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A wide range of disordered materials, including disordered correlated systems, show universal dielectric
response (UDR), followed by a superlinear power-law increase in their optical responses over exceptionally
broad frequency regimes. While extensively used in various contexts over the years, the microscopics underpin-
ning UDR remains controversial. Here, we investigate the optical response of the simplest model of correlated
fermions, the Falicov-Kimball model, across the continuous metal-insulator transition (MIT) and analyze the
associated quantum criticality in detail using cluster extension of dynamical mean-field theory. Surprisingly,
we find that UDR naturally emerges in the quantum critical region associated with the continuous MIT. We
tie the emergence of these novel features to a many-body orthogonality catastrophe accompanying the onset of
strongly correlated electronic glassy dynamics close to the MIT, providing a microscopic realization of Jonscher’s
time-honored proposal as well as a rationale for similarities in optical responses between correlated electronic
matter and canonical glass formers.
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I. INTRODUCTION

Optical conductivity has long been used to characterize
elementary excitations in condensed matter. The response
of matter to ac electromagnetic fields is usually encoded in
the complex conductivity [1], σxx(ω) = σ ′(ω) + iσ ′′(ω), or
the complex dielectric constant ε(ω), related to each other
by σ ′(ω) = ωε0ε

′′(ω), where ε′′(ω) quantifies the dielectric
loss and ε0 is the permittivity of free space. Optical studies
have been especially valuable in strongly correlated electronic
matter [2] and, as a particular example, have led to insights
into the breakdown of traditional concepts in cuprates [3].

Such studies have also led to much progress in understand-
ing complex charge dynamics in disordered matter. In the
1970s, the pioneering work of Jonscher [4,5] showed a univer-
sal dielectric response (UDR) of disordered quantum matter
to ac electromagnetic fields, wherein σxx(ω) � ωα , with α �
1 in the subgigahertz regime. More recently, Lunkenheimer
and Loidl [6] reported astonishingly similar responses in a
wide class of disordered matter over a more extended energy
window: among others, doped, weakly, and strongly corre-
lated semiconductors exhibit UDR, followed by a superlin-
ear power-law increase in σ (ω), bridging the gap between
classical dielectric and infrared regions. This behavior is also
common to dipolar and ionic liquids as well as to canonical
glass formers. Very recently, materials which belong to the
elusive class of spin liquids [7] were also interpreted in
terms of UDR: in this case, it is possible that intrinsic dis-
order, arising from geometric frustration, is implicated in the

*prosenjith@iisc.ac.in
†mslaad@imsc.res.in
‡shassan@imsc.res.in

emergence of UDR. This suggests involvement of a deeper,
more fundamental and common element, related to the onset
of a possibly intrinsic, glassy dynamics in the emergence of
UDR. In the context of correlated quantum matter (such as
the Mott insulator LaTiO3 and Pr0.65(Ca0.8Sr0.2)0.35MnO0.35

(PCSMO) [6]), such unconventional “glassy” dynamics can
emerge near the doping-induced metal-insulator transition
(MIT) as a consequence of substitutional and/or intrinsic
disorder due to inhomogeneous electronic phase(s) near the
MIT. On the other hand, early on, Jonscher himself suggested
the relevance of many-body processes akin to the seminal
Anderson orthogonality catastrophe (AOC) for UDR. Thus,
the link between AOC and an emergent, slow glassy dynamics
underlying the electronic processes leading to UDR in dis-
ordered, interacting electronic systems remains a challenging
and largely unaddressed issue for theory, to the best of our
knowledge.

Motivated thereby, we investigate these issues with a
careful study of the optical response of the Falicov-Kimball
model (FKM). The FKM is the simplest representative model
of correlated electrons on a lattice and possesses an exact
solution within both dynamical mean-field theory (DMFT) [8]
and its cluster extensions (CDMFT) [9,10]. Remarkably, it can
be solved almost analytically, even in CDMFT [10], leading to
enormous computational simplifications in transport studies
[11–13]. Across a critical U , the FKM is known to undergo
a T = 0 continuous MIT of the Hubbard band-splitting type
[8].

As found earlier for transport properties, it turns out that
precise computation of the optical response for the FKM
within two-site cellular DMFT [14] is facilitated by the facts
that (i) explicit closed-form expressions for the cluster propa-
gators G(K, ω), with K = (0, 0), (π, π ), greatly reduce com-
putational cost, even in CDMFT, and (ii) the cluster-resolved
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irreducible particle-hole vertex functions are negligibly small
and we ignore them in the Bethe-Salpeter equations for
all conductivities, thanks to an almost rigorous symmetry
argument [15]: upon a cluster-to-orbital mapping (which is
implicit in our mapping of the two-site CDMFT to two, “S, P”
channels [14]). In this “multiorbital” scenario, the irreducible
vertex corrections entering the Bethe-Salpeter equation for the
conductivity are still negligibly small [16]. Thus, the optical
conductivity acquires a form similar to DMFT, but with an
additional sum over cluster momenta (or the two S and P
channels on the cluster).

The rest of this paper is organized as follows: In Sec. II we
describe the model we study in this work and the calculation
of optical conductivity using cluster DMFT formalism. In
Sec. III we present our numerical results and analyze (i)
Mott-like quantum criticality in the optical response using
CDMFT and (ii) universal dielectric response across the MIT.
We then tie the UDR to an emergent many-body orthogonality
catastrophe in the FKM within our CDMFT approach. In
Sec. IV we discuss our findings in the context of real materials
exhibiting UDR.

II. GENERAL FORMULATION OF OPTICAL
CONDUCTIVITY WITHIN CLUSTER DMFT

The Hamiltonian of the spinless FKM model is

HFKM = −t
∑
〈i, j〉

(c†
i c j + H.c.) − μ

∑
i

ni,c + U
∑

i

ni,d ni,c.

(1)

The Hamiltonian describes a band of dispersive fermions
(c, c†) interacting locally via a “Hubbard”-type interaction
with dispersionless d fermions. Since vi = Uni,d is a random
(binary) potential in the symmetry-unbroken phases of the
FKM, Eq. (1) can also be viewed (as has long been known
[17]) as a model of fermions in a random binary alloy
potential.

In recent work [14], we used a cluster extension of DMFT
to solve FKM using the Dyson-Schwinger equation of mo-
tion technique. Remarkably, the cluster-local Green’s func-
tion in two-site cluster DMFT is obtained analytically and
reads

Ĝ =
[

G00(ω) Gα0(ω)
Gα0(ω) G00(ω)

]
,

where the matrix element Gi j (ω), with i, j = 0, α, is

Gi j (ω) =
[

1 − 〈n0d〉 − 〈nαd〉 + 〈n0d nαd〉
ξ2(ω)

+ 〈n0d〉 − 〈n0d nαd〉
ξ2(ω) − U

][
δi j − F2(ω)

[t − 	α0(ω)]
(1 − δi j )

]

+
[ 〈nαd〉 − 〈n0d nαd〉

ξ1(ω)
+ 〈n0d nαd〉

ξ1(ω) − U

][
δi j − F1(ω)

[t − 	α0(ω)]
(1 − δi j )

]
, (2)

with ξ1(ω) = [ω − 	00(ω) − F1(ω)], ξ2(ω) = [ω −
	00(ω) − F2(ω)], and F1(ω) = (t−	α0 )2

ω−U−	00(ω) , F2(ω) =
(t−	α0 )2

ω−	00(ω) , where the bath function �̂(ω) is related to the
local Green’s function through a suitable self-consistency
condition. The self-energy is given as

�̂(ω) = Ĝ−1
0 (ω) − Ĝ−1(ω), (3)

where Ĝ0(ω) is the Weiss Green’s function, Ĝ0(ω) = (ω +
μ)1 − �̂(ω). We use the algorithm described in Ref. [14]
to find the local Green’s function and self-energy. In the
symmetric basis (cluster momentum basis) we can write GS =
(G00 + Gα0) and GP = (G00 − Gα0), where S and P are even
and odd orbitals, respectively.

The optical conductivity is evaluated using the Kubo-
Greenwood formalism. In the near absence of vertex cor-
rections, only the bare bubble, composed from the CDMFT
propagators, contributes. The explicit form of the optical
conductivity within cluster DMFT then reads

σ ′(ω) = σ0

∑
K∈[S,P]

∫ ∞

−∞
dεv2(ε)ρK

0 (ε)

×
∫ ∞

−∞
dω̃AK(ε, ω̃)AK(ε, ω̃+ω)

f (ω̃)− f (ω̃ + ω)

ω
,

(4)

with

AK(ε, ω) = Im

[
1

ω + μ − ε − �K(ω)

]
. (5)

Here, ρK
0 (ε) is the noninteracting spectral function of the even

and odd orbitals, and f (ω) is the Fermi distribution. This
simplification allows a comprehensive study of the optical
response of the FKM within CDMFT, which we now describe.

III. RESULTS AND DISCUSSION

We consider the Bethe lattice with the half bandwidth of
the conduction electron (c fermions) as unity (2t = 1). We de-
fine the short-range order parameter f0α as f0α = 〈n0d nαd〉 −
〈n0d〉〈nαd〉.

A. Quantum criticality near the MIT

We exhibit the real part of the optical conductivity near
and across the MIT (1.6 � U � 2.0), computed from Eq. (4)
as a function of U for (a) the completely disordered case
(short-range order parameter f0α = 0 in our earlier work [14])
in the top panel of Fig. 1 and (b) the short-range ordered case
( f0α �= 0) in Fig. 2. Several features stand out clearly: in case
(a), σ ′(ω) shows an incoherent low-energy bump centered
at ω = 0, whose weight decreases continuously as the MIT
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FIG. 1. Optical conductivity of the completely random ( f0α = 0)
FKM within two-site CDMFT, showing its evolution with U at
temperature T → 0. The MIT occurs at Uc = 1.8. Blue symbols
show how an emergent scale �0(U ), associated with a smooth
crossover between metallic and insulating states, collapses at the
Mott transition (U = 1.8) as (δU )ν with ν = 1.29, close to 4/3
(see text).

is approached (at U = 1.8). It is important to note that (i)
there is no low-energy Drude component in σ ′(ω) since the
CDMFT propagators have no pole structure [14] and (ii) as
expected, low-energy spectral weight is continuously trans-
ferred from the bad-metallic and midinfrared (MIR) regions
to high energies O(U ) across the MIT. This is characteristic
of a correlation-driven MIT, and the continuous depletion of
low-energy weight is a consequence of the continuous MIT
in the FKM driven by increasing U . In Fig 2, we exhibit
the effect of “antiferromagnetic alloy” (AF-A) short-range
order (SRO). Apart from the fact that the MIT now occurs
at (U ) � 1.35 [14], the above features seem to be reproduced
in this case as well. Looking more closely, however, we see
marked changes in the low- and midinfrared energy range:
the bad-metallic bump centered at ω = 0 is suppressed by
SRO, and σ ′(ω) rises faster with ω in the MIR, showing the
emergence of a low-energy pseudogap. These changes are to
be expected since AF-A SRO reduces the effective kinetic
energy and increases the effective U , leading to a reduction of
the low-energy spectral weight and a low-energy pseudogap
in optics.

A closer look at Fig. 1 reveals very interesting features.
We uncover a crossover scale �0(U ), separating “metallic”
and “insulatorlike” behaviors in σ ′(ω). As expected, it col-
lapses at the MIT: interestingly, we find �0(δU ) � (δU )1.29,

FIG. 2. The real part of the optical conductivity of the FKM with
antiferromagnetic short-range order ( f0α = −0.15) within two-site
CDMFT close to the MIT (1 < U < 1.5). The critical curve at which
the MIT occurs corresponds to (U )c = 1.35 (red dashed line).

quite close to ν = 4/3 found in earlier work [11]. This also
motivates us to investigate underlying quantum criticality in
the optical response. In Fig. 3, we show that log10[σc/σ

′(ω)]
plotted versus ω/�0(U ) (the latter is taken from Fig. 1) indeed
reveals clean quantum-critical scaling: the insulating (I) and
metallic (M) data fall on two master curves, and the beautiful
mirror symmetry relating the two testifies to the unambiguous
manifestation of the “Mott” quantum critical point (QCP) in
the optical response. Further, we also find that �0(δU ) �
c|δU |η, with η = 1.3 � 4/3, in excellent agreement with both
Fig. 1 and our previous study. Using our earlier result ξ �
(U − Uc)−ν , with ν = 4/3 and z = 1, we thus expect that
σ ′(ω)/σc should scale as y = |U − Uc|/Ucω = 1/ωξ 1/zν , i.e.,

FIG. 3. Clean quantum critical scaling of the optical conductivity
across the Mott QCP, as shown by the fact that log10[σc/σ

′(ω)]
versus ω/�0(U ) for the metal and insulator phases falls on two
universal “master” curves. σc is the optical conductivity at the critical
U , i.e., the separatrix. We estimate �0(δU ) � (δU )η, with η = 1.31,
in very good agreement with ν = 4/3 from earlier work [11].
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FIG. 4. Clean quantum criticality as revealed in the scaling be-
havior of the CDMFT optical conductivity, σ ′(ω)/σc versus y =
|U − Uc|/Ucω. Since the localization length ξ � |U − Uc|−4/3 (see
text), this implies that σ ′(ω)/σ0 = F (ωξ 1/zν ). This is a manifestation
of the time-temperature superposition principle [5] following from
Jonscher’s UDR.

that σ ′(ω)/σc = F (ωξ 1/zν ). This is indeed adequately borne
out in Fig. 4 for both M and I phases. This is a manifes-
tation of the “time-temperature superposition principle” [5],
expressible as a scaling law, σ ′(ω)

σc
= F ( ω

�0
), with F being a

T -independent scaling function and �0(U ) being a scaling
parameter corresponding to the onset of conductivity disper-
sion, precisely as found here. The variation of �0 with U
reflects the nontrivial interplay between itinerancy (hopping)
and Mott-like localization in the FKM. In analogy with the pa-
rameter T0(δU ) � c(δU )zν for the dc transport criticality [11],
�0 also scales like (δU )zν . Finally, the fact that �0(δU ) �
(δU )zν in both the M and I phases reflects the fact, alluded
to in earlier work [11,18], that the basic electronic processes
governing the I phase are also relevant deep into the M phase.

B. Universal dielectric response

Having shown a Mott-like quasilocal quantum criticality,
we now turn to the UDR near the MIT. Since the FKM is
isomorphic to the binary-alloy Anderson disorder problem,
we inquire how CDMFT performs in the context of the re-
markable universality in the dielectric response in disordered
quantum matter alluded to before [6]. In Figs. 5 and 6, we
show lnσ ′(ω) and the dielectric loss, ln[σ ′(ω)/ω] versus
ln(ω), as functions of U to facilitate meaningful comparison
with data of Lunkenheimer and Loidl. It is indeed quite
remarkable that all the basic features reported for disordered
quantum matter are faithfully reproduced by our CDMFT
calculation. Specifically, (i) for 1.5 < U < 1.8, a “dc” con-
ductivity regime at the lowest energy (up to 10−4–10−3)
smoothly goes over to a sublinear-in-ω regime (UDR, in the
region 10−2–10−1) followed by a superlinear-in-ω regime
(around 10−1), connecting up smoothly with the “boson”
peak. These regimes are especially visible around U = 1.8,
precisely where the MIT occurs. (ii) Moreover, corroborating

FIG. 5. Real part of the optical conductivity versus frequency ω,
plotted on a log-log scale to facilitate direct comparison with data for
disordered and correlated electronic systems from Lunkenheimer and
Loidl [6]. Very good agreement is clearly seen. More importantly, the
crossover from the dc limit to UDR around ln(ω) � −3 close to the
Mott QCP (for U � 1.8) is also revealed, showing that UDR emerges
in the quantum critical region associated with the continuous MIT.

behavior is also clearly seen in Fig. 6, where we exhibit the
dielectric loss function vs ω on a log-log scale. It is clearly
seen that a shallow minimum separates the UDR and super-
linear regimes at approximately ln(ω) = −0.8 (in the meV
region) in the very bad metallic state close to the MIT. This
is in excellent agreement with results for both LaTiO3 and
PCSMO [6]. Moreover, the energy dependence of the optical
conductivity also seems to be in good qualitative agreement
with data when we compare our results with Figs. 1, 2, and 3

FIG. 6. The dielectric loss Reσxx (ω)/ω, plotted versus ω on a
log-log scale to facilitate direct comparison with Lunkenheimer
and Loidl [6]. In excellent agreement with data on correlated and
disordered systems in Ref. [5], a shallow minimum separates the
UDR from a superlinear power-law regime around lnω � −1, −2 as
U increases from 1.5 up to 1.8, the critical value for the Mott QCP.

125147-4



UNIVERSAL DIELECTRIC RESPONSE ACROSS A … PHYSICAL REVIEW B 99, 125147 (2019)

of Lunkenheimer and Loidl. In the right panel of Fig. 6, we
also show that short-range spatial correlations do not qualita-
tively modify these conclusions, attesting to their robustness
against finite short-range order. Finally, precisely at the MIT
(red curves in Fig. 6), we unearth a very interesting feature:
Imε(0, ω) � ω−η, with η = 0.8, 0.75 for f0α = 0.0,−0.15.
Hence, apart from a “dielectric phase angle” cot(πη/2), the
real part of the dielectric constant also varies like ω−η as the
MIT is approached from the metallic side. Remarkably, this
is a concrete manifestation of the dielectric (or polarization)
catastrophe that is expected to occur at a QCP associated with
a continuous MIT.

This wide-ranging agreement with data is quite remarkable
and begs a microscopic clarification in terms of basic elec-
tronic processes at work near the MIT. A phenomenological
way is to posit that the universality is linked to glassiness
[6] as follows: (i) first, our finding [11] of ν = 4/3 (and z =
1) is characteristic of percolative transport that is naturally
expected to arise in glassy systems. (ii) It has also been shown
[19] (for the disorder problem) that electronic glassy behavior
precedes an insulating phase. Thanks to the mapping between
the FKM and a binary-alloy “disorder” problem, we also
expect an intrinsic electronic glassy phase near the continuous
MIT in the FKM. This suggests a close link between UDR and
the onset of electronic glassy dynamics near the continuous
MIT in the FKM.

On a more microscopic level, it is very interesting that
Jonscher himself [5] hinted at the relevance of many-body
processes at the heart of UDR. In particular, an explicit
parallel with the seminal x-ray edgelike physics was already
(phenomenologically) invoked to account for such features. It
is indeed remarkable that such x-ray edge physics naturally
falls out in the DMFT and CDMFT solutions of the FKM
in high D [20]: in DMFT, the mobile (c-fermion) propagator
exhibits a pseudogapped metal going over to an insulator
across a critical U = Uc, while the d-fermion propagator
exhibits an “x-ray edge” singular behavior linked to the
seminal Anderson orthogonality catastrophe (AOC). In our
CDMFT [14], we find similar behavior: (i) a clear correlation-
induced pseudogapped metal without Landau quasiparticles
going over to an insulator at Uc = 1.8, with an anomalous
self-energy Im�

(c)
loc (ω) � |ω|1/3 and density of states ρc(ω) �

|ω|1/3 at the Mott QCP and (ii) unusual power-law behavior
of the dynamical charge susceptibility near Uc, as well as,
most importantly, anomalous energy dependence of the d-
fermion propagator at long times. In CDMFT, these features
arise precisely from the fact that (a) the dispersive c fermions
interact with the d± = (d1 ± d2)/

√
2 dispersionless fermion

modes at the intracluster level via U , while (b) the c fermions
do not hybridize at all with the d± localized mode at the
single-fermion level. Physically, the origin of the AOC is
that the dynamical screening arising from strong intracluster
interactions in the FKM is nontrivially affected by the hopping
motion of the carriers: since the c± fermions do not hybridize
with the d±-fermion modes at the one-fermion level [there
is no term of the form V (c†

±d± + H.c.) on the cluster], this
screening is nontrivial and arises from the “slow” reaction of
the d± modes to the “sudden” jumps of the c± fermions (the
latter occurs on a much shorter timescale of h̄/t in the FKM).
Due to the local symmetry implied by [ni,d , HFKM] = 0 at

each i, a hopping carrier experiences a sudden change in the
local potential on the cluster (from zero to U and vice versa
while hopping), now in the sense of a “sudden local quench.”
The rigorous absence of c-d-fermion one-particle mixing in
the FKM implies the lack of heavy-particle recoil in the “two-
impurity” cluster problem, leading to “Kondo destruction”
and generation of an AOC in our two-site CDMFT as above,
in precise agreement with Jonscher’s original suggestion. We
present the origin of the many-body AOC using an analytical
approach in the following section.

C. Cluster orthogonality catastrophe in two-site
CDMFT for the FKM

Here, we present an analytic argument that exposes the
venerated orthogonality catastrophe in our CDMFT approach.
It turns out that this is most conveniently done by using the
underlying two-impurity problem of our CDMFT, which we
now describe.

The two-impurity FKM is

HFKM = t (c†
0cα + H.c.) +

∑
k

εkc†
kck

+ t
∑

k,i=0,α

(eik·Ri c†
i ck + H.c.) + U

∑
i=0,α

ni,cni,d .

(6)

Introducing the bonding-antibonding fermions, c± = (c0 ±
cα )/

√
2, d± = (d0 ± dα )/

√
2. Then, HFKM = H12 + Hcoupl +

Hband, with

H12 = t (nc,+ − nc,−) + U

2

∑
a,a′=±

(nc,and,a′ + c†
aca′d†

a da′ ),

(7)

Hcoupl =
√

2t
∑

k

[cos(ka/2)c†
+ck + isin(ka/2)c†

−ck + H.c.],

(8)

and

Hband =
∑

k

εkc†
kck . (9)

This “cluster-to-orbital” mapping exposes the novel structure
of the cluster-local correlations at the Mott QCP. Specifically,
we observe that while the d± fermions interact with the c±
fermions via U , they do not hybridize with each other at
the one-fermion level [i.e., there is no term of the form
V±(c†

±d± + H.c.) in the FKM]. Thus, the two-impurity FKM
maps rigorously onto a cluster version of the classic problem
of recoilless, “infinite-mass” d± scatterers in a “Fermi sea” of
the c±, i.e., to the cluster version of the venerated x-ray edge
problem. One now directly reads off that the spectral function
of the d± fermions is infrared singular with an interaction-
dependent power-law behavior [21]:

ρd± (ω) � θ (ω)

|ω|1−η±
, (10)

where η± = (δ±/π )2 and πδ± = tan−1[Uρc± (0)π ] is the
scattering phase shift. There will be an additional contri-
bution to the scattering phase shift arising from the term

125147-5



HALDAR, LAAD, AND HASSAN PHYSICAL REVIEW B 99, 125147 (2019)

U
2

∑
a,a′ c†

aca′d†
a da′ , but this will not qualitatively change the

power-law behavior above. This many-body orthogonality
catastrophe will carry over into the self-consistently embed-
ded two-site CDMFT solution of the FKM.

Interestingly, we thus find that the orthogonality catastro-
phe and the accompanying breakdown of adiabatic continuity
also hold for the case of spatially separated recoilless scat-
terers on the length scale of the cluster. Using a different
approach, this aspect was also studied previously [22]. Thus,
incorporation of intersite correlations between spatially sep-
arated scattering centers does not qualitatively modify the
orthogonality catastrophe, an interesting result in itself. In
modern parlance, this means that the vanishing fidelity as well
as the anomalous long-time behavior of the Loschmidt echo,
both manifestations of the orthogonality catastrophe [23], also
holds for spatially separated, sudden local quenches, a result
that may have more widespread applications.

Thus, the classic orthogonality catastrophe, arising from
the sudden local but spatially correlated quenches in our two-
impurity model, is a genuine feature in our CDMFT. This
also provides a concrete microscopic rationalization linking
the Jonscher UDR to this many-body effect, as conjectured
early on by Jonscher himself.

IV. DISCUSSION AND CONCLUSION

Our findings can profitably be utilized to interpret a wider
range of data on dielectric responses of a wide range of
disordered electronic matter, e.g., disordered semiconduc-
tors, doped Mott insulators, p-n junction devices [5], etc.
In reality, the optical response at low energy will now
be Reσxx(ω) = σdc + σ0ω

α , with 0 < α < 1. This directly
implies that Imσxx(ω) = tan(πα/2)σ0ω

α + ωε0ε∞, with σdc

being the dc conductivity and ε∞ being the bare dielec-
tric constant. The corresponding (dynamic) capacitance and
impedance read C(ω) = C∞ + (σ0/2π )tan(πα/2)ωα−1 and
Z∗(ω) � [iωε∗(ω)]−1. Along with causality (Kramers-Krönig
relations), UDR implies that the real and imaginary parts of
the dielectric function (thus of the susceptibility) are related
to each other by a dielectric phase angle, χ ′(ω)/χ ′′(ω) =
cot(πα/2) [5], independent of ω, in stark contrast to Debye-
like relaxation, where this ratio equals ωτ . Such forms have
been widely used to analyze data in detail for a wide range
of disordered matter [4,5,24] for a long time. Within CDMFT,
our findings provide a microscopic rationale for use of these
relations.

Theoretically, it is very interesting that such features ap-
pear near a correlation-driven MIT in the FKM since this is a
band-splitting-type Mott (rather than pure Anderson localiza-
tion in a disorder model or a first-order Mott transition in the
pure Hubbard model) transition. It supports views [11,25] that
the disorder problem at strong coupling, where kF l � O(1), is
characterized by a different Mott-like quantum criticality, a
view nicely supported by our earlier finding [11] of β(g) �
ln(g) instead of β(g) � (d − 2) − 1/g even deep in the (bad)
metallic phase. This is not unreasonable, as it has long been
known [26] that the coherent potential approximation, the
best mean-field theory for the Anderson disorder problem, is
equivalent to the Hubbard III band-splitting view of the Mott
transition (the latter becomes exact for the FKM in d = ∞
[27]).

(a) As concrete examples on the materials front, we note
that various aspects of manganite physics have also been suc-
cessfully modeled by an effective FKM, where the c fermions
represent effectively spinless fermions (due to strong Hund’s
coupling) strongly scattered by a disordered “liquid” of ef-
fectively localized Jahn-Teller polarons [28]. In this context,
it is also interesting to notice that a field-induced percolative
MIT has also long been known to occur in manganites [29].
Thus, our model can serve as the simplest effective model
for PCSMO [6]. Application to LaTiO3 would require using
a full Hubbard model very close to half filling, where intrinsic
disorder due to inhomogeneous phases near the MIT would
generally be expected to be relevant. (b) It is also very
interesting that related features, namely, (i) the non-Landau
quasiparticle (Drude) “strange” but infrared singular power-
law optical response and (ii) anomalous optical phase angle,
characterize the strange metallicity in near-optimally doped
cuprates [3]. One scenario, based on the hidden-Fermi-liquid
idea, posits that an inverse orthogonality catastrophe also
underlies [30] such non-Landau Fermi-liquid observations in
cuprates. However, the microscopics in this case involves
momentum-selective Mott physics within CDMFT [31], and
such novel responses could be linked to coexisting nodal
(“itinerant”) and Mott-localized antinodal states. While more
work is certainly needed to cleanly show such features in the
cuprate context, it is out of the scope of our present study.

Thus, the central message of our work is that nonpertur-
bative dynamical effects of strong intrinsic scattering in the
FKM lead to the onset of a many-body AOC. We find that
it is this specific aspect that is at the heart of the “universal”
dielectric response.
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