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Plasmon-polaron of the topological metallic surface states
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We report a plasmon-polaron mode of a two-dimensional electron gas occupying surface states of a three-
dimensional topological crystal. This low-frequency, acoustic plasmon mode splits off from the conventional
spin-plasmon mode as a result of strong interactions of the surface electrons with bulk phonons. We show that
like in the case of the conventional spin plasmon, the scattering of this mode is strongly suppressed in some
regions of the phase space. This signature of topological protection leads to an umklapp-free mode dispersion at
the Brillouin zone boundary. Such a plasmon-polaron mode has indeed been recently observed in the topological
metal Bi2Se3.
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Topological insulators (TIs) are systems with topologically
protected metallic helical electronic surface states, charac-
terized by suppressed backscattering, and Dirac-like linear
dispersions at the center of the Brillouin zone [1]. Like any
normal (topologically trivial) insulator, TIs have bulk and
surface phonon modes [1]. In addition, at the surface, TIs
can support helical plasmons (spin plasmons) [2–4]. Recently
a low-frequency plasmon mode has been observed in the
topological crystal Bi2Se3 [5], with an acoustic, almost lin-
ear dispersion in the entire phase space, and an intriguing
umklapp-free behavior in the Brillouin zone. Since the energy
of this mode is close to that of surface phonons, it is likely to
interact strongly with these excitations. Thus, it was proposed
that the observed mode is a polaron, i.e., a plasmon dressed
by a phonon mode due to strong electron-lattice interaction
[5]. Such a concept was first proposed by Bozovic [6], who
considered a simple, coupled-oscillator polaron model.

In general, on surfaces of complex (nonjellium) metals, a
variety of collective modes is possible, broadly related to the
presence of the crystal lattice [7]. For example, an acoustic
surface plasmon was observed in Be(0001) [8] and Cu(111)
[9]. Dispersion curves of acoustic plasmons, typically, closely
follow the upper edge of the corresponding single-particle
excitations continuum. Since such a mode is a hybrid of
collective single-particle excitations, it can be viewed as a
plasmaron [10–12]. Recently, it was shown that band inver-
sion in TIs can lead to rich physical effects in both topological
insulators and topological semimetals. It has been found that
the inverted band structure with the Mexican-hat-like dis-
persion could enhance the interband correlation leading to a
strong intrinsic plasmon excitation [13].

In this paper, we demonstrate that the mode observed in
Ref. [5] most likely is a helical surface plasmon strongly
coupled to a phonon, i.e., a Bozovic-like polaron. We employ
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the random phase approximation (RPA) to describe the sur-
face collective electronic modes, and account for the phonon
contributions through the Fröhlich electron-phonon-electron
term, included in the effective background dielectric function.
We show that in addition to the conventional spin plasmon
[2–4], there exists a second, low-frequency, collective, po-
laronlike mode. By explicitly calculating the scattering of this
mode with a periodic perturbing potential of the crystal lattice,
we show that its backscattering is strongly suppressed and that
this suppression results from topological protection.

The plasmon problem in a TI was considered [2–4] by
assuming the Hamiltonian H0 = h̄vF (kxσy − kyσx ), where σx

and σy are Pauli matrices acting in the space of the electron
spin projections, and the helical eigenfunction of the Hamil-
tonian is eik·r| fk〉/S (S is surface area). The spinor part is

| fk〉 = 1√
2

(
e−iϕk/2

ieiϕk/2

)
, (1)

where ϕk is the polar angle of the vector k, and the electron
energies are Ek = vF k. The expectation value of the electron
spin is therefore 〈 fk|σ| fk〉 = ẑ × k [where ẑ is the unit vector
perpendicular to the two-dimensional (2D) gas]. Using the
RPA, it was shown that the condition for the existence of the
plasmon is

ε2D = 1 − V 2D
q �(q, ω) = 0, (2)

where V 2D
q = 2πe2/qεeff . For a single subband, the relevant

situation here, we have

�(q, ω) = 1

S

∑
k

|〈 fk+q fk〉|2 nk − nk+q

h̄ω + Ek − Ek+q + i0+ , (3)

where nk is the Fermi-Dirac occupation number. Equation (2)
predicts a quasi-2D plasmon mode, the dispersion of which is
ω ∝ √

q for small q � kF, and ω ≈ βq for larger q. This is
the characteristic form of dispersion for all 2D gases (normal
and topological).
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The 2D electron gas resides on the surface of the topo-
logical metal (insulator with partially filled conduction band).
Thus, the Coulomb interaction must be modified to include
contributions from both electrons and phonons in the bulk of
the topological insulator. The shielding of Coulomb electronic
interactions is now controlled by an effective εeff , defined by
the following expression (exact in RPA) [14,15]:

Veff (q, ω) = Vq

ε̄
+ 	q|gq/ε̄|2

ω2 − ω2
q + iδ

= Vq

εeff
, (4)

where Vq = 4πe2/q2, ε̄ ≈ [1 + ε]/2, ε is the background
dielectric constant due to electrons in the TI bulk, and the
acoustic phonon dispersion is given (approximately) by

ωq ≈ αq. (5)

The second term in Eq. (4) is the Fröhlich term.
It is straightforward to show (see Supplemental Material

[16]) that for q � kF, Eq. (2) reduces to

ε2D ≈ 1 + rs

4

(
ε̄

εeff

)(
kF

q

)2

= 0, (6)

where the ratio of the Coulomb interaction energy to the
kinetic energy is rs = e2/ε̄h̄vF . Equation (6) leads to εeff ≈
− ε̄rs

4 ( kF
q )2 → 0− (or 1/εeff → −∞), which according to

Eq. (4) can occur only for

ω ≈ ωq ≈ αq. (7)

The analysis above shows that there exist two modes of
the 2D electron gas on the surface of a TI. One is the con-
ventional 2D spin plasmon, as discussed just below Eq. (3),
with dispersion ω ∝ √

q for q � kF, and ω ≈ βq for larger q.
A sketch of this mode (for large q) is shown in Fig. 1 (black
dashed line). The second, low-frequency plasmon results from
strong electron-phonon coupling, which electromagnetically
renormalizes the 2D plasmon dispersion. Thus, this mode has
a strong polaron character. This mode has linear dispersion for
large q [Eq. (7)], as shown in Fig. 1 (blue dashed line). Clearly,
the two collective electronic 2D modes are well separated
in frequency for all q, and thus not coupled. The electronic
susceptibility is the same for both modes, and given by
Eq. (3). Figure 1 also shows the experimental dispersions for
metal Bi2Se3 in the topological state and normal state (after
Mn doping), obtained in Ref. [5], which are represented by
blue and red circles, respectively. The corresponding single-
particle excitation range, extending up to q ∼ 2kF, is shown
in Fig. 1 as a shaded region.

One of the most important discoveries in Ref. [5] was that
the quasilinear polaron mode dispersion surprisingly extends
into the second Brillouin zone (BZ) without an expected
umklapp at the M point on the BZ edge. This is equivalent
to an absence of a gap opening at this point. To understand
this effect, consider the situation in which the 2D electron
gas is subjected to a weak periodic potential, which explicitly
represents the atomic lattice of the underlying TI. The plas-
mon problem can be written as an eigenvalue problem of a
general electron-hole Hamiltonian [4,14,15,17,18], with plas-
mon eigenstate |q〉 and the corresponding eigenvalue being
the plasma frequency. The projection of the eigenstate, i.e.,

FIG. 1. Plasmonic modes of the 2D electron gas on the surface
of a topological metal (parameters for Bi2Se3). Lines represent
calculated dispersions: upper mode ω ≈ βq (black dashed line) and
ω ≈ ωq ≈ αq (blue dashed line). Blue circles represent experimental
data for Bi2Se3 in the topological state, and the red circles in the
normal state, both taken from Ref. [5]. The shaded region represents
the single-particle continuum.

the momentum wave function, is given by

〈k|q〉 = Aq
〈 fk+q| fk〉

ωq + Ek − Ek+q + i0+ = Bkq〈 fk+q| fk〉, (8)

where Aq is a normalizing factor. In this situation, we can
apply a perturbation theory for the degenerate plasmon eigen-
states at the M point on the edge of the BZ: |qM〉 and |qM − G〉
(see Fig. 2). Both states have the same, unperturbed frequency

FIG. 2. Configuration of plasmonic vectors in the first BZ.
|qM − G〉 represents the backward-scattered plasmon-polaron state
from the initial state |qM〉 at the M point to the M-equivalent point
on the other side of the BZ.
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ωq=qM . The perturbed frequency is

ω̃q=qM ≈ ωq=qM ± �, (9)

where a gap of the size 2� opens at the edge of the BZ for the
nonvanishing matrix element,

� = |〈qM |V |qM − G〉|. (10)

Inserting an identity operator I = ∑
k |k〉〈k| and Eq. (8)

into Eq. (10), and assuming that k � qM and k � |qM − G|,
we get

� =
∣∣∣∣
∑

k

〈qM |k〉V 〈k|qM − G〉
∣∣∣∣

≈
∣∣∣∣V (

B0qM

)∗
B0|qM−G|

∑
k

〈 fk+qM−G| fk〉〈 fk| fqM+k〉
∣∣∣∣. (11)

It can be easily shown using Eq. (1) that∑
k

〈 fk+qM−G| fk〉
〈
fk

∣∣ fqM+k
〉 = C

〈
fqM−G| fqM

〉
, (12)

where C is a constant.
According to Eq. (1),〈

fqM−G
∣∣ fqM

〉 = cos(θ/2) (13)

and θ is the angle between qM and qM − G. Since θ = π ,
according to Fig. 2, the spinor inner product given by Eq. (13)
vanishes, which leads to (see Supplemental Material [16])

� ≈ 0. (14)

Note that by crystal symmetry, �′ = |〈qM |V |qM + G〉|
must vanish similarly since the final state in this forward
scattering |qM + G〉 is also at the M-equivalent point. Thus,
both the backwards and forward scattering of the polaron-
plasmon are suppressed, and this important result is a direct
consequence of the helical character of the electronic states.

This result can be confirmed by noticing that � given by
Eq. (10) is simply related to the plasmon angular scattering
form factor �(q, θ ), studied in detail in Ref. [4],

� = |〈qM |V |qM − G〉| ∝
√

�(|qM |, θ ). (15)

�(q, θ ) can be numerically evaluated as a function of the
scattering angle, and we have done this for parameters of the
polaron mode in Bi2Se3. Figure 3 shows the corresponding
polar plot. There is a dramatic suppression of scattering for
both forward (θ = 0) and backward scattering (θ = π ). Thus,
according to Eq. (15), � ≈ 0, which is in agreement with
Eq. (14), and demonstrates that the opening of the gap at the M
point is strongly suppressed due to suppressed backscattering
of the plasmon-polaron mode.

Our theory has a direct correspondence to the simple
coupled-oscillator model proposed by Bozovic [6]. The Bo-
zovic polaron is a classical, coupled state of an electron (with
mass m) and a neutral, polarized particle (mass M), with the
dielectric function given by

εD = 1 − ω2
p(ω2 − 	2)

ω2
(
ω2 − ω2

0

) , (16)

FIG. 3. Polar plot of the plasmon angular scattering form factor
�(q, θ ). Parameters are q = 4.44pF , μ = 300 meV, rs = 0.09, and
ε = 40, where μ = pF vF , as defined in Ref. [4]. The plasmon
dispersion from Fig. 1 (blue dashed line) was used.

where ω2
0 = κ (m + M )/mM and 	2 = κ/M, and ω2

0 > 	2.
To see the correspondence with our nonlocal theory, we write
a hydrodynamic analog of Eq. (2), which contains the main
dynamics of the polaron mode, as

ε2D = 1 − ω̄2
pq

εeff (ω2 − β2q2)
= 0, (17)

which, with the help of Eq. (4), can be reduced to the form
of Eq. (16). This shows that the polaron mode in our theory
is a quantum analog of the classical Bozovic polaron, and
results from the strong coupling to the polarizable dielectric
background of the TI lattice.

In conclusion, we have shown that a 3D topological crystal
supports a low-frequency plasmon-polaron mode of its sur-
face 2D electron gas. As a result of strong interaction of the
2D electrons with bulk phonons, the plasmon mode existence
condition yields two collective modes: the conventional, gap-
less spin plasmon and the low-frequency acoustic plasmon-
polaron. Due to large phase-space separation of these modes
(except for very small momenta), there is little interaction
between the modes. Since the 2D electron gas is topologically
distinct from the bulk, its dynamics is affected by phonons,
but in contrast to topologically trivial situations, only through
their contributions to an effective dielectric response of the
environment as seen by the surface electrons. We show that
not unlike in the case of the conventional spin plasmon,
the scattering of this mode is strongly suppressed in some
regions of the phase space, which leads to an umklapp-free
mode dispersion at the Brillouin zone boundary. Such an
umklapp-free behavior has indeed been recently observed in
the topological crystal Bi2Se3 [5].
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