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The semiconductor Bloch equations for a two-band model including inter- and intraband excitation are used to
study the nonlinear absorption of single and multiple light pulses by direct-gap semiconductors. For a consistent
analysis the contributions to the absorption originating from both the interband polarization and the intraband
current need to be included. In the Bloch equation approach these contributions as well as different excitation
pathways in terms of sequences of inter- and intraband excitations can be evaluated separately which allows
for a transparent analysis, the identification of the dominant terms, and analyzing their dependence on the
excitation conditions. In the perturbative regime we obtain analytical expressions for the multiphoton absorption
coefficients for continuous-wave excitation. These results are shown to agree well with numerical results for short
pulses and/or finite dephasing and relaxation times. We confirm the previously predicted strong enhancement
of two-photon absorption for nondegenerate conditions for pulsed excitation. We discuss the dependencies of
the multiphoton absorption on the light frequencies, initial band populations, and the time delay between the
pulses. The frequency dependence of the two-photon absorption coefficient for nondegenerate excitation is
evaluated perturbatively in third order. The higher-order contributions to the optical absorption include three-
and four-photon absorption and show a rich frequency dependence including negative regions and dispersive
line shapes. Nonperturbative solutions of the Bloch equations demonstrate a strongly nonmonotonous behavior
of the intensity-dependent optical absorption for a single incident pulse and in a pump-probe setup.
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I. INTRODUCTION

Two- and multiphoton absorption (2PA/MPA) are among
the most fundamental effects [1–5] in nonlinear optics that
have been proposed and studied for several decades con-
sidering various physical systems. Applications include in-
frared detection [6–10], optical switching [11,12], and optical
control of electrical currents [13]. The time-reversed process
of stimulated two-photon emission [14,15] is expected to
eventually lead to the realization of two-photon lasing. For
solid-state systems this topic is currently studied intensively,
also with regards to applications in the ultrafast and strongly
nonlinear regimes. However, presently several fundamental
aspects for MPA in solids are still not well understood, in
particular, with regards to higher-order processes and the
dynamical behavior.

Traditionally, 2PA has been studied mainly by transition
rate approaches [2–5,16]. Even simplistic band structure
models lead to reasonable predictions of 2PA spectra for
various semiconductors [17–19]. However, transition rate
approaches are not easy to evaluate for higher numbers of
simultaneously absorbed photons and also do not account for
dephasing or relaxation effects. A more versatile approach
describing the nonlinear-optical response of semiconductors
is based on susceptibilities. Typically this approach is applied
in a semiclassical and/or an adiabatic approximation. In
Refs. [20–22] it has been evaluated in the framework of a
semiclassical density matrix formalism for the steady-state
nonlinear-optical response.

In this study we use a more general approach based on
the semiconductor Bloch equations (SBE) extended by the

intraband terms [23,24]. For simplicity we neglect electron-
electron interactions. Our approach follows Refs. [20–22]
in using the length gauge and separating the intraband and
interband motion from the start. This avoids unphysical di-
vergencies that plagued some earlier calculations [19,25–27].
The perturbative expansion, where intraband and interband
motion are treated equivalently, yields macroscopic suscep-
tibilities and ac conductivities, from which in turn one obtains
nonlinear absorption coefficients. However, a main aspect
of this work is the nonperturbative evaluation of the total
absorption of (one or several) strong pulses or the absorption
of a weak probe pulse in the presence of a strong pump
pulse. Our method can be applied to arbitrary band structures.
To demonstrate the basic principles we focus on a two-band
model with a k-independent dipole matrix element. Due to
their self-consistent calculation of the interband dipole matrix
element, Aversa et al. [21] obtained a different frequency
dependence of the 2PA coefficient in an analogous model,
but the general tendency of a steep increase towards strongly
nondegenerate 2PA [28] is fully reflected by our work. In
other aspects we find good agreement with the literature
on 2PA. More unexpected results are found for higher-order
MPA, which we evaluate analogously. In particular, the 3PA
coefficient is found to vanish in the one-dimensional model if
the frequency sum assumes a certain value not far above the
band gap. The transients can be generally explained by pulse
area overlaps as long as no saturation effects occur. Dynamic
effects are discussed in the regime of high pump intensities.

Our paper is organized as follows: The general formalism
for obtaining nonlinear absorption rates from the SBE is
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outlined in Sec. II. We are interested not only in absorption
coefficients describing a perturbative steady-state response,
but also in the nonperturbative absorption of short and pos-
sibly strong pulses. While the absorption of a single pulse
is anticipated in Sec. II C, the results for the pump-probe
scheme are discussed in Sec. III. Analytical 2PA coefficients
are presented in Sec. III A explicitly for the two-band model
and compared with previous works. In Sec. III B the SBE
are evaluated to higher orders in the intensity of the pump
pulse. We discuss both the change of third-order effects (2PA)
as well as the appearance of higher-order effects (MPA) for
more intense pump pulses. In principle, this expansion can be
taken to arbitrary order. In Sec. III C we evaluate the approach
including the pump pulse to infinite order. In Sec. IV we
summarize our main results and discuss further directions.

II. THEORETICAL FORMALISM

In the following we present the approach which we use to
analyze the nonlinear optical response of bulk semiconductor
and extended semiconductor nanostructures (of dimension
d) within a two-band model. Following previous works we
use the length gauge to describe the light-matter interaction
including inter- and intraband excitations. The resulting SBE
have been employed previously to study, e.g., coherent effects
induced by static and time-dependent electric fields in semi-
conductor superlattices [24,29], the generation of photocur-
rents by two-color fields [30,31], high-harmonic generation
resulting from the excitation with intense optical [32] and
THz fields [33], as well as transient Wannier-Stark localiza-
tion [34].

Here we consider the case of a spatially homogeneous ex-
citation with several radiation fields. Therefore, a thin sample
as well as spatially broad transverse intensity profiles of the
incident lasers are implicitly assumed such that propagation
effects may be neglected. We allow for arbitrary individual
light frequencies in order to study degenerate and nondegener-
ate MPA processes, i.e., the simultaneous absorption of mul-
tiple photons of the same and different frequencies, respec-
tively. Furthermore, we disregard the many-body Coulomb
interaction in our model study for simplicity since we focus
on the interplay between inter- and intraband excitations in
particular for strongly nonresonant excitation conditions. De-
phasing and relaxation processes are treated phenomenologi-
cally and sometimes disregarded in order to obtain analytical
expressions.

We start by presenting the SBE and then describe the gen-
eral perturbative expansion in powers of the optical field. Next
we consider a pump-probe setup and include the propagation
directions of the optical pulses into the analysis. Furthermore,
we present equations which allow us to include the pump field
nonperturbatively.

A. Nonperturbative extended Bloch equations

The system is described microscopically by a two-band
model Hamiltonian Ĥ = Ĥ0 + ĤLM, where Ĥ0 is the single-
particle Hamiltonian of the valence and conduction band

electrons, and Ĥ0 = h̄
∑

k(ωvkâ†
vkâvk + ωckâ†

ckâck ). Here â†
νk

(âνk) are Fermionic creation (annihilation) operators which
generate (destroy) an electron in band ν = c, v. The semi-
classical light-matter interaction is given by ĤLM = Ĥe + Ĥi,
where in dipole approximation the interband part Ĥe and the
intraband part Ĥi are given by [24]

Ĥe = −
∑

k

E · (d∗â†
vkâck + H.c.), (1)

Ĥi = −
∑

k,k′,λ=c,v

〈λ, k′|ieE · ∇k|λ, k〉â†
λk′ âλk, (2)

where H.c. stands for Hermitian conjugate and d is the in-
terband transition dipole matrix element which is taken as k
independent.

The Bloch equations are obtained from the Heisenberg
equations of motion for the hole occupation nhk = 1 −
〈â†

vkâvk〉, the electron occupation nek = 〈â†
ckâck〉, and the in-

terband polarization pk = 〈â†
vkâck〉 and read [24,30,35]

∂

∂t
pk = −i (ωk − iγp)pk + i

h̄
d · E (1 − nk ) + e

h̄
E · ∇k pk,

(3)
∂

∂t
nqk = i

h̄
d · E (p∗

k − pk ) + e

h̄
E · ∇k nqk − γn

(
nqk − n(0)

qk

)
,

(4)

where the second equation holds for q = e, h and we defined
the transition frequency ωk ≡ ωck − ωvk and introduced nk ≡
nek + nhk, i.e., the sum of the electron and hole carrier occu-
pations. The relaxation and dephasing constants are denoted
by γn = 1/T1 and γp = 1/T2, respectively. Both evolution
equations contain two types of source terms, an interband term
(labeled e) and an intraband term (labeled i) which are treated
equivalently in the following analysis.

B. Perturbative expansion

Macroscopic response functions (susceptibilities and con-
ductivities) are obtained by expanding the quantities Xk =
{pk, nek, nhk} in powers of the exciting field E(t ) as Xk(t ) =∑∞

m=0 X (m)
k (t ) with X (m)

k ∝ Em. In our approach n(0)
qk =

nqk(t → ±∞) acts at the same time as the initial density
and as the equilibrium distribution, cf. Eq. (4). Due to the
intraband excitation, a finite initial density n(0)

qk serves as a
source for a linear electronic response which contributes to
the optical response in third order.

In first order in the optical field (m = 1) the evolution
equations are given by

∂

∂t
p(1)

k = i

h̄
d · E

(
1 − n(0)

k

) − i(ωk − iγp) p(1)
k , (5)

∂

∂t
n(1)

qk = e

h̄
E · ∇k n(0)

qk − γnn(1)
qk . (6)

The e and i source terms lead to p(1)
k and n(1)

qk , respectively.
Also for higher orders (m > 1) both types of source terms
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FIG. 1. Schematics of the perturbative pathways up to fifth order
(after Ref. [22]). The full circles indicate paths contributing to
the optical absorption of (m + 1)/2 photons. The right half of the
tree (intraband term for m = 1) vanishes for an initially unexcited
system. The transition dipole matrix element d enters only through
its projection onto the polarization directions of the incident fields.
We consider linearly parallel polarized pulses, i.e., e1 = e2 and thus
introduce μ = d · ê1. The power of μ of each absorption contribution
is shown below m = 5 circles.

appear in each equation:

∂

∂t
p(m)

k = − i

h̄
d · E n(m−1)

k + e

h̄
E · ∇k p(m−1)

k

− i(ωk − iγp)p(m)
k , (7)

∂

∂t
n(m)

qk = i

h̄
d · E

(
p∗(m−1)

k − p(m−1)
k

)
+ e

h̄
E · ∇kn(m−1)

qk − γnn(m)
qk . (8)

Due to the two source terms in each equation, the total result
in mth order is given by a sum of 2m terms involving all
combinations of the different source terms [22], cf. Fig. 1.
The evolution equations for the individual pathways are given
exemplary for up to m = 2 in Appendix A. Since only some of
these pathways are relevant for a particular nonlinear optical
process, it is instructive to study each contribution separately
by zeroing all others. Below we label the pathways by a series
of e’s and i’s, where the lowest order is given on the right. For
example, in second order there are two paths ie and ei leading
to p(2)

k , as well as two paths ee and ii leading to n(2)
k . A path

with an odd (even) number of e terms leads to a polarization
(density). All paths starting from i in first order vanish for a
clean, cold semiconductor, i.e., without any electron and hole
occupations present prior to the optical excitation [22].

A truncation of the perturbative expansion of Xk(t ), i.e.,
Eqs. (5)–(8), requires that the incident electric fields are
sufficiently weak such that |Xk(t )(m)| 
 1 for all m > 0.

C. Absorption rate—general formalism

The rate at which the energy of a light beam is absorbed
per unit volume is generally given by a macroscopic spatial
average of the product of the current density j(r, t ) and the
field amplitude E(r, t ), i.e., 〈j · E〉 [36]. This definition still
holds in a nonperturbative regime, where the incident and
transmitted pulse shapes generally differ. Since propagation
effects are disregarded here, i.e., we assume that variations of
the light intensity within the sample are small, this averaging
does not need to be carried out explicitly and we can set r = 0.
For the case of two or more noncopropagating incident light
beams, the spatial averaging is carried out as a directional
expansion as described in Sec. II D.

The electric current density j is induced in the medium
by E either via a change of the interband polarization or via
carrier occupations j = jp + jn [20]. For an isotropic band
structure the part jn vanishes if the densities are symmetric
distributions in k space. A contribution 〈jn · E〉 arises from
density distributions which are asymmetric along the k di-
rection parallel to E. For symmetric n(0)

qk these contributions
correspond to conductivity paths with an odd number of
intraband terms i. Transforming the k sums into integrals,∑

k → (L/2π )d
∫

BZ dk, and omitting the prefactor, the two
contributions to the current density are given by

jp = ∂

∂t
P, P = d

∫
BZ

dk (pk + p∗
k ), (9)

jn = −e
∫

BZ
dk(nek∇kωck − nhk∇kωvk ). (10)

Substituting perturbative quantities X (m)
k into these equations

one analogously obtains perturbative results for the current
density j(m).

The generalization of Eqs. (9) and (10) to a multiband
model with possibly k-dependent dipole matrix elements d is
straightforward and can be found, e.g., in the supplementary
material of Ref. [37]. For the two-band model considered
here, the evaluation can be further simplified. Inspecting the
perturbative expansion of the Bloch equations we see that
the excited densities are equal in both bands, nek − n(0)

ek =
nhk − n(0)

hk , if the optically irrelevant contributions from paths
without interband excitation are neglected. Thus, for our
optical studies instead of Eq. (10) we use

jn = − e

2

∫
BZ

dk nk∇kωk (11)

and have to solve the n equations not individually for each
band but only as a sum. Furthermore, as long as no initial den-
sities n(0)

qk are present, only the valence to conduction interband
transition frequency ωk enters the Bloch equations along with
Eqs. (9) and (11), and the individual band dispersions are not
relevant. We either use a one-dimensional tight-binding band
structure with lattice constant a,

ωk = ωg + ωb

2
[1 − cos(ka)], (12)

where h̄ωg is the band gap and h̄ωb is the joint bandwidth. This
model is particularly suitable for very strong fields where the
electronic excitations are driven through the entire Brillouin
zone. The other model used for analyzing the optical response
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FIG. 2. (a) Absorption (arbitrary units) of a single Gaussian
pulse of frequency ω1, peak amplitude Ê1, and duration τ1 = 50 fs
by a one-dimensional sample using the tight-binding model (12)
with h̄ωg = 1.5 eV, h̄ωb = 1.8 eV. The dephasing time T2 is infinite.
The color scale does not include all data values, but the off-range
regions (> 5) are small. (b) Solid lines are the same data as in (a),
the additional dashed lines are for T2 = 200 fs.

near the band gap is a parabolic dispersion

ωk = ωg + h̄k2/2m∗, (13)

where 1/m∗ = 1/m∗
e + 1/m∗

h is the inverse reduced effective
mass. When considering initial quasiequilibrium carrier dis-
tributions n(0)

qk , the individual effective masses (m∗
e , m∗

h) need
to be specified. Here we choose the values for the lowest
conduction and the heavy hole bands of GaAs.

Further simplifications arise since we consider linearly
and parallel polarized incident pulses here. In this case the
transition dipole d enters only through its projection μ onto
the field direction. Here we use a constant, i.e., k-independent,
interband dipole matrix element suitable for bulk GaAs of
μ = 3e a/5.65, that is μ = 3e Å after substituting the lattice
constant of GaAs, a ≈ 5.65 Å. The lattice constant a does
not enter our calculations explicitly, but is transferred to other
quantities such as the field strength in Fig. 2.

Before we describe the generalization of the light absorp-
tion formalism to multiple propagation directions in the next

section, we evaluate here the approach for a single pulse.
Besides serving as a simple example, this is experimentally
relevant since degenerate MPA can be measured this way. We
assume an initially unexcited, one-dimensional sample which
is described by a two-band tight-binding band structure (12).
Figures 2(a) and 2(b) show the nonperturbative absorption,
calculated as the time integral of jE , of a single pulse with
a Gaussian envelope e−t2/τ 2

1 , and different central frequencies.
The one-photon absorption (1PA) resonant region ω1 > ωg

shows regular Rabi oscillations of period 	Ê1 = h̄/(
√

πμτ1)
≈ 0.014 V 2π/a. For weak fields, Ê1 
 	Ê1, the 1PA
increases quadratically with the field amplitude Ê1 as expected
from perturbation theory. Figure 2(b) shows explicitly for
h̄ω1 ≈ 1.7 eV that the absorption increases roughly linearly
with each Rabi cycle in the case T2 → ∞. For finite T2 the
increase is stronger and follows a Ê1/2

1 dependence when the
excitation frequency is within the parabolic region of the band
structure. As expected, the effect of the intraband motion
is negligible for 1PA case in the considered field amplitude
range.

In the frequency region ωg/2 < ω1 < (ωg + ωb)/2, which
partly overlaps with other MPA regions, 2PA can be clearly
recognized. Since 2PA scales as ∝Ê4

1 at field amplitudes well
below saturation effects, it is negligible compared to 1PA for
weak fields. Saturation sets in at Ê1 ≈ 0.05 V 2π/a, corre-
sponding to a peak intensity of 41 GW/cm2 (using the lattice
constant of GaAs). This agrees in order of magnitude with
the 2PA saturation observed in bulk [38] and monolayer [39]
semiconductors. We note that Rabi-like oscillations caused by
2PA appear in two different ways. For higher frequencies, e.g.,
h̄ω1 ≈ 1.2 eV, weak modulations of large period are visible.
On the other hand, more regular Rabi modulations with a
shorter period appear beyond a certain resonance signal which
starts slightly above ωg/2 (the 2PA resonance with the lower
band edge) and is Stark shifted to higher frequencies. The shift
is first quadratic (at about Ê1 ≈ 0.06 V 2π/a) and later linear
in Ê1. Below this resonance line further lines appear regularly
and the entire absorption edge remains roughly at ωg/2 (hard
to distinguish due to the overlap of 2PA and 3PA). Generally,
Rabi-like modulations for 2PA appear to be weaker than for
1PA (due to the effect of intraband motion). This may be the
reason why two-photon Rabi cycles have been observed so far
only in quasi-zero-dimensional systems, such as atoms [40],
molecules [41], and semiconductor quantum dots [42].

For 3PA the behavior is somewhat analogous and even
more easily distinguishable. The most dominant signal is the
band gap resonance ωg/3, which is again Stark shifted up-
wards. In the perturbative analysis in Sec. III B we will discuss
in more detail that this dominant signal is separated from a
broader 3PA range further above the band gap, which is also
visible in Fig. 2(a). Relatively pronounced Rabi oscillations
appear beyond this upwards shifting band gap resonance. The
field amplitude range where perturbative analysis is valid for
3PA is very small since the weak field regime for 3PA with
a scaling ∝Ê6

1 has only a narrow validity range before higher
orders also contribute. Note also that all higher MPAs set in
at roughly comparable field amplitudes. Another strong 3PA
signal is the resonance with the upper band edge ωg + ωb.

For higher MPA basically only narrow resonance lines
appear, which are resonant with frequencies slightly above
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the band gap. Here we mainly see the linear frequency shift
of these resonances. We confirm in the perturbative analysis
in Sec. III B that 4PA is indeed restricted to a rather narrow
range above the band gap. In our model, for certain MPA,
e.g., 6PA, again another signal appears corresponding to a
resonance with the upper band edge and Stark shifting to
lower frequencies for strong fields.

D. Perturbative treatment of pump-probe experiments

We consider MPA as measured via the differential absorp-
tion of a probe pulse (“1”) in the presence of a noncopropa-
gating pump pulse (“2”). The probe pulse is assumed to be
sufficiently weak so that material excitation of higher than
linear order in its field amplitude can be neglected. Depending
on the pump intensity I2, nonlinear-optical processes consist-
ing of the simultaneous absorption of one probe photon and
(l − 1) pump photons are relevant, which are described by a
lPA-coefficient α(l ). The total absorption coefficient is thus
expanded in the pump intensity I2 as α = I1

∑∞
l=1 α(l )I l−1

2 .
The formalism presented here is also applicable without the
restriction to weak probe pulses or to the number of pulses,
but for such cases the number of required equations in the
directional expansion, see below, grows strongly.

The different propagation directions of pump and probe
are taken into account by including the dependence of the
field on the macroscopic position vector r [43]. The individual
fields are plane waves with a temporal envelope and a central
frequency Eν = êν Êν (t ) cos(kν · r − ωνt ), for ν = 1, 2. We
assume the two fields to have the same linear polarization,
i.e., ê1 = ê2. As mentioned above, the transition dipole matrix
element d enters only through its projection onto the field
direction μ = d · ê1. The intensities are obtained from the
field amplitudes as Iν (t ) = (ε0c/2)|Êν (t )|2. In this work we
consider either Êν (t ) = Êν = const. (continuous-wave limit)
or finite pulses with a Gaussian envelope function Êν (t ).
Using a standard perturbative expansion in the two field
amplitudes Eν (and abbreviating j(m) ≡ j(m)(1|m−1) where in
the latter expression the superscripts 1 and m − 1 denote the
orders in the probe and pump field amplitude, respectively),
we find the MPA coefficient [36] in the steady-state response
as

α(l )(ω1, ω2) = 〈j(2l−1) · E1〉
2lI1I l−1

2

. (14)

The factor l in the denominator ensures that for ω1 = ω2

the obtained absorption coefficient agrees with the single
beam setup, i.e., α(l )(ω1, ω1) = α(l )(ω1). For pulses of finite
duration we have accordingly

α(l )(ω1, ω2) =
(

2

ε0c

)l ∫ dt 〈j(2l−1)(t ) · E1(t )〉
2l

∫
dtÊ2

1 (t )Ê2l−2
2 (t )

. (15)

Due to the spectral width of the pulses, this expression yields
approximately the frequency dependence of the absorption
coefficient.

Here we replace the spatial averaging appearing in
Eqs. (14) and (15) by a directional expansion. The directional
expansion differs from the power expansion only in the split-
ting of each field into its two Fourier components, cos(kν ·
r − ωνt ) → 1

2 {exp[i(kν · r − ωνt )] + exp[−i(kν · r − ωνt )]},

corresponding to forward/backward propagating complex
fields. The current density j(m)(a|b) is obtained from the
complex quantities p(m)(a|b)

k and n(m)(a|b)
qk , where as before the

superscript (m) refers to the total order and the additional
superscript (a|b) denotes that the term is proportional
to exp[i(ak1 + bk2) · r], i.e., (1|0) corresponds to the
probe direction [43–46]. In the steady-state response the
probe-directed signals are related to the field amplitudes, e.g.,
in third order, by

ê1 · P(3)(1|0) = χ (3)(ω1; ω1, ω2,−ω2)Ê1Ê2Ê∗
2 ei(k1·r−ω1t ),

(16)

ê1 · j(3)(1|0)
n = σ (3)(ω1; ω1, ω2,−ω2)Ê1Ê2Ê∗

2 ei(k1·r−ω1t ),

(17)

where χ is the susceptibility and σ is the ac conductivity. Here
we do not study the tensor character of the response functions
since we consider linearly and parallel polarized fields and
an isotropic medium, thus only the diagonal elements are
relevant. Using relations of the type (16) and (17) in Eq. (14)
we obtain

α(l )(ω1, ω2) = −1

2

(
2

ε0c

)l

[μω1χ
′′(2l−1) + σ ′(2l−1)], (18)

where single (double) prime stands for the real (imaginary)
part, and the arguments of χ and σ are (ω1; ω1, ω2,−ω2, . . .)
according to the order l .

Note that a directional expansion may not be necessary for
certain choices of parameters. For instance, in the case of non-
degenerate 2PA the time integration in Eq. (15) automatically
singles out the probe-directed contributions for sufficiently
long pulses. In our formalism, the optical response for l > 1
is facilitated by a conductivity term in addition to the more
familiar susceptibility term [47]. In the case of ideal MPA,
i.e., without dephasing and relaxation effects, the two terms
describe the same physical process. For example, in the case
of the 2PA coefficient, see below Eq. (25), the two contribu-
tions are essentially related by a permutation of ω1 and ω2.
Only the sum of both terms leads to the proper symmetry
α(2)(ω1, ω2)/ω1 = α(2)(ω2, ω1)/ω2. Third-order expressions
for the 2PA coefficient for varying excitation frequencies were
obtained using a transition rate approach [26] and by a sus-
ceptibility approach [21] and we compare to these results in
Sec. III A. Furthermore, the optical injection of photocurrents
by two light beams having frequencies ω and 2ω with 2h̄ω

larger than the gap energy was studied by Atanasov et al. [13].

E. Bloch equations nonperturbative in the pump field

So far we have treated both probe and pump field pertur-
batively, yielding absorption coefficients for each order of the
pump intensity. When a distinction between these orders is
not required or when the pump field is so intense that an
order expansion cannot be applied, it is possible to include
the pump field nonperturbatively. We still consider a weak
probe pulse so that its absorption remains linear in the probe
intensity. If both pulses are treated nonperturbatively, the
directional expansion is inevitable and immensely involved.
As discussed below and in Sec. III C, a directional expansion
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may be omitted for the weak probe scheme as long as the
pump pulse intensity does not reach very high values.

The differential probe absorption in the presence of an
arbitrarily strong pump field is extracted from the mixed
quantities p̄k, n̄qk in the following set of SBE [34]:

∂

∂t
pk = −i ω̄k pk + i

h̄
d · E2 (1 − nk ) + e

h̄
E2 · ∇k pk,

(19)
∂

∂t
nqk = −γnnqk + i

h̄
d · E2 (p∗

k − pk ) + e

h̄
E2 · ∇k nqk,

(20)

∂

∂t
p(1)

k = −iω̄k p(1)
k + i

h̄
d · E1

(
1 − n(0)

k

)
, (21)

∂

∂t
p̄k = −i ω̄k p̄k − i

h̄
d · E1 nk − i

h̄
d · E2 n̄k

+ e

h̄
E1 · ∇k pk + e

h̄
E2 · ∇k

(
p(1)

k + p̄k
)
, (22)

∂

∂t
n̄qk = −γn n̄qk + i

h̄
d · E1 (p∗

k − pk ) + e

h̄
E1 · ∇k nqk

+ e

h̄
E2 · ∇k n̄qk+ i

h̄
d · E2

(
p̄∗

k − p̄k + p∗(1)
k − p(1)

k

)
,

(23)

with ω̄k ≡ ωk − iγp. The quantities pk, nqk are purely due
to the pump, while p(1)

k is the linear probe polarization. A
possibly present initial density n(0)

qk needs also to be included

by the initial condition nqk(t → −∞) = n(0)
qk , whereas the

mixed densities that are induced by both pulses start with
n̄qk(t → −∞) = 0. For sufficiently strong pump pulses, fre-
quency components will appear near the probe frequency
and other directions than the probe may contribute to the
absorption obtained analogously to Eq. (15). For weaker or
longer pulses, such that only a maximum of m orders is
relevant, the response described by Eqs. (19)–(23) agrees with
the perturbative expansion.

III. RESULTS FOR PUMP-PROBE SCHEME

In the following we present and discuss our analytical and
numerical results. Various regimes of pump intensities are
discussed successively, starting in Sec. III A from sufficiently
weak pump intensities and an off-resonant probe such that a
third-order analysis is valid. Higher-order effects are evalu-
ated for m = 5 and m = 7 in Sec. III B. We analyze both the
corresponding MPA coefficients (α(3) and α(4)) and the correc-
tions to the lower orders, e.g., χ (5) corrections for a resonant
sum frequency, i.e., ω1 + ω2 larger than the gap frequency.
Finally, the regime of very high pump intensities leading to
dynamic saturation effects is investigated in Sec. III C.

A. Two-photon absorption in third order

Here we start by deriving analytical expressions for
the 2PA coefficients in third order in the continuous-wave
limit and compare them with numerical results obtained for

Gaussian pulses. The susceptibility χ (3) and the conductivity
σ (3) both have the following form:

χ (3)(ω1, ω2,−ω2) =
∫

BZ
dk

∑
paths

3∑
�=1

∑
η=±

φ
(path;�)
k (ω1, ηω2),

(24)

where the paths leading to χ (3) are {iie, eee, iei, eii}, while
those for σ (3) are {eie, iee, eei, iii}. The two sums over
subpaths (� and η) are due to the order in which the fields
E1, E2, E∗

2 appear in the perturbation expansion. � labels the
order in which field E1 appears, while η labels whether E2 or
E∗

2 appears first in the series.
From the analytical expressions for φ

(path;�)
k (ω1, ω2), see

Appendix B, all contributing third-order effects, i.e., 2PA,
electronic Raman, and optical Stark effect, can be deduced.
Compact results are obtained in the limit of vanishing re-
laxation and dephasing constants, i.e., γn → 0 and γp → 0.
Strictly speaking, the results depend on the order of the limits
and we take γn → 0 first since the relaxation time is typically
longer than the dephasing time.

We restrict the analytical evaluation to the continuous-
wave limit to 2PA, hence we consider 0 < ων < ωk for ν =
1, 2. In third order four out of eight paths (indicated by solid
circles in Fig. 1) show a resonance factor (ω1 + ω2 − ω̄k )−1

and are thus relevant for 2PA. The other four paths, for which
the second-order quantity is a density n(2)

k , actually lead to
divergent absorption contributions, arising from a forbidden
truncation of the perturbation series for continuous-wave
fields and γn = 0 and γp → 0. Such contributions are thus
omitted in our evaluations. For sufficiently short pulses, such
that these n(2)

k remain small, the truncation of the perturba-
tion series is allowed and these paths do not significantly
contribute as confirmed by our numerical solutions. The
2PA coefficient scales as μ2 if only “contributing” paths are
considered—this is in contrast to the 3PA coefficient, where
different powers of μ appear as indicated in Fig. 3. It is
noteworthy that the path iei (eei), which vanishes for initially
filled bands, is completely canceled by other terms of the
path iie (eie). As a consequence the derivatives of the initial
density, e.g., ∇kn(0)

k , do not enter the 2PA coefficient.
Using the response functions and the recipe outlined in

Appendix B, the 2PA coefficient for a one-dimensional system
is found from Eqs. (18) and (24) in the limit γn → 0 and
γp → 0 as

α(2)(ω1, ω2) = 23e2μ2

h̄3ε3
0c2

ω1
(
ω−2

1 + ω−2
2

)2(
1 − n(0)

kr

)|vkr |,
(25)

where kr is the positive resonant point in the first Brillouin
zone, i.e., ωkr = ω1 + ω2 and vkr = dωk/dk|k=kr is the group
velocity at this point, where for simplicity we assume that the
band structure is isotropic. The dependencies of α(2) on the
frequency ratio ω1/ω2, the band structure, and initial band
fillings are independent of each other and will be discussed
separately in the following. Numerical results using Gaussian
pulses of duration τν (solid lines) are compared with analytical
continuous-wave expressions (dashed lines) in Figs. 3–5.
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FIG. 3. 2PA coefficient for different frequency ratios ω1/ω2

(three-dimensional model). The frequency sum ω1 + ω2 =
1.55 eV = ωg + 50 meV is kept constant and ω1 is varied.
Numerical results are shown by solid lines for τ1 = τ2 = 50 fs,
T1 → ∞, and T2 = 200 fs. The dashed lines display the scaled
analytical expressions given in the brackets, cf. Eq. (25).

Figure 3 shows the probe frequency dependence of the
absorption for a fixed sum frequency ω1 + ω2. Since the
sample is initially unexcited, only one susceptibility path
(iie) and one conductivity path (eie) contribute (with 2 of
6 subpaths for each path). All other paths are negligible,
i.e., they vanish for the investigated analytical limit and are
very small in the numerical evaluations with Gaussian pulses.
Nearly perfect agreement between numerical and analytical
results is obtained as long as both dephasing and relaxation
times are longer than the chosen pulse durations τν .

We note that since each beam delivers one photon to
the 2PA process, α(2)(ω1, ω2)/ω1 should be symmetric with
respect to the two frequencies. For weak relaxation this sym-
metry is fulfilled automatically. When we consider very short
dephasing times in our numerical evaluations the absorption is
reduced but still remains symmetric. On the other hand, since
the relaxation time enters only in the conductivity path eie
the symmetry is lost for T1 < τν . The absorption coefficient
diverges if one of the light frequencies vanishes and the
other is resonant. This drastic enhancement for nondegenerate
excitation was also obtained previously [21,26].

The general behavior of the 2PA coefficient for vary-
ing excitation frequencies is in good qualitative agreement
with previous studies. However, regarding the exact depen-
dence differing results exist in the literature. Sheik-Bahae
et al. [19,26] applied an approach based on Keldysh’s tun-
neling theory [48] to a model with two parabolic bands and
obtained α(2)(ω1, ω2) ∝ (ω1 + ω2)2/ω3

1ω
4
2. The difference to

our result may arise due to the concept by which the intra-
band motion induced by the electric field was described in
terms of Volkov-type dressed electronic states from which
the 2PA coefficients were obtained from first-order pertur-
bation theory. On the other hand, Aversa et al. [21] applied
a susceptibility approach to a two-band model and obtained
that α(2)(ω1, ω2) ∝ (ω1 + ω2)3/ω3

1ω
4
2. The difference in

FIG. 4. 2PA coefficient for varying band gap ωg in three dimen-
sions. Numerical results (solid lines) are computed for two Gaussian
pulses with τ1 = τ2 = 50 fs; ω1 = 2ω2 = 1 eV/h̄. The dashed line is
the fitted analytical expression from Eq. (27).

comparison with our result originates simply from the fact that
we used a k-independent dipole matrix element in our model
study. For the case of a k-independent dipole matrix element,
i.e., assuming that the interband matrix element of the position
operator does not depend on k, the dependence obtained here
is, however, in agreement with the result of Ref. [21], which
is based on limiting the general χ (3) analysis of Ref. [22] to a
two-band model.

The band structure enters α(2) explicitly only via the group
velocity in field direction. In the parabolic region near the
band gap, Eq. (13), the group velocity is given by

|vkr | = √
2h̄(ωkr − ωg)/m∗. (26)

The results of Eq. (25) can be easily generalized to
three dimensions in the parabolic region of the band struc-
ture, since the two directions perpendicular to the field can
be included by a continuum of energetically shifted one-
dimensional parabolic bands. These correspond to a constant
two-dimensional density of states in the directions perpendic-
ular to the linear polarization of the incident fields. In this case
the factor |vkr | in Eq. (25) is replaced by

(2/3)
√

2h̄/m∗(ω1 + ω2 − ωg)3/2, (27)

while all other factors remain unchanged. The proportionality
of 2PA coefficients to (ω1 + ω2 − ωg)3/2 is well established
from the scaling rules by Wherrett [49]. The dependence of
α(2) on the band gap of the three-dimensional model is shown
in Fig. 4 and again compared with our numerical results.
We find a very good agreement apart from a very small tail
below the band gap which simply arises from the finite pulse
durations.

The band-filling factor (1 − n(0)
k ) appearing in α(2) is the

same as for the 1PA coefficient and implies a corresponding
change from 2PA to stimulated emission when population
inversion is present. Also for this case we find good agreement
between our analytical and numerical results as is shown
in Fig. 5 for a three-dimensional two-band GaAs model
with initial quasiequilibrium Fermi-Dirac carrier distributions
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FIG. 5. 2PA coefficient for two Gaussian pulses as a function of
an initial quasiequilibrium carrier density in three dimensions. The
considered parameters are ω1 + ω2 = 1.7 eV, ω1/ω2 = 2, τ1 = τ2 =
50 fs, T1 → ∞, T2 = 200 fs, and T = 300 K. The total of all paths
(shown by the black curve) agrees well with the factor 1 − ne − nh

as expected from Eq. (25). For T → 0 this factor approaches the step
function shown by the dotted line.

corresponding to a carrier density of Neh, which is equal for
electrons and holes, with a temperature of T = 300 K. Due
to the strongly different effective masses of the conduction
and the heavy-hole valence bands, α(2) drops steeply to 0
due to the filling of the conduction band near the � point
until Neh � 5 × 1018/cm3. Then α(2) slowly becomes negative
and the 2PA coefficient approaches the negative of the value
without initial carriers present. The plot also highlights the
cancellation of the terms depending on the k gradient of
the carrier density in the two susceptibility paths iie and iei
as well as in the two conductivity paths eei and eie.

In general we see that the dynamic response for quite short
pulses is in the considered frequency range and resolution
nearly identical to the continuous-wave response, apart from
minor deviations arising from the finite spectral width of the
pulses.

B. Higher-order response and multiphoton absorption

We now discuss the probe absorption in the presence
of more intense pump pulses where higher-order processes
are relevant. The absorption is again calculated using the
perturbative Eqs. (5)–(8) including also an expansion in the
relevant directions. This procedure is carried out both numer-
ically for short pulses and analytically for continuous-wave
excitation. Figure 6 shows spectra separately for the three
orders m = 3, 5, and 7, as a function of the pump frequency
ω2 for a fixed probe frequency of h̄ω1 = 1.2 eV for the one-
dimensional tight-binding model given in Eq. (12). We use the
sum frequency ω1 + ω2 as a common axis and indicate MPA
resonances with the band gap by vertical thin dashed lines.

In third order, see Fig. 6(a), the 2PA vanishes below
the band gap except the tail arising from the finite spectral
width of the pulses. Above the gap the numerically calculated
spectrum agrees well with the analytical result of Eq. (25)

FIG. 6. MPA spectra for l = 2, 3, 4 corresponding to the orders
m = 3, 5, 7 for a one-dimensional tight-binding model (12) with
ωg = ωb = 1.5 eV/h̄. The probe frequency is fixed at ω1 = 1.2 eV/h̄
and the pump frequency is varied. The pulse durations for solid lines
are τ1 = τ2 = 200 fs and both dephasing and relaxation are switched
off. The dashed lines are analytical results, Eq. (25) in (a) and
Eq. (28) in (b). The dotted lines are approximations for the higher-
order correction features according to Eq. (29) with G ≈ const. The
vertical thin lines indicate MPA resonances with the band gap, i.e.,
ω1 + (l − 1)ω2 = ωg.

shown by the dashed line (scaled). After an initial increase
which is determined by the group velocity |vkr | in the
parabolic regime, Eq. (26), the absorption decreases with fur-
ther increasing sum frequency ω1 + ω2. This decrease arises
from the decrease of the ratio ω1/ω2, i.e., we move towards
a more degenerate situation for which according to Fig. 3 the
2PA is minimal.
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In fifth order, see Fig. 6(b), 3PA starts at ω1 + ω2 =
1.35 eV/h̄, i.e., when h̄ω1 + 2h̄ω2 is equal to the band gap.
Significant 3PA is present mainly in two separate frequency
ranges and nearly vanishes in between (here for ω1 + 2ω2 ≈
1.54 eV/h̄). For the used value of the dipole matrix element
μ = 3e Å the paths with the lowest power of μ are dominant.
According to Fig. 1 three paths are quadratic in μ when the
sample is initially unexcited, while all other paths are either
of higher order in μ or are irrelevant. Solving the pertur-
bative expansion for the three dominant paths analytically,
we find the following contribution to the 3PA coefficient
in the continuous-wave limit for an initially unexcited one-
dimensional system within the parabolic dispersion regime,

α(3)(ω1, ω2) ∝ μ2
[
512 ω3

1ω
8
2(ω1 + ω2)2ω′

kr

]−1

× [
ω1ω2

(
ω2

1 + ω1ω2 + 4ω2
2

)
ω′′

kr

− 2(ω1 + ω2)
(
ω2

1 + 2ω2
2

)
ω′

kr

2
]

2. (28)

In the derivation of these expressions we assumed that the
sum frequency ω1 + ω2 is off-resonant and therefore the
fifth-order corrections to 2PA are not included in this result.
The frequency tail of the solid line at ω1 + 2ω2 � ωg which
represent the numerical results for pulsed excitation is not
included either, since it is again due to the finite spectral width
of the pulses. Otherwise there is again very good agreement
with the numerical result. Indeed, the analytical solution (28)
has a zero of order 6 (for a parabolic band) in the relevant
frequency range. In the degenerate case ω1 = ω2, the zero is
found at ω1 = 2ω′

kr

2/ω′′
kr

.
The difference between the numerical and the analyti-

cal results at ω1 + ω2 � ωg is due to the above-mentioned
fifth-order corrections to 2PA. Even though its shape is not
dispersive it results, when added to the 2PA, in a reduction
and an optical Stark shift of the 2PA near the band gap
to higher frequencies with increasing pump intensity. In the
next order m = 7, see Fig. 6(c), further corrections occur
to both 2PA and 3PA. For the chosen frequency values, the
Stark-shift correction of the 3PA peak at ω1 + 2ω2 � ωg to
higher frequencies is dominant, while there is no significant
correction to the broad 3PA range above. We would like to
point out that the shape of the higher-order corrections to 2PA
and 3PA roughly correspond to a derivative of the lower-order
absorption coefficient with respect to the probe frequency. In
other words, the correction can be written as

α(l+1)(ω1, ω2) = G(ω1, ω2)
∂

∂ω1
α(l )(ω1, ω2), (29)

where G(ω1, ω2) varies slowly over the frequency range of
the feature, presumably since it contains nonresonant factors
only. Here we do not discuss analytical Stark shift expressions
to confirm this relation for a crystal. However, consider a two-
level system with transition energy ω0 excited by two beams
where ω1 is near resonant and ω2 is detuned. Then

α(l )(ω1, ω2) = −[22l−1(ω1 + ω2 + iγn)l−1

× (ω1 − ω0 + iγp)l ]−1, (30)

and (29) holds with G(ω1, ω2) = −[4l (ω1 + ω2 + iγn)]−1

(the term ∝∂G/∂ω1 is negligible). As long as the features
are confined to a narrow frequency range the derivative alone

fits our numerical results surprisingly well. The corresponding
curves, scaled separately for each feature, are shown by the
dotted lines in Figs. 6(b) and 6(c).

For resonant excitation the absorption changes as measured
in pump-probe experiments typically alternate with the order,
e.g., as demonstrated in Ref. [50] the fifth-order contribu-
tion is proportional to the negative of the third-order result.
Interestingly, the relation given in (29), i.e., that the next
higher order is proportional to the derivative of the lower
order qualitatively also holds for the results shown in Ref. [50]
when exciting with co-circularly polarized pulses below the
exciton resonance since the third-order Stark shift becomes a
broadening in fifth order.

In Fig. 6(c) we also recognize the genuine 4PA with a max-
imum slightly above ω1 + 3ω2 = ωg, i.e., ω1 + ω2 = 1.3 eV,
which is restricted to a quite narrow frequency range. Finally,
we would like to note that further calculations have shown
that the MPA coefficients have a similar strong enhancement
for strongly nondegenerate excitation as the 2PA coefficient
shown in Fig. 3. However, the exact dependence on the
frequency ratio obviously differs.

Let us now discuss the influence of a time delay between
the pump and the probe pulse on the MPA. In bulk GaAs 2PA
transients have been measured in Ref. [51]. Evaluating the
denominator of Eq. (15) for two Gaussian pulses, one finds
that the lPA depends on the time delay t1 − t2 as

exp

(
−2(l − 1)(t1 − t2)2

(l − 1)τ 2
1 + τ 2

2

)
. (31)

Note that for l � 1 the temporal width is mainly determined
by the duration of the probe pulse. Figure 7(a) shows that this
scaling is well fulfilled for τ1 = τ2 = 50 fs for the three cases
l = 2, 3, 4.

Another influence to be discussed for MPA is that of an
initial carrier density n(0)

qk . Using quasiequilibrium distribu-
tions we find that the entire MPA spectra of Fig. 6 scale very
well with the band filling factor (1 − n(0)

k ). It is thus excepted
that in the continuous-wave limit of MPA (using γp → 0 and
γn → 0) this factor describes the entire density dependence as
for 1PA and 2PA, at least as long as a perturbative treatment
is valid.

C. Nonperturbative regime with high pump intensities

In this section we present results for the probe absorption
obtained from the set of SBE (19)–(23) which is applicable
for arbitrarily strong pump fields. In this regime, the linear
probe absorption shows a complex dependence on both the
time delay t1 − t2, see Fig. 7(b), and the pump field ampli-
tude Ê2, see Fig. 8. As we include the probe field to first
order, the absorption of probe photons by the simultaneous
absorption of one (or more) pump photons does not cause
saturation effects itself. The irregular characteristics reflects
the population dynamics induced by the strong pump pulse,
here mainly in the region of the Brillouin zone that is resonant
with ω1 + ω2. Therefore, the pump absorption is shown on
a different scale in Fig. 8 (analogous to Fig. 2). Roughly
speaking, the increase of the pump absorption starting at Ê2 ≈
0.15 V 2π/a results in a decrease of the probe absorption.
More precisely, the dips in the probe absorption are caused by
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FIG. 7. Transients obtained for the one-dimensional tight-
binding model (12) with ωg = ωb = 1.5 eV/h̄. (a) Absorption∫

dt j(2l−1) · E1 of the probe pulse for l = 2, 3, 4 as a function of
the time delay between the probe and pump pulse. The parameters
are h̄ω1 = 1.2 eV, h̄ω2 = 0.31 eV, τ1 = τ2 = 50 fs, and T2 → ∞.
The dashed lines correspond to Eq. (31). (b) Transients obtained
for strong pump fields (peak amplitudes indicated). h̄ω1 = 1.1 eV,
h̄ω2 = 0.5 eV, τ1 = τ2 = 50 fs, and T2 = 200 fs.

high pump-induced carrier densities nk(t ), where k is in the
ω1 + (l − 1)ω2-resonant region of the Brillouin zone (where
l � 2) and t is near the peak time t1. For instance, the curve
for Ê2 = 0.06 V 2π/a in Fig. 7 is flattened compared to a
Gaussian, and correspondingly a dip is visible near this Ê2

value in Fig. 8.
The data in Fig. 8 are again obtained for the 1D tight-

binding model (12), since the entire Brillouin zone becomes
important for strong fields. For weak fields, the absorption
completely agrees with the perturbative regime (the seventh-
order expansion is accurate up to roughly Ê2 ≈ 0.04 V 2π/a).
For very strong pump intensities (near the right edge of
Fig. 8), Eqs. (19)–(23) are not accurate anymore, since signals
in directions different from the probe direction are mixed into
the calculated absorption. The proper directional expansion
is shown in a small region of the plot in Fig. 8 only since it
is computationally expensive. Note that the probe absorption
may take positive or negative values in the regime of very
intense pump fields. Overall, the nonmonotonous intensity
dependence is related to Rabi oscillations which occur in
regions of the Brillouin zone which are resonantly excited

FIG. 8. Absorption of the weak probe pulse as a function of
the pump field amplitude (h̄ω1 = 1.1 eV, h̄ω2 = 0.5 eV, τ1 = τ2 =
50 fs, T2 → ∞). The black dotted line is the result from seventh-
order perturbation theory. The yellow dotted line is the total pump
absorption (on a different scale). The one-dimensional tight-binding
model (12) with ωg = ωb = 1.5 eV/h̄ was used.

by MPA and the negative regions can be understood to arise
from (transient) population inversion. In fact, the origin and
the nonmonotonous behavior and possible sign changes of the
absorption are similar to effects that have been predicted for
two-color photocurrents [52].

IV. SUMMARY

Using a semiclassical approach based on the semiconduc-
tor Bloch equations, we have studied the nonlinear optical ab-
sorption of one or two light beams within a two-band model.
In general, the presence of far off-resonant light waves makes
it necessary to consider both inter- and intraband excitation
effects. In the length gauge of the electromagnetic field both
types take a simple form which facilitates perturbative ana-
lytical solutions of the Bloch equations. The imaginary (real)
part of the obtained susceptibility (conductivity) together de-
termine the MPA coefficient for the steady-state response. As
long as the order of the perturbation expansion is sufficiently
high, the MPA coefficients are in good agreement with ab-
sorption spectra obtained numerically for pulsed excitation.

Our approach, however, is not limited to the perturbative
regime. We also demonstrate how to obtain the absorption of
a single strong pulse or a weak probe pulse in the presence
of an intense pump pulse in a nonperturbative fashion and
demonstrate, e.g., a strongly nonmonotonous behavior of the
intensity-dependent optical absorption which also appears in
the transient response.

The simplicity of the employed model enables us to an-
alyze and point out several novel fundamental aspects such
as the nature of higher-order corrections and nonperturbative
effects as well as the onset of dynamic saturation effects
in the strong-field regime. Future extensions of this model
might lead to a more realistic description. The evaluation of
nonlinear optical susceptibilities in more sophisticated band
structure models including more than two bands and the k
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dependence as well as the vector character of the matrix
elements would lead to more quantitative predictions and
would also allow us to study the complete tensor character
of the nonlinear susceptibilities. Furthermore, the inclusion
of electron-electron interactions, in particular, of the electron-
hole attraction into the SBE, is expected to lead to an excitonic
enhancement of MPA appearing spectrally slightly below the
resonances originating from the fundamental band gap. Alter-
natively, also a susceptibility approach can be used to analyze
the second-order optical response including excitons [53].
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APPENDIX A: PATH EVOLUTION EQUATIONS

Splitting the evolution Eqs. (5)–(8) into individual paths of
interband and intraband terms, the series takes the following
form in the first two orders:

∂

∂t
p(1)[e]

k = i

h̄
d · E

(
1 − n(0)

k

) − i(ωk − iγp) p(1)[e]
k , (A1)

∂

∂t
n(1)[i]

qk = e

h̄
E · ∇k n(0)

qk − γnn(1)[i]
qk , (A2)

∂

∂t
p(2)[ie]

k = e

h̄
E · ∇k p(1)[e]

k − i(ωk − iγp)p(2)[ie]
k , (A3)

∂

∂t
p(2)[ei]

k = − i

h̄
d · E n(1)[i]

k − i(ωk − iγp)p(2)[ei]
k , (A4)

∂

∂t
n(2)[ee]

qk = i

h̄
d · E

(
p∗(1)[e]

k − p(1)[e]
k

) − γnn(2)[ee]
qk , (A5)

∂

∂t
n(2)[ii]

qk = e

h̄
E · ∇kn(1)[i]

qk − γnn(2)[ii]
qk , (A6)

where the path labels are given in square brackets. The higher
orders can be obtained analogously.

APPENDIX B: THIRD-ORDER RESPONSE FUNCTIONS

Here we give explicit expressions for the functions
φ

(path;�)
k (ω1, ω2) defining the third-order susceptibility and

conductivity in the continuous-wave limit according to
Eq. (24). We define primed quantities as derivatives with
respect to k along the field direction, e.g., ω′

k = ê1 · ∇k ωk,
and similarly for nk. The subpath index � runs from 1 to
3 and we define ω3 ≡ ω2, �1 = �2 ≡ ω1 + ω2, and �3 ≡
0. Note that the occurrences of these frequency expressions
are not invariable, but change according to the arguments of
φ

(path;�)
k (ω1, ω2). For simplicity we neglect all terms which do

not feature a resonance denominator ω1 − ω̄k or ω1 + ω2 −
ω̄k. This approximation is sufficient for considering 2PA,
electronic Raman effect [where ω2 → −ω2 according to η =
− in Eq. (24)], and ac Stark shift.

For the four susceptibility paths we find

φ
(iie;�)
k (ω1, ω2) = e2μ2

8h̄3

1

ω1 − ω̄k

1

�� − ω̄k

(
2
(
1 − n(0)

k

)
ω′

k
2

(ω� − ω̄k )3
+

(
1 − n(0)

k

)
ω′′

k − 2n′
k

(0)
ω′

k
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φ
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The solutions for the four conductivity paths read

φ
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, (B5)

φ
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, (B6)

φ
(eei;�)
k (ω1, ω2) = −e2μ2
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iω′
k

(ω1 + iγn)(�� − ω̄k )

n′
k

(0)

(ω� + iγn)
, (B7)

φ
(iii;�)
k (ω1, ω2) = 0. (B8)
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The paths contributing to 2PA (or Raman for η = −) are easily identified by the occurrences of the resonance denominator
ω1 + ω2 − ω̄k. All paths lacking this term do not contribute to α(2) (despite unphysical divergences for γn → 0). The contributing
paths are further evaluated by carrying out the k integral from Eq. (24) and taking γn → 0 and γp → 0. This limit may be
immediately carried out in all cases except at the resonance poles. According to Eq. (18), α(2) is determined by the imaginary
part of the poles,

Im[(�1 − ω̄k )−1] = −γp

(�1 − ωk )2 + γ 2
p

, (B9)

Im[(�1 − ω̄k )−2] = −2γp(�1 − ωk )[
(�1 − ωk )2 + γ 2

p

]2 . (B10)

As discussed in the main text, we restrict the further evaluation to the one-dimensional case. We transform the k integral in
Eq. (24) into frequency space:

lim
γp→0

∫
dk · · · = lim

γp→0

∑
k≈kr

∫
dωk|ω′

k|−1 · · · ,

where the sum is over the resonant parts of the spectrum. Then we use the asymptotic expressions

lim
γ→0

∫
dx

γ

(x − x0)2 + γ 2
f (x) = π f (x0), (B11)

lim
γ→0

∫
dx

2γ (x − x0)

[(x − x0)2 + γ 2]2
f (x) = π f ′(x)

∣∣
x=x0

, (B12)

which leads to the result given in Eq. (25).
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