
PHYSICAL REVIEW B 99, 125155 (2019)
Editors’ Suggestion

Topological theory of non-Hermitian photonic systems
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Here, we develop a gauge-independent Green’s-function approach to characterize the Chern invariants of
generic non-Hermitian systems. It is shown that, analogous to the Hermitian case, the Chern number can be
expressed as an integral of the system Green’s function over a line parallel to the imaginary-frequency axis.
The approach introduces in a natural way the “band gaps” of non-Hermitian systems as the strips of the
complex-frequency plane wherein the system Green’s function is analytical. We apply the developed theory
to nonreciprocal electromagnetic continua, showing that the topological properties of gyrotropic materials are
strongly robust to the effect of material loss. Furthermore, it is proven that the spectrum of a topological material
cavity terminated with opaque-type walls must be gapless. This result suggests that the bulk-edge correspondence
remains valid for a class of non-Hermitian systems.
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I. INTRODUCTION

Topological matter and topological systems have quite
unique and often intriguing properties, which can lead to novel
physical effects and phenomena [1–9]. The topological classi-
fication of materials was initially developed for Hermitian sys-
tems described by some self-adjoint operator. Recently, it was
shown that non-Hermitian systems, for example systems with
material absorption or material gain, can also have topological
properties [10–24]. The topological Chern invariants of non-
Hermitian systems are usually found from the biorthogonal set
formed by the Bloch eigenstates of the Hamiltonian and by the
eigenstates of the adjoint operator [14,25]. Other nonstandard
topological invariants and non-Bloch Chern numbers have
also been put forward recently [13,16–18].

So far, most of the works in the literature deal with
idealized and abstract Hamiltonians (e.g., extensions of the
one-dimensional Su-Schrieffer-Heeger model or the two-
dimensional Rice-Mele model, or others [13,16–22]), that do
not always connect in a straightforward way to realistic phys-
ical structures. In contrast, here we show that the topological
phases of standard dispersive and lossy photonic materials can
be characterized using Green’s-function methods. The pro-
posed theory generalizes the results of our earlier paper [26] to
non-Hermitian photonic systems. Even though we shall focus
on optical materials, our analysis applies to both fermionic
and bosonic platforms. While it is well known that the Chern
invariant of fermionic systems can be found from the system
Green’s function [27–30], to the best of our knowledge, so
far the application of this technique to non-Hermitian systems
remains unexplored.

Our theory enables the calculation of the Chern invari-
ants of non-Hermitian systems without relying on a gauge-
dependent biorthogonal set of eigenstates, and thus may be
advantageous and simpler from a computational point of view.

*Corresponding author: mario.silveirinha@co.it.pt

More importantly, the Green’s-function approach sheds light
over several unsettled problems in the theory of topological
non-Hermitian systems. In particular, it makes clear that the
band gaps correspond to strips of the complex plane wherein
the system Green’s function is analytic (with no poles).
Furthermore, by extending the arguments of Ref. [31], we
show that for periodic systems described by linear differential
equations the spectrum must become gapless when the system
is enclosed with “opaque-type” boundaries (often referred
to as “open” in the literature). Thus, our theory settles in
part the controversy about the application of the bulk-edge
correspondence to non-Hermitian systems [10,15–17,19], and
uncovers that a topological non-Hermitian cavity terminated
with opaque-type walls must support edge states in the bulk
band gaps.

The paper is organized as follows. In Sec. II, we present a
motivation example that illustrates the application of the de-
veloped concepts to a magnetized electric plasma. In Sec. III
we develop the general theory that enables finding the topo-
logical invariants of non-Hermitian systems from the system
Green’s function. Then, in Sec. IV the theory is applied to
photonic systems, i.e., systems with a dynamics described
by the Maxwell equations. In Sec. V, we generalize some
of the ideas of Ref. [31] to non-Hermitian platforms and
demonstrate that the Chern number integral depends critically
on the Green’s-function boundary conditions. Based on this
result, we prove that, consistent with the standard bulk-edge
correspondence, the spectrum of a topologically nontrivial
phase terminated with opaque-type boundaries must be gap-
less. Finally, Sec. VI contains a brief summary of the main
findings.

II. MOTIVATION EXAMPLE

To illustrate the application of the Green’s-function meth-
ods that will be developed later in the paper, next we com-
pute the topological invariants of a lossy magnetized electric
plasma (e.g., a semiconductor biased with a static magnetic
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FIG. 1. Locus of the natural frequencies of the gyrotropic material with ω0 = 0.5ωp in the complex-frequency plane (ω = ω′ + iω′′) for a
real-valued wave vector. Solid lines: � = 0 (lossless case). Dot-dashed lines: � = 0.1ωp. Dotted lines: � = 0.5ωp. The shaded gray vertical
strips represent the band gaps in the complex plane. (a) Root locus for a local material. (b) Root locus for a material with a high-frequency
cutoff kmax = 10ωp/c.

field [32,33]). It is assumed that the material is nonmagnetic
and that the relative permittivity tensor is of the form

ε = εt 1t + iεgẑ × 1t + εaẑ ⊗ ẑ, (1)

with 1t = x̂ ⊗ x̂ + ŷ ⊗ ŷ. The permittivity elements are
(ε11 = ε22 = εt , ε33 = εa, and ε12 = −ε21 = −iεg)

εt = 1 − ω2
p(1 + i�/ω)

(ω + i�)2 − ω2
0

, εg = 1

ω

ω2
pω0

ω2
0 − (ω + i�)2 ,

εa = 1 − ω2
p

ω(ω + i�)
, (2)

Here, ω0 = −qB0/m is the cyclotron frequency determined
by the bias magnetic field B0 = B0ẑ, � is the collision fre-
quency, q = −e is the negative charge of the electrons, m
is the effective mass, and ωp is the plasma frequency [34].
We focus on transverse magnetic (TM) waves with H =
Hzẑ, E = Exx̂ + Eyŷ, and ∂/∂z = 0. The electrodynamics is
non-Hermitian when the collision frequency is nonzero � >

0. In this case the energy is not conserved as a function
of time because of the material absorption, and hence the
natural modes must have a finite lifetime, i.e., are associated
with complex valued frequencies ω = ω′ + iω′′ and ω′′ < 0
[the mode lifetime is τlf = 1/(−2ω′′) [35]].

As extensively discussed in Refs. [36,37], the character-
ization of the topological phases of a generic electromag-
netic continuum requires the introduction of a high-frequency
spatial cutoff in the material response. The spatial cutoff
needs to ensure that the material response is asymptotically
(in the limit k → ∞) analogous to that of a reciprocal and
non-bi-anisotropic dielectric. For a magnetized plasma the
permittivity dispersion may be modified as [26,36,37]

εt (k, ω) = 1 + 1

1 + k2/k2
max

[εt,loc(ω) − 1],

εg(k, ω) = εg,loc(ω)

1 + k2/k2
max

, (3)

where kmax is the spatial cutoff. In the above, εt,loc and εg,loc

stand for the permittivity elements of a material with no spatial

cutoff and are defined as in Eq. (2). The element εa is irrele-
vant for TM-polarized waves and so it is not discussed here.

The dispersion of the TM-polarized bulk modes (plane
waves propagating in the xoy plane with propagation factor
eikxxeikyy) is given by [26,36]

k2 = εe f ω
2/c2, εe f = (

ε2
t − ε2

g

)/
εt , (4)

with k2 = k2
x + k2

y . It will be seen later that the Green’s-
function singularities in the complex-frequency plane are
determined by the solutions (with respect to ω) of Eq. (4) with
kx and ky real valued. Thus, the spectrum of the gyrotropic
material is determined by the plane waves (Bloch modes) with
kx and ky real valued.

Figure 1 represents the locus of the natural frequencies ω =
ω′ + iω′′ in the complex plane (showing both the positive- and
negative-frequency branches) associated with a real-valued
wave vector for different values of the collision frequency �.
Since the material response is invariant to rotations around the
z axis, it is evident that ω = ω(k) with 0 � k < ∞. Therefore,
in this example, the locus of ω = ω′ + iω′′ is typically formed
by five disconnected curves, i.e., five disconnected bands.
As seen, the bands are separated by vertical strips in the
complex plane where the material does not support Bloch
waves. These vertical strips correspond to the photonic band
gaps of the non-Hermitian material. Curiously, the band gaps
are nearly (but not exactly) independent of the value of �

in the range 0 � � � 0.5ωp. Evidently, when the material is
lossless (� = 0) the natural modes lie on the real-frequency
axis. Note that when � > 0 there is a band of modes with
frequencies along the imaginary-frequency axis (black lines
in Fig. 1). For sufficiently large values of � the band gaps
close (not shown).

It is interesting to compare the spectrum of a local material
with no high-frequency spatial cutoff [Fig. 1(a)] with the spec-
trum of a nonlocal material with kmax = 10ωp/c [Fig. 1(b)].
The two spectra are almost coincident for the natural modes
with a small k, but may differ somewhat for eigenmodes
with k > kmax [compare the lower end of the blue curves in
Figs. 1(a) and 1(b)].
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FIG. 2. Complex band structure of a gyrotropic material with ω0 = 0.5ωp and kmax = 10ωp/c. (a) Real part of the natural oscillation
frequencies as a function of kx . Solid blue lines: � = 0 (lossless case). Dashed green lines: � = 0.5ωp. The shaded gray horizontal strips
represent the band gaps. (b) Imaginary parts of the natural frequencies of the first, second, and third bands with non-negative-frequency bands
(ordered such that 0 = ω′

1 < ω′
2 < ω′

3) as a function of kx for � = 0.5ωp.

Figure 2 depicts the explicit dependence of both ω′
[Fig. 2(a)] and ω′′ [Fig. 2(b)] on the real-valued wave vector
for a generic propagation direction in the xoy plane. In partic-
ular, Fig. 2(a) shows that the real part of the eigenfrequencies,
ω′ = ω′(kx ), is rather insensitive to the value of the damping
parameter �.

Similar to our previous paper [26], the Chern invariants of
the non-Hermitian material can be found by integrating the

photonic Green’s function along a vertical line ω′ = Re{ω} =
ωgap parallel to the imaginary-frequency axis. The integration
path Re{ω} = ωgap must be contained in the relevant band gap,
i.e., in one of the shaded gray regions in Fig. 1(b). Moreover,
the analysis of the following sections shows that for electric
gyrotropic media [with the permittivity tensor (1)] with a
high-frequency spatial cutoff kmax the gap Chern number can
be explicitly written as C = C1 + C2 with

C1 = −1

π

∫ ∞

−∞
dξ

∫ ∞

0
dk k

(
1 + 2k2

k2 + k2
max

)
εg

εt
	̃

[
k2∂ω	̃ + ω

c2
∂ω(ωεe f 	̃)

]
ω=ωgap+iξ

. (5a)

C2 = −1

π

∫ ∞

0
dk

∫ ∞

−∞
dξ

k3ω

k2 + k2
max

{
1

ε2
e f ω

2

(
εg

εt

)2[
ωεe f 	̃∂ω

(
εg

εt

)
− εg

εt
∂ω(ωεe f 	̃)

]

+ 1

c2
	̃2

[
2
εg

εt
+

(
εg

εt

)2

∂ω

(
ω

εg

εt

)
+ ωεe f ∂ω

(
εg

εt

)
− εg

εt
∂ω(ωεe f ) + c2

ε2
e f ω

2
k2∂ω

(
ωεe f

εg

εt

)]}
ω=ωgap+iξ

(5b)

where 	̃ = 1/[k2 − (ω/c)2εe f (k, ω)], εe f = (ε2
t − ε2

g )/εt ,
and εt and εg are defined as in Eq. (3). Equation (5)
coincides exactly with Eq. (43) of Ref. [26], which was
originally derived for lossless systems but remains valid in
the non-Hermitian case. The justification of this property
will be given in Sec. IV. Note that the integrand of Eq. (5) is
singular in the complex plane when 	̃ is singular, i.e., when
ω satisfies Eq. (4) for some real-valued wave vector (Bloch
eigenfrequency).

Using Eq. (5) the gap Chern numbers of the gyrotropic
material were numerically found as a function of the colli-
sion frequency � (see Fig. 3). The gap Chern numbers are
labeled as in Fig. 2(a). Due to the particle-hole symmetry of
Maxwell’s equations, the gap Chern numbers of the negative-
frequency gaps are identical to those of the corresponding
positive-frequency gaps. Note that the gap Chern numbers
take into account the contributions of all bands below the gap
(modes with Re{ω} < ωgap), including the negative-frequency
bands [26]. As seen, the gap Chern numbers are independent
of the value of � because the complex band gap remains
open, i.e., the bands remain separated by a vertical strip in

the complex plane when loss is introduced into the material
response. In particular, it follows that nonreciprocal photonic
materials can be topologically nontrivial even in the presence
of rather strong material absorption. The band gaps associated
with Cgap,2 close for a collision frequency � slightly larger
than ωp.

III. GENERAL THEORY

In the following, we develop a general Green’s-function
formalism to topologically classify the phases of non-
Hermitian (fermionic or bosonic) systems.

A. Complex band structure

We consider generic operators L̂k and Mg that may be non-
Hermitian. The operator L̂k is parametrized by the real-valued
wave vector k = kxx̂ + kyŷ. For clarity, for now the family
of operators L̂k is assumed periodic in k with the irreducible
cell (typically a Brillouin zone) denoted by BZ. For example,
in lattice-type models of physical systems (e.g., tight-binding
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FIG. 3. Gap Chern numbers of a gyrotropic material with ω0 =
0.5ωp and kmax = 10ωp/c as a function of �. The gap Chern numbers
are labeled as in Fig. 2(a).

models) the space is discretized into a grid of points and
L̂k is a matrix periodic in k. In general, the periodicity in
k is not mandatory and more relaxed conditions may be
enforced (these will be made precise later). The operator Mg

is independent of k and invertible.
We introduce the following generalized eigenvalue

problem:

L̂k · Qnk = ωnkMg · Qnk (n = 1, 2, . . .) (6)

Here, Qnk are the generalized eigenstates of L̂k and ωnk
are the generalized eigenvalues. If Mg is taken as the identity
operator, Eq. (6) becomes a standard eigenvalue problem. The
operators L̂k and Mg do not need to be Hermitian, and thereby
the ωnk are generally complex valued. Thus, Qnk and ωnk
determine the “complex band structure” of L̂k.

Let us suppose that L̂k has no eigenvalues in some vertical
strip, ωL < Re{ω} < ωU , of the complex-frequency plane,
analogous to the example of Fig. 1. Then, we say that the
operator L̂k has a complete band gap in the relevant strip.
The band gap separates the “bands” into two classes: (i)
those formed by eigenvectors with Re{ωnk} < ωgap, which we
shall refer to as the filled (F) bands, and (ii) those formed
by eigenvectors with Re{ωnk} > ωgap, which we refer to as
the empty (E) bands. Here, ωgap is a generic (real-valued)
frequency in the gap (ωL < ωgap < ωU ).

B. Chern topological number

We introduce a Green’s-function operator defined by

Gk(ω) = i(L̂k − Mgω)−1. (7)

Evidently, the Green’s-function operator has poles at the
eigenfrequencies ω = ωnk, but otherwise is an analytic func-
tion of frequency. In particular, it is analytic over the ver-
tical strip of the complex plane that determines a complete
band gap (ωL < Re{ω} < ωU ). The inverse operator is such
that iG−1

k = L̂k − Mgω. For convenience, we denote ∂ jG−1
k =

∂
∂k j

G−1
k = −i ∂L̂k

∂k j
( j=1,2) with k1 = kx and k2 = ky. Notice

that ∂ jG−1
k is independent of frequency. The Chern topological

number associated with the band gap is defined by means of

the Green’s-function operator as

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω

× Tr
{
∂1G−1

k · Gk · ∂2G−1
k · ∂ωGk

}
, (8)

where ∂ω = ∂/∂ω. The integral in ω is over the line Re{ω} =
ωgap parallel to the complex-frequency imaginary axis and
Tr{...} stands for the trace operator. In our previous paper
[26], it was shown that the photonic gap Chern number can
be expressed as in Eq. (8) when the relevant system is formed
by lossless materials, i.e., when the operators are Hermitian
[the link between the theory of Ref. [26] and Eq. (8) is further
discussed in Sec. IV]. In the following, it is shown that for
non-Hermitian operators C remains a topological integer.

Specifically, let us suppose that the non-Hermitian operator
of interest may be regarded as a smooth deformation of some
Hermitian operator. For example, consider that L̂k ≡ L̂k(1) is
the non-Hermitian operator of interest, with L̂k(α) a smooth
function of the parameter α (0 � α � 1), such that L̂k(0) is
Hermitian. In photonic systems the parameter α is typically
related to a damping factor, e.g., a collision frequency, analo-
gous to the example of Sec. II. Thereby, the Green’s-function
operator Gk = Gk(α) and the Chern number C = C(α) are
functions of α. Inspired by Ref. [27], we prove in Appendix A
that, provided the deformation does not close the relevant
band gap [so that ωgap in Eq. (8) is fixed], the derivative of
C with respect to the parameter α is given by

∂C
∂α

= 1

(2π )2

1

2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω εi jl

× ∂iTr
{
∂αGk · ∂ jG−1

k · Gk · ∂lG−1
k

}
. (9)

In the above, εi jl is the Levi-Civita symbol, ∂0 = ∂/∂ω,
and the summation over all i, j, l ∈ {0, 1, 2} is implicit. Notice
that the integrand is a sum of derivatives of the trace operator.
Thus, if the term Tr{...} satisfies suitable conditions at the
boundary of the BZ and at ω = ∞ the right-hand side of
Eq. (9) vanishes.

A system is topological when it is possible to guarantee
that the integral in Eq. (9) vanishes. The periodicity of L̂k
in k is a sufficient (but not a necessary) condition to ensure
that. Indeed, if L̂k is a periodic function of k then Gk also
is. In these conditions, the contribution from the boundary
of the BZ vanishes, and therefore it follows that ∂C

∂α
= 0.

But since Cα=0 is an integer [because by hypothesis L̂k(0) is
Hermitian] it follows that C = Cα=1 also is. Therefore, the gap
Chern number is an integer totally insensitive to any possible
non-Hermitian deformation that does not close the band gap;
this property unveils the topological nature of non-Hermitian
platforms.

In summary, if the operators L̂k guarantee that the integral
in Eq. (9) vanishes (e.g., if L̂k is periodic) and if L̂k may be
regarded as a deformation of some Hermitian system then C
is a topological integer.

C. Berry potential and Berry curvature

The approach of the previous subsection is rather powerful
and relies on the well-established topological properties of
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Hermitian systems. It is instructive to prove that the gap
Chern number is an integer following a different path, namely,
by diagonalizing the Green’s-function operator. This second
method is related to the theory of Ref. [14] and enables us to
introduce in a natural manner the notions of Berry potential
and curvature for non-Hermitian systems.

To begin with, it is convenient to define L̂k =
M−1/2

g L̂kM−1/2
g . From Eq. (6) it is seen that L̂k · Qnk =

ωnkQnk with Qnk = M1/2
g · Qnk the eigenvectors of L̂k. It

will be assumed throughout that the Qnk are ordered in such
a way that the filled bands correspond to the indices n =
1, 2, ...NF , and the empty bands correspond to the indices
n = NF + 1, ...., with NF the number of filled bands.

When L̂k is Hermitian the spectral theorem guarantees that
its eigenfunctions Qnk form a complete set of the relevant
vector space. However, for general non-Hermitian operators,
e.g., when the operator has exceptional points [10,38], this
property does not necessarily hold. Here, we focus on the
class of “diagonalizable” operators L̂k with eigenfunctions
that span the entire space, even when L̂k is non-Hermitian.
For example, a L̂k that is a sufficiently weak perturbation of a
Hermitian operator must have that property.

The operator L̂k can thus be represented by a diagonal
matrix �k = [ωnkδm,n]m,n=1,2,... with respect to the basis de-
termined by Qnk. It is convenient to introduce a fixed (but oth-
erwise arbitrary) basis of the relevant vector space, e1, e2, . . .,
with elements independent of the wave vector. Let Sk be the
matrix with the coordinates of Qnk in the basis e1, e2, . . .

(specifically, the first column of Sk has the coordinates of Q1k
in the en basis, etc.). Then, L̂k is represented by the matrix
Sk · �k · S−1

k in the en basis. Evidently, the matrix Sk depends
on the considered eigenfunctions Qnk, which are normalized
arbitrarily (both in amplitude and phase). Thus, Sk is gauge
dependent.

Using the proposed matrix representation of L̂k it is proven
in Appendix B that C can be written as

C = 1

2π

∫∫
BZ

d2k ẑ · (∇k × Ak )

= 1

2π

∫∫
BZ

d2k (∂1A2 − ∂2A1), (10)

where by definition Ak = i Tr{S−1
k · ∂kSk · 1F } is the Berry

potential. Here, 1F = ∑
Re{ωnk}<ωgap

ûn ⊗ ûn represents a diag-
onal matrix (independent of the wave vector) with diagonal
elements identical to “1” for n = 1, 2, . . . NF (the filled bands)
and equal to zero otherwise. It should be noted that Ak is
generally complex valued. We will see below that C given by
Eq. (10) is necessarily a real number, and hence it is possible
to take Ak = Re{i Tr{S−1

k · ∂kSk · 1F }} without affecting the
value of C. It can be shown that the latter definition of Ak is
consistent with that of Ref. [14].

Clearly, when Sk is globally defined as a smooth periodic
function over BZ the Stokes theorem implies that the gap
Chern number vanishes. Hence, similar to the Hermitian case
[27,36], a nontrivial C indicates the impossibility of choosing
a globally defined smooth basis of eigenfunctions Qnk, and
implies that there is an obstruction to the application of the
Stokes theorem to the entire wave-vector domain.

As usual, the Berry potential is gauge dependent. For
example, a gauge transformation of the form Qnk →
αnkeiθnkQnk, with αnk > 0 an amplitude factor and θnk a phase
factor, leads to a different Sk, and thereby to a different Berry
potential. It is shown in Appendix A that for two generic
bases of eigenfunctions Qnk and Q′

nk the corresponding Berry
potentials are linked by

A′
k = Ak + ∂k(i ln gk ), (11)

with gk some smooth (single-valued) function of k (in the
domain wherein both Qnk and Q′

nk are smooth). In particular,
it follows that the Berry curvature Fk = ẑ · (∇k × Ak ) is
gauge invariant also for non-Hermitian operators.

In order to demonstrate that C is really an integer, we
mimic the arguments of Ref. [36]. For simplicity, it is sup-
posed that there is some globally defined smooth basis of
eigenvectors, Qnk, except at a finite number of singular points
(kS,i) in the BZ. Then, using the Stokes theorem in Eq. (10),
it follows that the gap Chern number can be written as a
line integral of the Berry potential around the singular points:
C = − 1

2π

∑
i

∮
Ci
Ak · dl. Here, Ci is a circle of infinitesimal

radius centered at kS,i. The contribution of each singular point
is necessarily an integer. The reason is that it is possible
to pick another gauge Q′

nk that is smooth in the vicinity
of kS,i. The corresponding Berry potential is linked to Ak
as in Eq. (11). The line contour of A′

k around a circle of
infinitesimal radius vanishes because A′

k is a smooth function.
Therefore,

∮
Ci
Ak · dl = ∮

Ci
∂k(i ln gk ) · dl = 2πn, for some

integer n. The second identity follows from the fact that the
logarithm is a multivalued function with the different branches
differing by i2πn (note that gk is continuous over Ci but ln gk
may not be). This confirms that C given by Eq. (8) is really a
topological integer for non-Hermitian systems.

The previous analysis assumes that the Hamiltonian is di-
agonalizable. However, the conclusion that C is an integer can
be readily extended to nondiagonalizable Hamiltonians that
are smooth deformations [L̂k = L̂k(α)] of any diagonalizable
(possibly non-Hermitian) Hamiltonian. Indeed, provided the
band gap is not closed by the transformation L̂k(α) the theory
of Sec. II B implies that ∂C/∂α = 0. Thus, the developed
theory guarantees that for a wide class of Hamiltonians with
exceptional points [10,38] C given by Eq. (8) must be an
integer number.

D. Systems described by linear differential equations

Let us now focus on problems where L̂k and Mg are
differential operators of the form L̂k = L̂k(r,−i∇ ) and Mg =
Mg(r) that act on functions defined over some volumetric
region of interest (denoted in the following by “cell”). In this
context, it is convenient to trace out the degrees of freedom
associated with the spatial coordinates. This can be done
considering a basis of kets |r〉 normalized such that 〈r|r′〉 =
δ(r − r′), so that 1 = ∫

d3r |r〉〈r|. Then, the trace operator
is of the form Tr{...} = ∫

d3r tr{〈r|...|r〉} where tr{...} is the
trace over degrees of freedom unrelated to the spatial coor-
dinates (e.g., associated with the polarization of the electro-
magnetic field). Introducing Gk(r, r′, ω) = 〈r|Gk|r′〉 it can be
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shown that Eq. (8) reduces to

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω

∫
cell

∫
cell

dV dV ′

× tr{[∂2L̂k · Gk(r, r′, ω)] · [∂1L̂k · ∂ωGk(r′, r, ω)]}. (12)

To obtain the above formula we used 〈r|∂iG−1
k |r′〉 =

−i δ(r − r′)∂iL̂k(r′,−i∇′) and 1 = ∫
d3r |r〉〈r|. The gradi-

ent operator of ∂1L̂k acts exclusively on the r′ coordinate
of ∂ωGk(r′, r), whereas the gradient operator of ∂2L̂k acts
on the r coordinate of Gk(r, r′). From Eq. (7) one has
(L̂k − Mgω)Gk = i1 and thereby Gk(r, r′, ω) is the Green’s
function of the system, i.e., the solution of

[L̂k(r,−i∇ ) − Mg(r)ω] · Gk(r, r′, ω) = i1δ(r − r′). (13)

Typically, Gk(r, r′, ω) is a finite dimension matrix and
thereby the tr{...} operator in Eq. (12) is the standard matrix
trace operator.

IV. APPLICATION TO PHOTONIC SYSTEMS

It is straightforward to apply the developed ideas to non-
Hermitian photonic platforms. Our analysis is focused on
lossy systems (all the materials are passive), but the formalism
can be extended in a trivial manner to systems with gain (e.g.,
active materials).

We follow the notations of our previous works [26,36], so
that the frequency-domain source-free Maxwell equations can
be written in the compact form as N̂ · f = ωM(r, ω) · f with
f = (E H)T the electromagnetic field (represented by a six-
vector), M(r, ω) is the material matrix, and N̂ is a differential
operator defined by

N̂ (−i∇ ) =
(

0 i∇ × 13×3

−i∇ × 13×3 0

)
, (14)

with 13×3 the identity matrix of dimension 3. For example,
for standard nonmagnetic media the material matrix is of the

form M =
(

ε0ε 0
0 μ013×3

)
. Without loss of generality, we focus

on the case wherein all the poles of the material matrix lie
either on the real axis or in the lower-half complex plane
(passive material). Similar to the lossless case [26,36,39–41],
it is shown in Appendix C that when the material matrix is a
meromorphic function of frequency the electrodynamics of a
dispersive lossy system can always be reduced to a standard
Schrödinger-type time-evolution problem with a state vector
of the form Q = (f Q(1) . . .)T . The first component of Q
determines the electromagnetic fields f ; the remaining com-
ponents (Q(α)) are related to the internal degrees of freedom
of the materials. The eigenmodes of the generalized problem
are the solutions of

L̂(r,−i∇ ) · Q = ωMg(r) · Q. (15)

The operators L̂ and Mg can be explicitly written as a func-
tion of the original material matrix, as detailed in Appendix C.
The topological classification of a photonic system is based on
the generalized eigenvalue problem (15).

A. Periodic systems

As a first example, we consider periodic (fully three-
dimensional) waveguide-type photonic crystals, such that
the material matrix is periodic in the coordinates x and y:
M(x + a1, y, z) = M(x, y, z) = M(x, y + a2, z). Furthermore,
the system is assumed to be closed along the z direction, e.g.,
it can be terminated with metallic plates placed at z = 0 and d
(bottom and top walls, respectively), or with any other bound-
ary conditions that force the waves to flow along directions
parallel to the xoy plane. There is a common misconception
that the Chern topological classification only applies to two-
dimensional systems. This is not correct. Generally speaking,
the space dimension can be arbitrary (greater than or equal
to 2), but the wave propagation should be constrained to
directions parallel to some plane (e.g., the xoy plane). In
these conditions, the electromagnetic modes can be classified
as Bloch waves labeled by a two-dimensional wave vector
k = kxx̂ + kyŷ, even if the space dimension exceeds 2. For a
three-dimensional waveguide-type photonic crystal the Bloch
waves correspond to waveguide modes that propagate in the
region delimited by the top and bottom walls.

Let Qnk(r) be the envelope of a generic (Bloch) waveguide
mode (Q = Qnkeik·r) associated with the eigenfrequency ωnk.
From Eq. (15) it readily follows that Qnk satisfies the general
Eq. (6) with

L̂k(r,−i∇ ) ≡ L̂(r,−i∇ + k). (16)

Even though L̂k is not periodic (it is typically linear in
k) the topological classification remains feasible [42]. In
particular, when the photonic system has a complete photonic
band gap in some vertical strip of the complex plane, the
corresponding gap Chern number can be evaluated using
Eq. (12) with the Green’s function Gk(r, r′, ω) defined as
in Eq. (13) and BZ the photonic crystal Brillouin zone. The
Green’s function Gk(r, r′, ω) satisfies periodic boundary con-
ditions over (the lateral walls of) a unit cell. In a band gap the
non-Hermitian waveguide does not support any guided mode
with a real-valued wave vector.

For media without spatial dispersion L̂k is linear in k, and
thereby the operators ∂iL̂k are independent of the wave vector
(and of the ∇ operator). Furthermore, in such conditions
∂iL̂k only acts on the electromagnetic degrees of freedom (f).
Therefore, the gap Chern number can be written in terms of
the “electromagnetic component,” Gk, of the Green’s function
Gk(r, r′, ω). Specifically, similar to our previous paper [26], it
can be shown that

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω

∫
cell

∫
cell

dV dV ′

× tr{∂2N̂ · Gk(r, r′, ω) · ∂1N̂ · ∂ωGk(r′, r, ω)}. (17)

In the above, ∂iN̂ (i=1,2) stands for the constant matrix(
0 −ûi × 13×3

ûi × 13×3 0

)
with û1 = x̂ and û2 = ŷ. The Green’s

function Gk corresponds to the 6×6 upper block of Gk, and
it can be shown that it satisfies

N̂ (−i∇ + k) · Gk(r, r′, ω)

= ωM(r, ω) · Gk(r, r′, ω) + i1δ(r − r′), (18)
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subject to periodic boundary conditions in a unit cell. Impor-
tantly, Gk only depends on the electromagnetic degrees of
freedom of the problem and on the dispersive material matrix.
Thus, the gap Chern number can be found directly from
the photonic Green’s function [26], even for non-Hermitian
systems. In Appendix D, it is shown that Eq. (17) agrees with
the result of Ref. [26].

In summary, the theory of Ref. [26] was extended to non-
Hermitian systems. The final result is unmodified: the gap
Chern number is expressed exactly by the same formulas as
in the Hermitian case. Nevertheless, different from the case of
Hermitian systems [26] the domain of integration in Eq. (17)
(over a line parallel to the imaginary-frequency axis) cannot
be reduced to a semistraight line in the upper-half frequency
plane because the presence of loss breaks the mirror symmetry
with respect to the real-frequency axis.

The gap Chern number C includes the contribution of all
bands below the gap, including the negative-frequency bands.
For completeness, we note that the topological charge associ-
ated with only the positive-frequency bands is given by C+ =

1
(2π )2

∫∫
BZ d2k

∫
cell

∫
cell dV dV ′[

∫ ωgap+i∞
ωgap−i∞ dω − ∫ 0+i∞

0−i∞ dω]{...},
where the integrand (i.e., the term inside brackets) is the same
as in Eq. (17). Possible poles on the imaginary-frequency
axis should be avoided by deforming slightly the integration
contour so that it is contained in the semiplane Re{ω} > 0.
The total topological charge of the negative-frequency bands
may be nonzero [26]. This happens, for example, when
the nonreciprocal response is so strong in the static limit
that it leads to an exchange of topological charge between
the positive- and negative-frequency bands [43,44]. Thus,
in general, the two Chern numbers are different: C �= C+.
The most relevant quantity is C, not C+: the bulk-edge
correspondence links the gap Chern number with the net
number of unidirectional edge states, with the gap Chern
number understood as the sum of the Chern numbers of all
the individual bands below the gap [31].

B. Continuum case

In the continuum case, the operators L̂ and Mg are inde-
pendent of all the spatial coordinates. Hence, for plane wave
type solutions (Q = Qnkeik·r) Eq. (15) reduces to the gener-
alized matrix eigenvalue problem, L̂(k) · Qnk = ωMg · Qnk,
with Qnk a constant vector. The topological classification is
done using L̂k = L̂(k) directly in Eq. (8) and taking the set
BZ as the entire wave-vector space:

C = −1

(2π )2

∫∫
d2k

∫ ωgap+i∞

ωgap−i∞
dω Tr{∂1L̂k · Gk · ∂2L̂k · ∂ωGk},

(19)

where Gk(ω) = i(L̂k − Mgω)−1 is a matrix.
As already discussed in Sec. II, in order that C is really

topological it is necessary to enforce a high-frequency spatial
cutoff in the electromagnetic response [26,36]. It can be
checked that C can be written in terms of the photonic Green’s
function Gk(ω) = i[N̂ (k) − ωM(k, ω)]−1 as in Eq. (34) of
Ref. [26], which thereby remains valid for non-Hermitian
photonic systems. Furthermore, for a generic electromagnetic
continuum with a high-frequency cutoff the Chern number can

be computed using Eq. (41) of Ref. [26], even in the presence
of material loss. In particular, Eq. (5) of Sec. II [Eq. (43) of
Ref. [26]] gives the gap Chern numbers of a non-Hermitian
electric gyrotropic material.

V. EDGE STATES

In standard Hermitian topological systems, the “bulk-edge
correspondence” establishes a precise link between the Chern
numbers of two topological materials and the number of edge
states supported by a material interface [7,10,31,37,45–47].
An illuminating proof of the bulk-edge correspondence was
recently obtained relying on a link between topological pho-
tonics and fluctuation electrodynamics [31]. Remarkably, it
turns out that the thermal (quantum) fluctuation induced light
in a closed topological cavity has an angular momentum
spectral density that is precisely quantized. The angular mo-
mentum quantum is the photonic Chern number of the bulk
region [31,48]. The nontrivial angular momentum of thermal
light is due to the circulation of electromagnetic energy in
closed orbits. This effect may occur in nonreciprocal photonic
systems in thermal equilibrium with a large reservoir [49–51].
The proof of the bulk-edge correspondence in Ref. [31] relies
on the assumption that the material loss is vanishingly small,
so that the system dynamics is effectively Hermitian.

Recently, there has been some controversy about the ap-
plication of the bulk-edge correspondence to non-Hermitian
systems [10,15–17,19]. Several papers have underlined that
the spectrum of a non-Hermitian system with periodic-type
boundaries may differ dramatically from the spectrum of
the same system with opaque-type boundaries (typically re-
ferred to as “open” boundaries in the condensed-matter lit-
erature), i.e., with boundaries that are impenetrable by the
wave [10,15,16]. Furthermore, some non-Hermitian systems
terminated with opaque-type boundaries can have all the states
anomalously localized at the boundary, and thereby the closed
system states are apparently disconnected from the (Bloch)
extended states of the associated periodic system. This prop-
erty is known as the “non-Hermitian skin effect” [10,16]. To
overcome this problem, a non-Bloch bulk-boundary corre-
spondence was recently developed in Refs. [16–18], relying
on topological invariants defined in a generalized Brillouin
zone with a complex-valued wave vector.

In contrast, here we show that—consistent with the
standard bulk-edge correspondence—the spectrum of non-
Hermitian Chern-type topological insulators described by
linear differential equations as in Sec. III D with L̂k as in
Eq. (16) (e.g., lossy photonic crystals) becomes gapless when
the topological material is surrounded by opaque-type walls.

To begin with, we note that similar to our previous paper
[31] the gap Chern number integral in Eq. (12) can be written
in terms of the Green’s function G of a cavity that encom-
passes many unit cells of the photonic crystal as follows (see
Appendix D for the details and for the exact definition of G):

C = lim
Atot→∞

1

Atot

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′

× (tr{[∂2L̂ · G(r, r′, ω)] · [∂1L̂ · ∂ωG(r′, r, ω)]}). (20)
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FIG. 4. Dispersion of the complex edge states supported by an interface of a gyrotropic material and a perfect electric conductor. (a) Real
part of the edge wave oscillation frequency as a function of kx . The figure only shows the edge state dispersions in the band gaps. Dashed
blue lines: � = 0 (lossless gyrotropic medium). Dot-dashed green lines: � = 0.5ωp (lossy gyrotropic medium). The solid black lines represent
the dispersion (ω′ vs kx) of the lossy gyrotropic bulk medium; the gray dashed horizontal lines delimit the corresponding band gaps. (b)
Imaginary part of the edge wave oscillation frequencies as a function of kx for the case � = 0.5ωp. The parameters of the gyrotropic material
are ω0 = 0.8ωp and kmax = 10ωp/c.

Here, Atot is the area of the cavity cross section parallel to the
xoy plane, which should be large enough so that the discrete
spectrum of the cavity approaches the continuum result. The
Green’s function G satisfies periodic boundary conditions at
the cavity walls. The volume integrals are over the entire
cavity domain.

The key property is that the integral in Eq. (20) depends
critically on the boundary conditions imposed on the cavity
walls [31]. Specifically, in Appendix E it is demonstrated
that when the Green’s function satisfies opaque-type boundary
conditions (e.g., for a perfect electric conductor boundary) the
value of C calculated with Eq. (20) vanishes. At first sight this
result is at odds with the fact that Eq. (20) gives the gap Chern
number when the boundary conditions are taken as periodic.
Indeed, in a band gap (i.e., in a vertical strip of the complex-
frequency plane wherein the bulk region does not support
photonic states) the Green’s function calculated for source
(r′) and observation (r) points interior to the cavity must be
nearly independent of the boundary conditions imposed on the
cavity walls. Note that the Green’s function G(r, r′, ω) must
decay exponentially with |r − r′| in the bulk region due to the
absence of states with a real-valued wave vector.

The only sensible explanation for the critical dependence
of the integral (20) on the boundary conditions (periodic vs
opaque) is that the spectrum becomes gapless for opaque-type
boundaries, i.e., the opaque boundaries must close the band
gap and lead to the emergence of edge states at the cavity
walls [31]. This property suggests that the standard bulk-edge
correspondence holds for non-Hermitian systems described
by linear differential equations. A more detailed discussion
of the bulk-edge correspondence in non-Hermitian systems is
left for future work.

In the following, we illustrate the application of the bulk-
edge correspondence to an interface (y = 0) between a gy-
rotropic material with ω0 = 0.8ωp (in the semispace y > 0)
and a perfect electric conductor. The spatial cutoff of the
gyrotropic material is taken equal to kmax = 10ωp/c and the
edge states are computed using the formalism of Ref. [37].

Figure 4 represents the edge state dispersion ω = ω(kx ) for kx

real valued and topological materials with collision frequency
� = 0.5ωp or 0. For simplicity, only the positive-frequency
modes (with ω′ > 0) are shown. Figure 4(a) depicts the real
part of the edge state natural frequency [ω′ = ω′(kx )] while
Fig. 4(b) shows the imaginary part of the natural frequency
[ω′′ = ω′′(kx )] for � = 0.5ωp. For comparison, the dispersion
of the bulk states of the gyrotropic material with � = 0.5ωp

is also represented in Fig. 4(a) (solid black lines). Consistent
with the bulk-edge correspondence principle, the edge state
dispersion [dot-dashed green lines in Fig. 4(a)] spans entirely
the two positive-frequency band gaps.

Figure 5 shows the locus of the edge states’ natural fre-
quencies [ω = ω(kx ) with kx real valued] in the complex plane
(dashed green lines). This alternative representation further
highlights that the edge states span the entire gap (i.e., the
vertical strips of the complex plane with no bulk modes)
and finally merge with the locus of the bulk-material natural

0.0 0.5 1.0 1.5 2.0
0.8

0.6

0.4

0.2

0.0

0.2

p

p

FIG. 5. Locus of the edge states (dashed green lines) and of
the bulk modes (black solid lines) of the gyrotropic material in the
complex-frequency plane for the example of Fig. 4 with � = 0.5ωp.
The figure only shows the positive-frequency part of the spectrum.
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frequencies (black curves) in the complex plane. Note that,
similar to the example of Sec. II, the low-frequency gap has
topological number −1, while the high-frequency gap has
topological number +1. Thus, the bulk-edge correspondence
predicts correctly the number of edge states in the complex-
frequency gaps.

VI. SUMMARY

We developed a gauge-independent Green’s-function for-
malism to calculate the topological invariants of non-
Hermitian (fermionic or bosonic) systems, with a focus on
photonic platforms. Our analysis shows that the standard
Green’s-function methods developed for topological Hermi-
tian systems [26–30] can be extended in a straightforward
manner to non-Hermitian platforms, and makes clear that the
band gaps in the complex-frequency plane must be understood
as the regions wherein the system Green’s function is analytic
(e.g., vertical strips of the complex plane that separate the
complex eigenfrequencies into two disjoint sets). The Chern
number may be found by integrating the Green’s function
along a curve lying in the band gap that separates the relevant
bands in the complex-frequency plane. Furthermore, it was
shown that, similar to the Hermitian case, the Chern number
integral can be expressed in terms of the Green’s function
of a large cavity, and that its value is highly sensitive to the
boundary conditions (periodic vs opaque) imposed on the
cavity walls. This property implies that the spectrum of a large
topological cavity terminated with opaque-type walls must be
gapless. Thus, our analysis suggests that the standard bulk-
edge correspondence remains valid in non-Hermitian systems

described by linear differential equations, i.e., that the number
of edge states can be linked to the Chern invariant.

Using the developed theory we characterized the topolog-
ical phases of electromagnetic continua. In particular, it was
shown that magnetized electric plasmas retain their topologi-
cal properties even in the presence of strong material loss, and
that topological edge states with complex-valued frequencies
emerge at the interface of the magnetized plasma and a metal
wall.

To conclude, it is relevant to note that while in the Hermi-
tian case the photonic Chern number can be understood as
the quantum of the fluctuation-induced angular momentum
[31,48] it is not obvious how to generalize such a result to
topological platforms with strong material loss. The main ob-
stacle is that, different from the Hermitian case [26], for lossy
systems the Chern number integral (17) cannot be expressed
as an integral over a semi-infinite straight line contained in the
upper-half frequency plane. Thereby, it does not seem possible
to link the thermal (quantum) fluctuation induced angular
momentum of a topological non-Hermitian cavity with the
Chern number of the bulk region. The physical meaning of
the Chern number of photonic platforms with strong material
absorption remains thus an open problem.
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APPENDIX A: EFFECT OF PERTURBATIONS ON THE GAP CHERN NUMBER

In this Appendix, we calculate ∂αC [Eq. (9) of the main text] with the gap Chern number given by Eq. (8) and α some
parameter associated with a deformation of the system Hamiltonian (∂α = ∂/∂α). Our analysis extends a result reported in
Ref. [27] (p. 166) to non-Hermitian systems.

To begin with, we note that ∂ωGk = −Gk · ∂ωG−1
k · Gk and hence Eq. (8) may be rewritten as

C = −1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω Tr

{
Gk · ∂ωG−1

k · Gk · ∂1G−1
k · Gk · ∂2G−1

k

}
. (A1)

By integrating by parts in frequency Eq. (8), it is seen that exchanging the indices “1” and “2” flips the sign of the integral.
From this property, it follows that the Chern number is given by the symmetrized formula

C = −1

(2π )2

1

6

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω εi jl Tr{G · ∂iG−1 · G · ∂ jG−1 · G · ∂lG−1}. (A2)

Here, εi jl is the Levi-Civita symbol and the summation over i, j, l ∈ {0, 1, 2} is implicit. Furthermore, by definition ∂0 = ∂ω and
to clean up the notations we dropped the index k.

Let us now suppose that the Hamiltonian varies continuously with some generic parameter α, so that the operator G = G(α),
and thereby also the Chern number, can be regarded as functions of α. The gap frequency ωgap is fixed and should lie in a
complete band gap (vertical strip of the complex plane with no eigenfrequencies), independent of the value of α. From ∂αG−1 =
−G−1 · ∂αG · G−1 we find that

∂α (G · ∂iG−1) = −G · ∂iG−1∂αG · G−1 − ∂α∂iG · G−1. (A3)
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Using the cyclic property of the trace, it is straightforward to show that the derivative with respect to α of a generic term of
the integrand of Eq. (A2) is

∂αTr{(G · ∂iG−1) · (G · ∂ jG−1) · (G · ∂lG−1)} = −
∑

(μ,ν,o)=(i, j,l ),
( j,l,i),(l,i, j)

Tr{(∂αG · G−1) · (G · ∂μG−1) · (G · ∂νG−1) · (G · ∂oG−1)}

−
∑

(μ,ν,o)=(i, j,l ),
( j,l,i),(l,i, j)

Tr{∂μ∂αG · G−1 · (G · ∂νG−1) · (G · ∂oG−1)}. (A4)

The sums are over three terms: (i, j, l ), ( j, l, i), and (l, i, j). From here it follows that

∂αTr{(G · ∂iG−1) · (G · ∂ jG−1) · (G · ∂lG−1)} = −
∑

(μ,ν,o)=(i, j,l ),
( j,l,i),(l,i, j)

∂μTr{(∂αG · G−1) · (G · ∂νG−1) · (G · ∂oG−1)}

+
∑

(μ,ν,o)=(i, j,l ),
( j,l,i),(l,i, j)

Tr{(∂αG · G−1) · ∂μ[(G · ∂νG−1) · (G · ∂oG−1)]}. (A5)

Next, we differentiate both members of Eq. (A2) with respect to α and use the above result. Noting that∑
i, j,l εi jl

∑
(μ,ν,o)=(i, j,l ),
( j,l,i),(l,i, j)

aμνo = 3
∑

i, j,l εi jl ai jl for arbitrary coefficients ai jl , we are left with (the summation over all i, j, l =
0, 1, 2 is implicit)

∂αC = −1

(2π )2

1

2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω εi jl (−∂iTr{∂αG · ∂ jG−1 · G · ∂lG−1}+Tr{(∂αG · G−1) · ∂i[(G · ∂ jG−1) · (G · ∂lG−1)]})

(A6)

Now, we observe that

∂i[(G · ∂ jG−1) · (G · ∂lG−1)] = (∂iG · ∂ jG−1 · G + G · ∂ jG−1∂iG) · ∂lG−1 + (G · ∂i∂ jG−1 · G · ∂lG−1) + (G · ∂ jG−1 · G · ∂i∂lG−1)
(A7)

Using G · ∂ jG−1 · ∂iG · G−1 = ∂ jG · ∂iG−1 we may further write

∂i[(G · ∂ jG−1) · (G · ∂lG−1)] = (∂iG · ∂ jG−1 + ∂ jG · ∂iG−1) · G · ∂lG−1 + (G · ∂i∂ jG−1 · G · ∂lG−1) + (G · ∂ jG−1 · G · ∂i∂lG−1)
(A8)

The first and second terms on the right-hand side are invariant under a permutation of the indices i and j, whereas the third term
is invariant under a permutation of the indices i and l . These properties imply that

∑
i, j,l εi jl∂i[(G · ∂ jG−1) · (G · ∂lG−1)] = 0,

and therefore the second term in the integrand of Eq. (A6) vanishes. This observation yields (restoring the k index) Eq. (9) of
the main text, which is the desired result.

APPENDIX B: GAP CHERN NUMBER INTEGRAL

In the following, we derive Eq. (10) of the main text relying on the matrix representation L̂k → Sk · �k · S−1
k of the

operator L̂k.
To begin with, we note that from L̂k = M−1/2

g L̂kM−1/2
g the Green’s-function operator can be written as Gk = M−1/2

g G̃kM−1/2
g

with G̃k = i(L̂k − ω1)−1. Taking into account that Mg is independent of the wave vector and using the cyclic property of the
trace operator (Tr{A · B} = Tr{B · A}) it can be easily checked that Eq. (8) still holds with G̃k in the place of Gk. Clearly,
G̃k = i(L̂k − ω1)−1 is represented by the matrix G̃k → i Sk · (�k − ω1)−1 · S−1

k . Substituting this result into Eq. (8) (with G̃k in
the place of Gk) and noting that (�k − ω1)−1 is a diagonal matrix it is found that

C = −1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω Tr

{
S−1

k · ∂1G̃−1
k · Sk · (�k − 1ω)−1 · S−1

k · ∂2G̃−1
k · Sk · (�k − 1ω)−2

}
. (B1)

Straightforward calculations show that iS−1
k · ∂ jG̃−1

k · Sk = [S−1
k ∂ jSk,�k] + ∂ j�k with [A, B] = A · B − B · A the commuta-

tor of two operators. Hence, the gap Chern number may be written as

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dωTr

{([
S−1

k · ∂1Sk,�k
] + ∂1�k

) · (�k − 1ω)−1 · ([
S−1

k · ∂2Sk,�k
] + ∂2�k

) · (�k − 1ω)−2
}

(B2)

The operator inside the trace can be written as a sum of four terms. The three terms that depend explicitly on
∂ j�k vanish. For example, the term Tr{∂1�k · (�k − 1ω)−1 · [S−1

k · ∂2Sk,�k] · (�k − 1ω)−2} can be rewritten as [using
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the cyclic property of the trace and noting that the matrices ∂ j�k and (�k − 1ω)−m are diagonal and hence com-
mute] Tr{∂1�k · [S−1

k · ∂2Sk,�k] · (�k − 1ω)−3}. The only factor that depends on frequency is (�k − 1ω)−3. The integral∫ ωgap+i∞
ωgap−i∞ dω (�k − 1ω)−3 vanishes because the residues of all poles vanish. Thus, the considered term does not contribute to

the Chern number. Hence, we are left with

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω Tr

{[
S−1

k · ∂1Sk,�k
] · (�k − 1ω)−1 · [

S−1
k · ∂2Sk,�k

] · (�k − 1ω)−2
}
. (B3)

To proceed further we use the auxiliary result [26]∫ ωgap+i∞

ωgap−i∞
dω

1

(ω − ωm)2

1

ω − ωn
= 2π i

(ωm − ωn)2 sgn(ωgap − Re{ωn}), (B4)

which holds when ωm and ωn are on different semiplanes relative to the vertical line Re{ω} = ωgap (e.g., Re{ωm} > ωgap

and Re{ωn} < ωgap). The same integral vanishes identically when ωm and ωn lie on the same semiplane. Writing �k =∑
n ωnkûn ⊗ ûn with ûn a vector with the n-th element identical to “1” and with all the other elements identical to zero, it is

found that

C = 1

(2π )2

∫∫
BZ

d2k
∫ ωgap+i∞

ωgap−i∞
dω Tr

{[
S−1

k · ∂1Sk,�k
] ·

∑
n

−1

ω − ωnk
ûn ⊗ ûn · [

S−1
k · ∂2Sk,�k

] ·
∑

m

1

(ω − ωmk )2 ûm ⊗ ûm

}

= 1

2π

∫∫
BZ

d2k Tr

{
i

∑
n∈F,m∈E

−1

(ωnk − ωmk )2

[
S−1

k · ∂1Sk,�k
] · ûn ⊗ ûn · [

S−1
k · ∂2Sk,�k

] · ûm ⊗ ûm

}

+ Tr

{
i

∑
n∈E ,m∈F

+1

(ωnk − ωmk )2

[
S−1

k · ∂1Sk,�k
] · ûn ⊗ ûn · [

S−1
k · ∂2Sk,�k

] · ûm ⊗ ûm

}
(B5)

In the above E and F represent the sets of “empty” and “filled” bands, respectively. After some simplifications we may simply
write

C = 1

2π

∫∫
BZ

d2k i Tr
{
S−1

k · ∂1Sk · 1F · S−1
k · ∂2Sk · 1E − S−1

k · ∂1Sk · 1E · S−1
k · ∂2Sk · 1F

}
, (B6)

where 1F = ∑
n∈F ûn ⊗ ûn and 1E = ∑

n∈E ûn ⊗ ûn = 1 − 1F are diagonal matrices. Specifically, since the eigenvectors are or-
dered so that the filled bands are associated with the indices n = 1, 2, . . . NF , the matrix 1F has diagonal elements identical to “1”
for n = 1, 2, . . . NF and identical to “0” otherwise. Note that 1E and 1F are independent of the wave vector. The term associated
with the trace can be written in a more compact manner as Tr{...} = Tr{S−1

k · ∂1Sk · 1F · S−1
k · ∂2Sk · 1E − 1 ↔ 2} where 1 ↔ 2

represents the first term with the indices “1” and “2” exchanged. Noting that Tr{S−1
k · ∂1Sk · 1F · S−1

k · ∂2Sk · 1F − 1 ↔ 2} = 0
one finds that

C = 1

2π

∫∫
BZ

d2k i Tr
{
S−1

k · ∂1Sk · 1F · S−1
k · ∂2Sk − 1 ↔ 2

}
. (B7)

Using the cyclic properties of the trace and ∂2S−1
k = −S−1

k · ∂2Sk · S−1
k , one gets Eq. (10) of the main text. Notice that C is

fully independent of the eigenvalues (ωnk) of the operator: it only depends on the matrix (Sk) that represents the eigenvectors on
a fixed basis.

In the rest of this Appendix, we discuss how a gauge transformation affects the Berry potential Ak = i Tr{S−1
k · ∂kSk · 1F }.

Specifically, consider two generic bases of eigenfunctions Qnk and Q′
nk, with the elements n = 1, 2, . . . , NF generating the

eigenspace of filled bands, and the remaining elements generating the eigenspace of empty bands. Then, the coordinates of
Q′

nk in the Qnk basis are determined by a matrix of the form sFk + sEk with sFk = 1F · sFk · 1F and sEk = 1E · sEk · 1E . The
only nontrivial elements of the matrix [sFk]m,n are those with m, n = 1, 2, . . . , NF ; this property implies that (sFk + sEk )−1 =
s−1

Fk + s−1
Ek. For nondegenerate eigenvalues the matrix sFk + sEk is typically diagonal. From here, it follows that the matrix S′

k
with the coordinates of Q′

nk in the basis e1, e2, . . . is S′
k = Sk(sEk + sFk ). Therefore, the Berry potential is transformed as

A′
k = i Tr

{(
s−1

Ek + s−1
Fk

) · S−1
k · ∂k[Sk(sEk + sFk )] · 1F

}
. (B8)

Noting that sEk · 1F = 0 = s−1
Ek · 1F it is readily found that

A′
k = Ak + i Tr

{
s−1

Fk · ∂ksFk
}
. (B9)

Using the general property Tr{s−1
Fk · ∂ksFk} = ∂k ln det sFk (this result can be readily proven when sFk is a diagonal matrix,

i.e., in the case of nondegenerate eigenfunctions; the formula holds true even if sFk is not diagonal) it is found that

A′
k = Ak + ∂k(i ln det sFk ). (B10)

This yields Eq. (11) of the main text with gk = det sFk.
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APPENDIX C: ELECTRODYNAMICS OF NON-HERMITIAN DISPERSIVE SYSTEMS

In this Appendix, it is shown that the electrodynamics of generic non-Hermitian dispersive systems can be reformulated as a
Schrödinger-type time-evolution problem.

We consider generic bianisotropic materials with a frequency domain response determined by a 6 × 6 material matrix M that
links the electromagnetic field vectors f = (E H)T and g = (D B)T as follows:

g(r, ω) = M(r, ω) · f (r, ω). (C1)

It is assumed that M is a meromorphic function in the complex plane, so that it has a partial-fraction decomposition of the form

M(r, ω) = M∞ +
∑

α

(ResM)α
ω − ωp,α

. (C2)

Here, M∞ = limω→∞M(ω) gives the asymptotic high-frequency response of the material, ωp,α are the (complex-valued) poles
of M all in the lower-half plane for passive systems, and (ResM)α = limω→ωp,α M(r, ω)(ω − ωp,α ) gives the residue of the ωp,α

pole. The reality of the electromagnetic fields imposes the additional constraint M(ω) = M∗(−ω∗). Let us introduce the auxiliary
variables

Q(α)(r, ω) = (sαωp,α )1/2

(ω − ωp,α )
Aα · f (r, ω), (C3)

with sα = sgn(Re{ωp,α}) and Aα = [−sα (ResM)α]1/2. Then, similar to the lossless case [26,36,39], it is possible to show that
the time evolution of the state vector Q = (f Q(1) ... Q(α) ...)T is determined by the differential equation

L̂ · Q(r, t ) = i
∂

∂t
Mg · Q(r, t ) + ijg(r, t ), (C4)

with

L̂ =

⎛
⎜⎜⎜⎜⎝

N̂ + ∑
α sαA2

α (s1ωp,1)1/2A1 (s2ωp,2)1/2A2 ...

(s1ωp,1)1/2A1 ωp,11 0 ...

(s2ωp,2)1/2A2 0 ωp,21 ...

... ... ... ...

⎞
⎟⎟⎟⎟⎠, Mg =

⎛
⎜⎜⎝

M∞ 0 0 ...

0 1 0 ...

0 0 1 ...

... ... ... ...

⎞
⎟⎟⎠. (C5)

In the above, jg = (j 0 0 ...)T is a generalized current written in terms of the electric and magnetic current densities, j =
(je jm)T . The differential operator N̂ is defined as in the main text [Eq. (14)]. For simplicity, the same symbols are used to denote
the frequency domain and the time domain fields.

APPENDIX D: CHERN NUMBER AS A FUNCTION OF THE GREEN’S FUNCTION OF A LARGE CAVITY

In this Appendix, we prove that, analogous to the case of Hermitian systems [26], the Chern number can be computed from
the Green’s function of a large cavity satisfying periodic boundary conditions. Specifically, we will show that the gap Chern
number in Eq. (12) with L̂k given by Eq. (16) can be written as

C = lim
Atot→∞

1

Atot

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′(tr{[∂2L̂ · G(r, r′, ω)] · [∂1L̂ · ∂ωG(r′, r, ω)]}). (D1)

Here, G stands for the Green’s function that satisfies

L̂(r,−i∇ ) · G(r, r′, ω) = ωMg(r) · G(r, r′, ω) + i1δ(r − r′) (D2)

in a domain that encompasses many (let us say Nx × Ny) unit cells of the photonic crystal (referred to from here on as the
“cavity”) and Atot is the area of the domain cross-section parallel to the xoy plane. The function G satisfies periodic boundary
conditions on the boundaries of the cavity. Similar to Eq. (12), the operator ∂1L̂ (∂2L̂) acts on the primed (unprimed) coordinates,
and by definition

∂ j L̂ ≡ 1

i
[x j, L̂] = 1

i
[x jL̂(−i∇ ) − L̂(−i∇ )x j], j = 1, 2, (D3)

It is also possible to write ∂iL̂ = ∂iL̂k=0 with L̂k defined as in Eq. (16).
To begin with, let us introduce δp(r) = ∑

rI
δ(r − rI) with rI = i1a1x̂ + i2a2ŷ a generic lattice point inside the relevant cavity

(i1 = 0, . . . , Nx − 1, i2 = 0, . . . , Ny − 1) and δ understood as the δ function for the large cavity. Clearly, δp(r) is a periodic
function and its irreducible domain is coincident with the unit cell of the photonic crystal. It is straightforward to verify
that 1

NxNy

∑
kJ

δp(r)eikJ·r = δ(r) where kJ = j1
2π

Nxa1
x̂ + j2

2π
Nxa2

ŷ ( j1 = 0, . . . , Nx − 1, j2 = 0, . . . , Ny − 1). Using this identity
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we see that G(r, r′) = 1
NxNy

∑
kJ
G̃kJ (r, r′) where G̃kJ satisfies the same differential equation as G but with δp(r − r′)eikJ·(r−r′ )

replacing δ(r − r′). By comparison with Eq. (13), it follows that G̃kJ = GkJ eikJ·(r−r′ ). Hence, Eq. (D1) is equivalent to (note that
e−ik·r′

∂1L̂eik·r′ = ∂1L̂k and e−ik·r∂2L̂eik·r = ∂2L̂k)

C = lim
Atot→∞

1

Atot

1

(NxNy)2

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′ ∑

kJ,kJ′

ei(kJ−kJ′ )·(r−r′ )(tr
{[

∂2L̂k · GkJ (r, r′, ω)
] · [

∂1L̂k · ∂ωGkJ′ (r
′, r, ω)

]})
(D4)

The trace term is periodic over the (space domain) unit cell. Thus, after integration over the entire cavity only the terms with
kJ = kJ′ survive. Therefore, after reducing the integration to a single unit cell we are left with

C = lim
Atot→∞

1

Atot

∑
kJ

∫ ωgap+i∞

ωgap−i∞
dω

∫
cell

∫
cell

dV dV ′(tr
{[

∂2L̂k · GkJ (r, r′, ω)
] · [

∂1L̂k · ∂ωGkJ (r′, r, ω)
]})

(D5)

For a large number of cells one can use 1
Atot

∑
kJ

→ 1
(2π )2

∫∫
BZ d2k, and with this substitution the above formula yields Eq. (12).

This proves the equivalence between Eqs. (D1) and (12).
For local electromagnetic media we know that ∂iL̂k only acts on the electromagnetic degrees of freedom: ∂iL̂ → ∂iN̂ . Hence,

the term tr{...} in Eq. (D1) can be replaced by tr{∂2N̂ · G(r, r′, ω) · ∂1N̂ · ∂ωG(r′, r, ω)} with G the photonic Green’s function that
satisfies N̂ (−i∇ ) · G(r, r′, ω) = ωM(r, ω) · G(r, r′, ω) + i1δ(r − r′) and periodic boundary conditions over the cavity walls.
Hence, we recover Eq. (29) of Ref. [26], which is a particular case of the more general Eq. (D1).

APPENDIX E: CHERN NUMBER FOR OPAQUE-TYPE BOUNDARIES

In this Appendix, we show that the Chern number calculated using Eq. (D1) depends critically on the boundary conditions
at the cavity walls. Specifically, analogous to Ref. [31], we prove that C = 0 when the Green’s function satisfies opaque-type
boundary conditions on the cavity walls.

As a starting point we note that the solution of Eq. (D2) also satisfies

G(r′, r, ω) · [L̂(r,+i
←−∇ ) − Mg(r)ω] = i1δ(r − r′). (E1)

The arrow over the gradient operator indicates that it acts on the left, i.e., on the r coordinate of the Green’s function. To obtain
this result, we introduce a Gc such that

{[L̂(r,−i∇ )]
† − M†

g(r)ω∗} · Gc(r, r′, ω∗) = i1δ(r − r′). (E2)

Here, the dagger represents the adjoint operator with respect to the canonical inner product, 〈〉can. Calculating
〈Gc(r, r′′, ω∗) · û j |[L̂(r,−i∇ ) − Mg(r)ω]|G(r, r′, ω) · ûi〉can, one may readily show that G(r, r′, ω) = −Gc(r′, r, ω∗)†. Trans-
posing and conjugating Eq. (E2) and using G(r, r′, ω) = −Gc(r′, r, ω∗)† one obtains Eq. (E1).

Next, we note that from Eq. (D3) the Chern number (D1) can be generally expressed as

C = lim
Atot→∞

−1

Atot
Re

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′tr{[x2L̂(−i∇ ) · G(r, r′, ω)] · [x′

1L̂(−i∇′) · ∂ωG(r′, r, ω)]}

+ tr{[L̂(−i∇ ) · x2G(r, r′, ω)] · [L̂(−i∇′) · x′
1∂ωG(r′, r, ω)]}

− tr{[L̂(−i∇ )x2 · G(r, r′, ω)] · [x′
1L̂(−i∇′) · ∂ωG(r′, r, ω)]}

− tr{[x2L̂(−i∇ ) · G(r, r′, ω)] · [L̂(−i∇′)x′
1 · ∂ωG(r′, r, ω)]}. (E3)

We would like now to integrate by parts some of the terms so that the operator L̂ can act directly on the Green’s function. For
example, the fourth term integrated by parts in r′ gives∫∫

dV dV ′tr{[x2L̂(−i∇ ) · G(r, r′, ω)] · [L̂(−i∇′)x′
1 · ∂ωG(r′, r, ω)]}

=
∫∫

dV dV ′tr{[x2L̂(−i∇ ) · G(r, r′, ω) · L̂(+i
←
∇′)] · [x′

1 · ∂ωG(r′, r, ω)]}. (E4)

The crucial point—discussed in detail in Ref. [31] for the case of local electromagnetic media—is that the integration by
parts is only possible for certain opaque-type boundary conditions. Specifically, if a certain state vector Q satisfies the relevant
boundary conditions then the integration by parts requires that xiQ satisfies the same boundary conditions [31]. Clearly, periodic
boundary conditions are not “opaque,” while, for example, a perfect electric conductor boundary is opaque.
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For opaque-type boundary conditions Eq. (E3) yields

C = lim
Atot→∞

−1

Atot
Re

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′x2x′

1(tr{[L̂(−i∇ ) · G(r, r′, ω)] · ∂ω[L̂(−i∇′) · G(r′, r, ω)]}

+ tr{[G(r, r′, ω) · L̂(+i
←
∇′)] · ∂ω[G(r′, r, ω) · L̂(+i

←
∇ )]}

− tr{[G(r, r′, ω)] · ∂ω[L̂(−i∇′) · G(r′, r, ω) · L̂(+i
←
∇ )]}

− tr{[L̂(−i∇ ) · G(r, r′, ω) · L̂(+i
←
∇′)] · ∂ωG(r′, r, ω)}). (E5)

Now, we can use Eqs. (D2) and (E1) to get rid of the L̂ operator. It can be easily checked that the δ-function terms either vanish
or cancel out after integration in ω. Hence, we are left with

C = lim
Atot→∞

−1

Atot
Re

∫ ωgap+i∞

ωgap−i∞
dω

∫∫
dV dV ′x2x′

1(2tr{[ωMg(r)G(r, r′, ω)] · ∂ω[ωMg(r′)G(r′, r, ω)]}

− tr{[Mg(r)G(r, r′, ω)] · ∂ω[ω2Mg(r′)G(r′, r, ω)]}−tr{[ω2Mg(r)G(r, r′, ω)] · ∂ωMg(r′)G(r′, r, ω)}) (E6)

Straightforward simplifications show that the integrand vanishes. Therefore, it follows that when the Green’s function satisfies
opaque-type boundary conditions then C = 0.
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