been also shown that
the coupling between s- and p-shell electron states related
to the Rashba interaction is enhanced by the dot anisotropy
[15,16]. Furthermore, the symmetry determines anticrossing
pattern [21–23] as well as affects spin mixing and relaxation
in a double QD system [11,24]. The properties of the nanos-
tructure depends not only on its geometrical shape but also
orientation of the underlying substrate. Due to potential appli-
cation for entangled photon pairs generation, [111]-oriented
QDs were subject of many theoretical and experimental works
[25–32].

The phonon-induced spin-flip of carriers in QDs was inves-
tigated in many theoretical [10,14,33–35] and experimental
works [36–38]. This effect results from the direct spin-phonon
coupling [39] and from spin-admixture mechanisms [6,7].
The latter is related to the fact that in presence of the spin-
orbit interaction the state with a given nominal spin orienta-
tion, contains a nonzero component of opposite spin. Due to
this admixture, even the diagonal part of the carrier-phonon
Hamiltonian gives rise to the spin-flip effect. In fact, it has
been shown for the electron and hole in two-dimensional
(2D) GaAs QD, that near the avoided crossing between s
and p states (where p-type spin admixture to the s-type
state becomes large) the spin-flip transition rate dramatically
increases [14,34]. Also, the orientation of magnetic field with
respect to crystallographic axes strongly affects spin relax-
ation time in gate-defined GaAs QDs, which was attributed
to the interplay of Rashba and Dresselhaus couplings [38].
This was addressed theoretically for [001]- and [111]-grown
GaAs cuboidal QDs [40]. Furthermore, in Ref. [33] hole spin
relaxation is studied for a QD defined by a parabolic potential
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(a) lens−shaped QD
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(b) disk−shaped QD

FIG. 1. Material distribution in the system, in the case of lens-
(a) and disk-shaped (b) QD.

in GaAs quantum well (QW) of various crystal orientation.
The influence of strain on spin-flip transitions was investi-
gated. It has been shown, that for [001]-grown structure, the
biaxial strain affects spin relaxation indirectly, by changing
the energy difference between heavy- and light-hole sub-
bands. On the other hand, for QD in [111]-oriented QW, strain
provides a direct spin mixing channel. Furthermore, such a
structure, offers longer spin relaxation time (compared to the
[001]-oriented one) at the regime of strong confinement in
growth direction [33].

In this work, we investigate the influence of various mech-
anisms (Dresselhaus and Rashba interaction, shear strain)
on the coupling between the s- and p-shell hole states in
InAs/GaAs QDs. Within the eight-band k·p model, we cal-
culate the magnetic-field dependence of the energy levels and
study the width of avoided crossing between the s- and p-type
state. We take into account [001]- and [111]-oriented sub-
strates and consider three types of QDs representing C2v, C3v,
and D2d symmetry point groups. For these, we identify the
irreducible representations of hole states, discuss the selection
rules, and demonstrate the absence of coupling between s and
both p-shell states for the [111]-oriented structure. Finally,
we show that spin-flip transitions at low magnetic fields are
slower by an one order of magnitude for [111]-oriented QD
compared to the standard [001]-oriented system.

The paper is organized as follows. In Sec. II, the methods
used to calculate the strain distribution and the carrier states
are described. In Sec. III, we present the results of numerical
simulations for all of the considered structures. The phonon-
induced spin relaxation is discussed in Sec. IV. Finally, Sec. V
contains the summary. In Appendix A we present character
tables of the symmetry point groups used in the paper. In
Appendix B, we describe the effective model with empirical
parameters, which are fitted to the numerical data.

II. MODEL

The system under consideration contains a single
InAs/GaAs QD. We model lens- and disk-shaped QDs [see
Figs. 1(a), 1(b)]. In both cases, the dot height is h = 4.2 nm
and the base radius is r = 12 nm. Furthermore, the lens-
shaped dot is placed on a 0.6 nm thick wetting layer.

The distribution of strain in the system is calculated
within the continuous elasticity approach [41]. To calculate
the strain tensor elements for the [111]-grown system, we
perform transformation to the rotated coordinates [30]. The
piezoelectric potential is calculated up to the second order in
the strain tensor elements [42] with parameters taken from
Ref. [43], while transformation to the [111]-oriented system
is performed following Ref. [30].

The hole states are calculated using the 8- and 14-band k·p
method in the envelope function approximation (if not stated
otherwise, we take into account eight bands). The full 14-band
Hamiltonian can be divided into the blocks corresponding to
the irreducible representations of Td symmetry point group:
�8c, �7c, �6c, �8v , or �7v [12,18,44]

H =

H8c8c H8c7c H8c6c H8c8v H8c7v

H7c8c H7c7c H7c6c H7c8v H7c7v

H6c8c H6c7c H6c6c H6c8v H6c7v

H8v8c H8v7c H8v6c H8v8v H8v7v

H7v8c H7v7c H7v6c H7v8v H7v7v

,

where the highlighted part corresponds to the standard 8-band
k·p Hamiltonian. The states are then 8- or 14-component
pseudospinors, where each part refers to one of the sub-bands.
The full Hamiltonian, parameters, and details of numerical
implementation are presented in the Appendix of Ref. [18].
We account for an axial electric field by adding a diagonal
term H (Efield) = |e|Fz to the Hamiltonian, where e is the ele-
mentary charge and F is the field magnitude. To model [111]-
oriented system, we rotate the Hamiltonian transforming all
vectors and invariant matrices (see a detailed description in
Ref. [44]). The average values of the z projection of the hole
envelope angular momenta are calculated from

〈Mz〉 =
8∑

m=1

∫ ∞

−∞
ψ∗

n,m(r)

(
iy

∂

∂x
− ix

∂

∂y

)
ψn,m(r)dr,

where ψn,m(r) denotes the mth band component of the nth hole
wave function.

The 14-band k·p model accounts inherently for the Dres-
selhaus and Rashba couplings [12]. Also the eight-band model
contains the most important terms for the Rashba coupling,
while the Dresselhaus interaction is described by perturbative
elements explicitly added to H6c8v and H6c7v. The Dressel-
haus SOC Hamiltonian for the electron (in two-band k·p
model) can be approximated by H (D)

6c6c ∝ 〈k2
z 〉(k+σ+ + k−σ−),

where k± = kx ± iky, and σ± is the spin ladder operator.
This couples |Mz ≈ 0,↓〉 to |Mz ≈ 1,↑〉 and |Mz ≈ 0,↑〉
to |Mz ≈ −1,↓〉, where ↑,↓ refers to the spin orientation.
In contrast, the Rashba coupling approximated by H (R)

6c6c ∝
i(k+σ− − k−σ+) connects |Mz ≈ 0,↑〉 to |Mz ≈ 1,↓〉, and
|Mz ≈ 0,↓〉 to |Mz ≈ −1,↑〉. On the other hand, the influ-
ence of the spin-orbit interaction for holes is much more
complicated compared to the electron [12]. In this case, the
Rashba coupling may mix |Mz ≈ 0,⇑〉 to both |Mz ≈ 1,⇓〉
and |Mz ≈ −1,⇓〉 (and vice versa), where ⇑,⇓ refers to band
angular momentum (see Appendix B).
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FIG. 2. Magnetic-field dependence of the lowest hole energy levels for the lens shaped [001]-oriented QD. The inset contains enlarged part
of the plot with anticrossing between s- and p-type states. Energy E = 0 refers to the unstrained GaAs valence-band edge.

III. NUMERICAL RESULTS AND SYMMETRY
CLASSIFICATION

A. [001]-oriented lens-shaped QD

We calculated the magnetic-field dependence of the lowest-
energy hole states in the lens-shaped QD. The shape of
such a structure does not have the inversion symmetry. The
energy levels obtained from eight-band k·p simulations are
presented in Fig. 2. Although the states contain contribu-
tions of various envelope symmetry (which results from the
sub-band mixing), they can be labeled as s, p, d, . . . with
respect to the dominant component (read from the value
of 〈Mz〉). The two lowest-energy states (marked by the red
lines) exhibit s-type symmetry, their average value of the
axial projection of envelope angular momentum 〈Mz〉 is close
to 0. The next four states (plotted with green lines) exhibit
p-type symmetry with 〈Mz〉 ≈ ±1. Although the shape of the
QD transforms according to the C∞v group, the underlying
crystal lattice limits the symmetry of the system to the C2v

(at B = 0 T). Due to the spin-orbit coupling, the system must
be described in terms of the double group representations
[45–47]. The symmetry point group C2v contains only one
irreducible double group representation D1/2 (see Table II
in Appendix A) and all states must belong to it. Since D1/2

is two dimensional, the states are doubly degenerate (which
in fact results from the time-reversal symmetry). At nonzero
axial magnetic field B �= 0, the symmetry of the system is
further reduced to C2 [11,12]. In this case, D1/2 splits into two
one-dimensional representations: DA and DB, where DA = D∗

B
(see Table III in Appendix A). For each state |�〉 we found the
relevant irreducible representation α via projection P̂(α)|�〉,
where P̂(α) = ∑

i χ
∗ (̂Ri )̂Ri, and χ (̂Ri ) is the character of the

representation α for the symmetry operation R̂i [45,48]. The
states s1, p2, and p3 belong to DA, whereas s2, p1, and p4 to

DB. According to the selection rules, two states can couple
if they belong to the same irreducible representation. In the
presence of SOC, an avoided crossing pattern appears in the
system spectrum. In the considered system, the spin-orbit
coupling in the hole p shell favors the parallel orientation
of the envelope and band angular momenta (see a detailed
discussion in Ref. [18]). At B ≈ 9 T, there is an avoided
crossing between p2 and p3 (region A in Fig. 2), they have the
same orientation of the band angular momenta but different
Mz. Furthermore, an avoided crossing appears between states
s2 (〈Mz〉 ≈ 0,⇓) and p1 (〈Mz〉 ≈ 1,⇑) at region B, where its
width is 	Esp = 0.246 meV.

To assess the importance of various SOC mechanisms and
check the accuracy of eight-band k·p, we compared the value
of 	Esp obtained within several degrees of approximation.
As shown in Table I, the results from 8- and 14-band k·p
are in a good agreement. Dresselhaus terms are negligible
for 	Esp, however, they could be important for s1-p3 and
s2-p4 couplings (which is hard to estimate, because it is
not represented by any avoided crossing in the considered
spectrum). In the last approach, the influence of shear strain
in the valence band is neglected by setting the deformation

TABLE I. The anticrossing width 	Esp between s- and p-type
state obtained from various approximations.

Model 	Esp (meV)

14-band k·p, full 0.25481
8-band k·p, full 0.24627
8-band k·p, Dresselhaus terms H (D) = 0 0.24565
neglected
8-band k·p, shear strain neglected (dv = 0) 0.11679
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FIG. 3. Magnetic-field dependence of the lowest hole energy levels for the disk-shaped [001]-oriented QD. The inset contains the avoided
crossing width between s- and p-shell energy levels as a function of external axial electric field F .

potential dv = 0. In this case, 	Esp is significantly reduced,
which suggest that the shear strain is one of the most important
factors determining the s-p coupling.

The Rashba coupling can rise due to external potentials.
We calculated 	Esp at the axial electric field F = 30 kV/cm
and obtained 	Esp = 0.243 meV, while opposite direction
F = −30 kV/cm led to 	Esp = 0.248 meV. This shows that
for the considered QD the axial electric field generates the
Rashba coupling, which is much weaker than the structure
inversion asymmetry resulting from the QD shape.

B. [001]-oriented disk-shaped QD

The magnetic-field dependence of energy levels calculated
for the [001]-oriented disk-shaped QD is presented in Fig. 3.
For such a system, at B = 0, the symmetry point group is D2d.
According to the character table (Table IV in Appendix A),
there are two irreducible double-group representations D1/2

and D′. In the presence of magnetic field, the symmetry of
the system is reduced to S4 (see Table V in Appendix A)
[12]. Then, the states s1 and p1 belong to DI, s2, and p2 to
DII, p3 to DIV, and p4 to DIII representation. Since s2 and p3

states belong to different representations, there is no avoided
crossing between their energy levels (see region B in Fig. 3).
For the same reason, we obtain a crossing between p2 and
p3 at about 3 T. In contrast to the lens-shaped QD, at weak
magnetic field, the states with antiparallel envelope and band
angular momenta have lower energy compared to the opposite
configuration.

The symmetry of the system can be further reduced by
external electric field. For axial field, the symmetry changes
from D2d to C2v (and from S4 to C2 at B �= 0). In this case,
the Rashba coupling between upper s-shell state (Mz ≈ 0, ⇓)
and the p-shell state (Mz ≈ 1, ⇑) appears. The simulation

results are presented in the inset of Fig. 3. The width of the
anticrossing increases linearly with the electric field, and at
F = 0 there is a crossing between the relevant energy levels.

C. [111]-oriented lens-shaped QD

Finally, we investigate the magnetic-field dependence for a
lens-shaped QD grown in the [111] direction. The simulation
results are presented in Fig. 4. At B = 0, the symmetry of the
system is C3v, while the axial magnetic field (now oriented
along the [111] direction) reduces it to C3 (see character
Table VI and Table VII in Appendix A). This leads to different
selection rules compared to the cases considered previously.
We identified the representations of the states: s1 and s2

belong to DI, p1 and p3 to DII, while p2 and p4 to DIII. In
consequence, there is no avoided crossing between p2 and

FIG. 4. Magnetic field dependence of the lowest hole energy
levels for the lens shaped [111]-oriented QD.
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FIG. 5. (a) Phonon-assisted spin relaxation rate in the lowest-
energy Zeeman doublet as a function of magnetic field for [001]-
and [111]-oriented QDs; (b) ratio of the relaxation rate from spin-
admixture mechanisms to the overall relaxation rate.

p3 energy branches (see region A in Fig. 4). Furthermore,
s- and p-type states are decoupled and there is a crossing
between their energy levels (a very small anticrossings in
the simulation results are numerical artifacts related to the
discretization on a rectangular mesh). In contrast to the [001]-
oriented disk-shaped QD, the crossing between s2 and p1

energy branches can not be resolved by the axial electric field
because it does not change the symmetry of the system.

IV. PHONON-ASSISTED SPIN RELAXATION

We account for the hole-phonon coupling within the long-
wavelength limit. The phonon-induced spin-flip rate between
the states |ψi〉 and |ψ j〉 at zero temperature is calculated using
the Fermi golden rule

γi j = 2π

h̄2

∑
λ,q

|〈ψ j |Vint (q, λ)|ψi〉|2δ
(

	Ei j

h̄
− cλq

)
,

where q is a wave vector, λ denotes an acoustic phonon
branch, 	Ei j is the energy difference between the states, and
cλ is a polarization-dependent speed of sound in GaAs. Fi-
nally, Vint (q, λ) = H(ph)

B−P(q, λ) + H(ph)
PZ (q, λ) is a Hamiltonian

of hole-phonon interaction containing the couplings via de-
formation potential (represented by the eight-band Bir-Pikus
Hamiltonian H(ph)

BP ) and via the phonon-induced piezoelectric
potential H(ph)

PZ , both written in terms of phonon modes (q, λ).
The details are given in Refs. [9,35,49]. The rotation to [111]-
oriented coordinate system is performed in a standard way, by
transforming strain tensor and invariant matrices.

We calculated phonon-assisted spin relaxation rate from s2

to s1 state (γ ≡ γ21) for all of the considered QD structures
[Fig. 5(a)]. For weak magnetic field, the relaxation rate in
the [111]-oriented lens-shaped QD is one order of magnitude
lower compared to the dot with the same geometry but the

[001] substrate orientation. This results from the suppres-
sion of the p-type admixtures (Mz = ±1) in the heavy-hole
components of wave functions in the [111]-oriented QD.
Furthermore, up to B ≈ 6 T relaxation in the disk-shaped QD
is faster compared to the lens-shaped. This can be related
to greater g factor (hence larger transition energy at given
value of B) in the disk-shaped QD. Finally, at high magnetic
field, all of the rates saturate and then decrease, which is
caused by the phonon spectral density suppression at high-
frequency regime. Since for all of the considered structures
the s-p anticrossing appears at high magnetic field, we do
not observe relaxation peaks characteristic for the 2D GaAs
QD [14,34]. Increase of the spin relaxation time for the [111]
crystal orientation has been demonstrated (in the regime of
strong confinement in growth direction) in a QD defined by
harmonic potential in a QW [33]. In contrast to the QDs in
quantum well considered in that paper, the strain field in self-
assembled QDs contains nonzero shear components for any
crystal orientation. Shear strain enters the hole Hamiltonian
with the dv deformation potential. In consequence, even for
the [001]-oriented structure, we have a direct strain-related
channel of spin admixture, which is important for the spin
relaxation process.

We calculated the ratio γdiag/γ , where γdiag is the transition
rate due to all spin-admixture mechanisms, obtained by taking
only the spin-diagonal part of Vint. As shown in Fig. 5(b), for
the [001]-oriented structures the spin-admixture mechanisms
dominates at low and moderate magnetic fields. In contrast,
for such fields in [111]-oriented structure the spin-admixture
part is strongly reduced and direct spin-phonon coupling is
relevant in the whole B range. To quantitatively assess the
importance of various symmetry contributions to the coupling
via spin admixture, we perform an analysis based on spherical
harmonics. The spin-admixture (diagonal) part of the Hamil-
tonian at low magnetic fields is dominated by the piezoelectric
potential coupling [9]. The relevant part of the Hamiltonian
can be written as

〈ψ j |H(ph)
PZ (q, λ)|ψi〉 = Mλ(q̂)Fi j (q),

where Mλ(q̂) is a polarization-dependent geometric factor
[50], and Fi j is a form-factor defined by

Fi j (q) =
8∑

s=1

∫ ∞

−∞
ψ∗

i,s(r)ψ j,s(r)eiqrdr.

The form factor F ≡ F12 can be written in spherical coordi-
nates F (q, θ, φ). To obtain values at desired points, we use
nonuniform fast Fourier transform in our numerical calcula-
tions (NUFFT library) [51]. Then, the form factor is expanded
in spherical harmonics

F (q, θ, φ) =
∑
m,l

alm(q)Y m
l (θ, φ),

where

alm(q) =
∫ 2π

0
dφ

∫ π

0
sin θ Y m∗

l (θ, φ)F (q, θ, φ)dθ.

125401-5
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FIG. 6. Form factor F (q) expansion in spherical harmonics for
(a) [001]-oriented lens- and (b) disk-shaped QD, and (c) [111]-
oriented lens-shaped QD.

We calculated alm(q) coefficients and Wlm = |alm|2/N , where

N =
∫ 2π

0
dφ

∫ π

0
sin θ |F (q, θ, φ)|2dθ.

Since F (q) contains the product of states, the resulting
symmetry depends on the relative importance of sub-bands
and their envelopes. Figures 6(a)–6(c) present the results of
Wlm for all of the considered structures, where we investigate
s- and p-type components l = {0, 1}, which are dominant
at small and moderate q. In the case of lens-shaped [001]-
oriented QD [Fig. 6(a)], the main contribution comes from
Y 1

1 , and considerably smaller from Y −1
1 . This is consistent

with the results in Sec. III A, where the coupling between
Mz ≈ 0 and Mz ≈ 1 states gives anticrossing between the
energy branches. For the disk-shaped structure [Fig. 6(b)], the
main contribution comes from Y −1

1 . This clearly agrees with
the spectrum considered in Sec. III B, where the selection
rules allow coupling between s2 state and nominally p state
with Mz ≈ −1, but coupling to Mz ≈ 1 is prohibited. In the
case of [111]-oriented structure [Fig. 6(c)], the important con-
tributions at low q come from Y 1

1 , Y 0
1 , and Y 0

0 . We note, that the
states are labeled as s- or p-type with respect to their dominant
envelope symmetry. As discussed in Sec. III C, the selection
rules forbid the coupling of s1, s2 to nominally p-type states
with Mz ≈ ±1. However, the form factor contains sum over
envelope products from all of the sub-bands (which have
various symmetry, including p-type), and their significance
depends on q. To study the importance of such contribu-
tions, we calculate spin relaxation rate due to piezoelectric
coupling within two approximations. In the first one, the
form factor contains only the spherical harmonics of s-type:
F (q) ≈ a0,0Y 0

0 , and the second one is F (q) ≈ a1,−1Y
−1

1 +
a1,0Y 0

1 + a1,1Y 1
1 . As shown in Fig. 7, for magnetic fields up

to B ≈ 0.5 T, the p-type contributions dominate. On the other

FIG. 7. Phonon-assisted spin relaxation rate due to coupling via
piezoelectric potential; red points denotes results obtained taking
numerically exact F (q), for the black solid line F (q) ≈ a0,0Y 0

0 , and
for the blue dashed line F (q) ≈ a1,−1Y

−1
1 + a1,0Y 0

1 + a1,1Y 1
1 .

hand, the s-type contributions have different magnetic field
dependence (∝B5 vs ∝B7) and starts to dominate at higher
magnetic fields. This explains the change in blue line slope
visible in Fig. 5(a).

V. CONCLUSIONS

We have investigated the hole s-p coupling related to the
spin-orbit interaction for three InAs/GaAs QDs representing
symmetry point groups: C2v, C3v, and D2d. Using the group
theory, we have identified irreducible representations of the
states and explained the selection rules in the considered
QDs. We have shown that in the case of [001]-oriented lens-
shaped QD important contribution to the width of the avoided
crossing between s- and p-shell energy levels comes from the
shear strain. Furthermore, we have demonstrated no coupling
between nominally s- and p-type states in the [111]-oriented
lens shaped QD. We calculated phonon-assisted spin relax-
ation rates for all of the considered structures and shown that
[111]-oriented QD offers an order of magnitude longer spin
lifetimes.
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APPENDIX A: SYMMETRY POINT GROUPS

In this Appendix we present the character tables of the
symmetry point groups C2v, C2, C3v, C3, D2d, and S4. In the
presence of spin, the double-group representations are used.
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TABLE II. Character table of C2v symmetry point group [52].

C2v E R C2+ σv (xz)+ σv (yz)+
RC2 Rσv (xz) Rσv (yz)

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1

D1/2 2 −2 0 0 0

Here R denotes the rotation of 2π , while the neutral element
E corresponds to the rotation of 4π [45,47]. In the group C2v,
the two-dimensional irreducible representation D1/2 contains
diagonal matrices �(D1/2 )(E ), �(D1/2 )(R), �(D1/2 )(C2), but the
matrices representing reflections σv have off-diagonal ele-
ments. Hence, the reduction C2v to subgroup C2 leaves all D1/2

nondiagonal matrices. In consequence it can be separated into
two irreducible representations DA, DB.

Within the eight-band k·p model with envelope function
approximation, the eigenstates of the system have a form

|�n〉 =
8∑

m=1

�n,m(r)|J, Jz〉m,

where �n,m is the envelope and |J, Jz〉m describes the Bloch
part (at k = 0) with the total band angular momentum J and
its axial projection Jz. The basis contains: conduction band
| 1

2 ,± 1
2 〉c, heavy-hole | 3

2 ,± 3
2 〉v , light-hole | 3

2 ,± 1
2 〉v , and two

split-off sub-bands | 1
2 ,± 1

2 〉v . To find the irreducible represen-
tation of a given state |�n〉, we performed the projection with
operator P̂(α) = ∑

i χ
∗ (̂Ri )̂Ri, where χ (̂Ri ) is a character of

the representation α for the symmetry operation R̂i [45,48].
As the envelope part changes slowly in scale of the unit
cell, we act with R̂i on the envelope and Bloch part of the
wave functions separately, e.g., the effect of axial rotation Ck

is Ck�n,m(r) = �n,m(C−1
k r), and Ck|J, Jz〉 = e−i jz2π/k|J, Jz〉.

We express the improper rotations Sk as Sk = σhCk = IC2Ck ,
where σh is reflection in plane perpendicular to the rotation
axis and I is the inversion operator [47]. The effect of
inversion is I| 1

2 ,± 1
2 〉c = | 1

2 ,± 1
2 〉c for the conduction band,

and I|J, Jz〉v = −|J, Jz〉v for the valence-band basis states.

APPENDIX B: EFFECTIVE MODEL

In this Appendix we describe the effective model that can
be used to interpret the simulation results. We utilize the Fock-

TABLE III. Character table of C2 symmetry double point
group [52].

C2 E C2 R RC2

A1 1 1 1 1
B1 1 −1 1 −1

DA 1 i −1 −i
DB 1 −i −1 i

TABLE IV. Character table of D2d symmetry double point
group [52].

D2d E R 2S4 2RS4 C2 2C′
2 2σd

RC2 2RC′
2 2Rσd

A1 1 1 1 1 1 1 1
B1 1 1 −1 −1 1 1 −1
B2 1 1 −1 −1 1 −1 1
E 2 2 0 0 −2 0 0

D1/2 2 −2
√

2 −√
2 0 0 0

D′ 2 −2 −√
2

√
2 0 0 0

Darwin model supplemented by additional terms representing
system anisotropy as well as the spin-orbit coupling [16–18].

In the axial approximation, the states in a QD can be
characterized according to their axial projection of the en-
velope angular momentum Mz, where the s shell contains
states with Mz = 0 and the p shell with Mz = ±1. In fact,
p-type states can be mixed due to anisotropy related to the
piezoelectric potential, dot elongation and other possible ef-
fects. Due to the dominant heavy-hole components of the
considered states, their axial projections of band angular
momenta (⇑,⇓) can be approximated by 〈Jz〉 ≈ ±3/2. Fur-
thermore, the spin-orbit coupling distinguishes the mutual
alignment of the envelope and the band angular momenta as
well as it can mix s- and the p-shell states. We express the
Hamiltonian in the basis |MzJz〉 = |Mz〉 ⊗ |Jz〉 and consider s
and p shells {|0 ⇑〉, |1 ⇑〉, |−1 ⇑〉, |0 ⇓〉, |1 ⇓〉, |−1 ⇓〉}. The
effective Hamiltonian reads

Heff = Es|0〉〈0| ⊗ I2 + Ep(|1〉〈1| + | − 1〉〈−1|) ⊗ I2

+ Va(|1〉〈−1| + | − 1〉〈1|) ⊗ I2 + 1

h̄
W BzLz ⊗ I2

+ 1

2
μB[gs|0〉〈0| + gp(|1〉〈1| + | − 1〉〈−1|)]Bz ⊗ σz

+ 1

2h̄
V (so)

pp Lz ⊗ σz

+ V (so)
sp (|0〉〈−1| ⊗ |⇑〉〈⇓| + | − 1〉〈0| ⊗ |⇓〉〈⇑|)

TABLE V. Character table of S4 symmetry double point group [52].

S4 E S4 C2 S3
4 R RS4 RC2 RS3

4

A 1 1 1 1 1 1 1 1
B 1 −1 1 −1 1 −1 1 −1
E1 1 i −1 −i 1 i −1 −i
E2 1 −i −1 i 1 −i −1 i

DI 1 −1+i√
2

−i 1+i√
2

−1 1−i√
2

i −1−i√
2

DII 1 −1−i√
2

i 1−i√
2

−1 1+i√
2

−i −1+i√
2

DIII 1 1−i√
2

−i −1−i√
2

−1 −1+i√
2

i 1+i√
2

DIV 1 1+i√
2

i −1+i√
2

−1 −1−i√
2

−i 1−i√
2
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TABLE VI. Character table of C3v symmetry double point
group [52].

C3v E R 2C2
3 2RC2

3 3σv 3Rσv

A1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1
E 2 2 −1 −1 0 0

D1/2 2 −2 1 −1 0 0
D′ 1 −1 −1 1 i −i
D′′ 1 −1 −1 1 −i i

− V (so)
sp (|0〉〈1| ⊗ |⇓〉〈⇑| + |1〉〈0| ⊗ |⇑〉〈⇓|)

+ αsB
2
z |0〉〈0| ⊗ I2

+ αpB2
z (|1〉〈1| + | − 1〉〈−1|) ⊗ I2,

where Es, Ep are the bare energies (B = 0, axial approxima-
tion, SOC neglected) of the s- and p-type states, respectively,
I2 is the unit operator in the band angular momentum formal
subsystem, Va is a parameter accounting for the anisotropy,
Lz is the operator of the z component of the envelope angular
momentum, gs and gp are g factors in s- and p-shell, respec-
tively, σi are the Pauli matrices, V (so)

pp describes the spin-orbit
coupling for the p states, V (so)

sp is a parameter related to the
coupling between s and p states, finally αs and αp account for
the diamagnetic shift. We assume all of the parameters in the
effective model to be real. We neglect the coupling of |0 ⇑〉 to
|1 ⇓〉, and |0 ⇓〉 to |−1 ⇑〉 because they are not represented
by any avoided crossing in the considered spectrum. The
effective Hamiltonian can be then written in matrix block form

Heff =
(
Henv + 1

2H1 H2

H†
2 Henv − 1

2H1

)
,

TABLE VII. Character table of C3 symmetry double point
group [52].

C3 E C3 C2
3 R RC3 RC2

3

A1 1 1 1 1 1 1
B1 1 e2iπ/3 e4iπ/3 1 e2iπ/3 e4iπ/3

B2 1 −eiπ/3 e2iπ/3 1 −eiπ/3 e2iπ/3

DI 1 −1 1 −1 1 −1
DII 1 eiπ/3 ei2π/3 −1 −eiπ/3 −ei2π/3

DIII 1 −e2iπ/3 e4iπ/3 −1 e2iπ/3 −e4iπ/3

where

Henv =
⎛
⎝Es 0 0

0 Ep + W Bz Va

0 Va Ep − W Bz

⎞
⎠

+
⎛
⎝ αsB2

z 0 0
0 αpB2

z 0
0 0 αpB2

z

⎞
⎠,

H1 =
⎛
⎝μBgsBz 0 0

0 μBgpBz + V (so)
pp 0

0 0 μBgpBz − V (so)
pp

⎞
⎠,

H2 =
⎛
⎝ 0 0 V (so)

sp

−V (so)
sp 0 0
0 0 0

⎞
⎠.

We fitted the simulation data from Fig. 2 with
the effective model and obtained the following pa-
rameters: Es = −229.14 meV, Ep = −203.75 meV, Va =
0.33328 meV, W = −0.46764 meV/T, gs = −5.5745, gp =
−0.11141, V (so)

pp = −8.0707 meV, V (so)
sp = 123.13 μeV, αs =

3.0834 μeV/T2, and αp = 5.0050 μeV/T2. Such parameter
set gives energies in a good agreement with these obtained
from the eight-band k·p model.
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