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Optical response of Luttinger semimetals in the normal and superconducting states
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We investigate the optical response properties of three-dimensional Luttinger semimetals with the Fermi
energy close to a quadratic band touching point. In particular, in order to address recent experiments on the
spectroscopy of pyrochlore iridates and half-Heusler superconductors, we derive expressions for the optical
conductivity in both the normal and general superconducting states in the linear response regime within the
random phase approximation. The response functions can be decomposed into contributions from intraband
and interband transitions, the latter comprising a genuine signature of the quadratic band touching point.
We demonstrate the importance of interband transitions in the optical response in the normal state both in
the homogeneous and quasistatic limit. Our analysis reveals a factorization property of the homogeneous
conductivity in the spatially anisotropic case and the divergence of the conductivity for strong spatial anisotropy.
In the quasistatic limit, the response is dominated by interband transitions and significantly different from
systems with a single parabolic band. As an applications of the formalism in the superconducting state we
compute the optical conductivity and superfluid density for the s-wave singlet superconducting case for both
finite and vanishing chemical potential.
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I. INTRODUCTION

Ignited by recent advances in growth and characterization
of novel classes of spin-orbit coupled materials, the study of
many-body physics in three-dimensional Luttinger semimet-
als with the Fermi energy close to an inverted quadratic
band touching (QBT) point is part of the forefront of both
theoretical and experimental research on quantum materials.
Already in the noninteracting case these systems are highly
compelling, as applying strain or quantum confinement can
induce a topological insulator state, which furthermore is ro-
bust against weak perturbations [1]. An even richer manifold
of possible macroscopic phases emerges when considering
the effects of long-range or sufficiently strong short-range
interactions. Some of the currently most actively investigated
platforms for exploring interactions in QBT systems are py-
rochlore iridates [2] and half-Heusler superconductors [3,4].
In particular, two recent measurements of their intriguing con-
ductance properties constitute the motivation for the present
work [5,6].

What makes the study of many-body physics and interac-
tions in Luttinger semimetals so fascinating can be attributed
to two main features. First, as realized by Abrikosov, the
long-range Coulomb repulsion between electrons at the QBT
point induces a non-Fermi liquid (NFL) phase of the system
[7–9]. Although the ultimate stability of this phase is currently
still debated, as emergent strong short-range interactions may
eventually drive the system into a topological Mott insulator
state [10–13], it is fairly certain that correlation functions
will show anomalous scaling over some extended range of
experimental parameters such as temperature, momentum,
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and frequency. Second, since the electrons occupying the
QBT point carry an effective spin of 3/2, many novel and
often tensorial order parameters can be constructed close to
the touching point [14–35]. Fortunately both magnetic and
superconducting orders of this type are, respectively, covered
by the pyrochlore iridates and half-Heusler compounds in
experiment.

Pyrochlore iridates, having structural formula R2Ir2O7 (de-
noted R-227 for short) with R a rare-earth element, have been
shown to host a QBT point at the Fermi energy both via
theoretical calculations [2] and experimental ARPES studies
[36,37]. Most members of the material class show a tran-
sition to an insulating phase with octupolar magnetic order
at temperatures around 100 K [38]. However, the critical
temperature is reduced for Nd-227, and no finite-temperature
transition has been observed in Pr-227. Furthermore, Pr-227
may be close to a quantum critical point as a function of ionic
radius of R, implying that its high temperature phase lies in the
corresponding critical fan and thus shows nontrivial scaling of
observables as a function of temperature.

A recent THz spectroscopy study [5] by the Armitage
group on the optical response of Pr-227 in the normal phase
revealed a large additive anomalous contribution to the di-
electric function compared to the Drude formula, which can
be traced theoretically to originate from interband transitions
between the upper and lower bands of the QBT point by
Broerman’s formula [39]. The determination of the scattering
rate shows a τ−1 ∝ T 2 temperature dependence, however,
with an unusually large prefactor indicating that the system
may be strongly coupled in the normal phase. The presence
of a finite Fermi energy EF > 0 (measured from the QBT
point) in the experiment sets a limit on the intermediate fre-
quency and temperature ranges where nontrivial scaling such
as Abrikosov’s NFL behavior could be observed. Measuring
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at larger frequencies or higher temperatures (both compared to
EF), or minimizing EF directly, will allow us to experimentally
test whether the NFL phase is achieved in the normal phase of
Pr-227, and thus shed light onto other QBT systems where
long-range interactions are important. This clearly calls for a
fresh and extended view on the frequency and temperature de-
pendence of the optical conductivity in Luttinger semimetals.
Note that the existence of plasmon excitations in the normal
state has recently been addressed in Ref. [40].

In half-Heusler superconductors the presence of a QBT
point close to the Fermi energy is supported by extensive
density functional calculations of the band structure [4]. (A
small linear admixture to the QBT is generally expected due
to the noncentrosymmetric crystal structure [20], but its effect
on the low-energy physics can be estimated to be subleading
for realistic EF [27].) Importantly, several compounds have
an inverted band structure and become superconducting at
temperatures around 1 K [3,41–43]. Given the low density
in these materials, reflected by a small value of EF, such
critical temperatures need to be considered high and seem to
require a more complex mechanisms than phonon mediated
attraction [19].

The case for unconventional superconductivity in the half-
Heuslers was strengthened enormously by a recent measure-
ment of the London penetration depth in YPtBi [6] by the
Paglione group, which shows an almost linear temperature
dependence of the observable at low temperatures T/Tc ∼
0.1, and thereby indicates the presence of line nodes in the
gap. Whereas this eliminates the possibility for a pure s-wave
gap, the spin-3/2 nature of the fermions at the QBT point
allows us to construct many other pairing channels (with
or without even-odd-parity mixing) that feature line nodes.
Since the associated orders are typically tensorial in nature,
an angular resolved measurement of the optical properties
appears to be a first step towards eliminating certain candidate
orders. More generally, a solid understanding of how distinct
superconducting orders contribute to the frequency and di-
rectional dependence of the optical conductivity in Luttinger
semimetals could be central to discerning which pattern is
realized in a given material in future experiments.

The scope of this work is therefore to set up a framework
for studying the optical response of Luttinger semimetals
in the normal and superconducting phase that allows us to
address the challenges described above and support future
experimental explorations of QBT systems. We use a purely
field theoretic approach starting from the path integral to
arrive at the optical conductivity in the linear response regime
within the random phase approximation (RPA). In particular,
we formulate the theory such as to allow for the complex
and unconventional superconducting orders that are possible
in the system. We recover the expressions for the longitu-
dinal response in the normal state of Ref. [39] and extend
these works by addressing anisotropic corrections, gauge
invariance, transverse response, and momentum dependence
of response functions. We derive general formulas for the
response functions in superconductors with a QBT point and
apply them to the s-wave singlet superconductor as a proof of
principle. Since the experiments for superconducting YPtBi
are in the clean limit [41], we do not consider the effects of
disorder in the present work.

FIG. 1. The contributions to the dielectric tensor εi j (ω, p) can be
split into three parts. The first two arise from intraband transitions
within, respectively, the upper or lower band, and as such can be
computed without knowledge of the other bands. In contrast, inter-
band transitions or genuine QBT contributions are not captured by a
single-band model. They encode, however, many important physical
features of Luttinger semimetals. For instance, in the normal state
they lead to a divergent contribution at low frequency as EF → 0, or
they contain the response from Bogoliubov Fermi surfaces in certain
time-reversal symmetry breaking superconducting states—a feature
entirely absent in single band systems.

The picture that appears on the RPA level, and which
underlies the interpretation of the experiments in Ref. [5], is
illustrated in Fig. 1. The optical response functions, given by
the dielectric tensor εi j (ω, p) or conductivity tensor σi j (ω, p),
decompose into a sum of intraband and interband transitions.
The intraband contribution can be obtained from knowledge
of the optical response of a single parabolic band, for instance
by the usual Drude or Lindhard formulas in the normal state.
The interband contribution, on the other hand, is a genuine
contribution due to the QBT that cannot be captured by the
theory for a single band. (We therefore also refer to it as “QBT
contribution.”) It also constitutes the anomalous contribution
observed in Ref. [5]. We write

ε(ω, p) = 1 + ε(intra)(ω, p) + ε(QBT)(ω, p), (1)

ε(intra)(ω, p) = ε(upper)(ω, p) + ε(lower)(ω, p). (2)

For nonzero EF, one may expect only the band that is
pierced by the chemical potential to contribute significantly
to the response, whereas all other filled or empty bands
are irrelevant. In Luttinger semimetals the QBT contribution
quantifies how inaccurate this picture can be. On a more
technical level, the interband contribution is conveniently
incorporated by keeping the full 4 × 4 structure of the un-
derlying Luttinger Hamiltonian [44] instead of projecting it
onto the two-dimensional basis spaces for the upper and lower
band. This conveniently incorporates interband transitions. It
also accounts for the presence of Bogoliubov Fermi surfaces
in certain time-reversal symmetry breaking superconducting
states in QBT systems [23,45,46].

This work consists of two major parts. In the first or main
part, after a review of the Luttinger Hamiltonian and optical
response functions, we present the relevant formulas for the
dielectric function and optical conductivity in the normal
and s-wave superconducting phase and discuss their features.
This presentation is intentionally left concise and does not
illuminate any details on how the results were obtained. The
formulas are either given in fully analytic form or as one-
dimensional integrals. In order to facilitate the comparison
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with experiment, results are presented in SI units, displaying
the effective band mass m∗ explicitly in all formula. (We
employ h̄ = kB = 1 throughout the article though.)

In the Supplemental Material (SM) [47] we give a self-
contained derivation of the optical response of QBT Hamil-
tonians starting from the path integral, and then present the
detailed calculation of the response functions presented in the
main part. This extensive discussion of the setup also allows
us to fix our notation and conventions, and set the stage for
future works. Sections and equations in the SM are indicated
by a prefix “S.” The results for the normal state are derived
in Sec. S.III and the results for the superconducting state
in Sec. S.IV. We show that the QBT contribution satisfies
gauge invariance in the normal state in Sec. S.III.C and
derive the transverse current response in Sec. S.III.D. Al-
gebraic conventions and matrix representations are specified
in Sec. S.II. In the SM we work with Gauss units and set
2m∗ = 1.

II. LUTTINGER SEMIMETALS

We assume the band structure of the QBT point to be
described by the Luttinger model. The corresponding 4 × 4
electronic single-particle Hamiltonian [44] reads

Ĥ =
(

α1 + 5

2
α2

)
p̂214 − 2α3(p̂ · �J )2 + 2(α3 − α2)

3∑
i=1

p̂2
i J2

i .

(3)

Here p̂ = −i∇ is the momentum operator and �J =
(J1, J2, J3)T encompasses the spin-3/2 matrices. The Lut-
tinger parameters α1, α2, α3 characterize the specific details
of the QBT in a given material and may be determined
experimentally or from first-principle electronic band struc-
ture calculations. The number of such independent param-
eters is dictated by the symmetries that govern the low-
energy excitations. Equation (3) captures the most general
QBT Hamiltonian in the presence of time-reversal, inversion,
and cubic point group symmetry. The number of indepen-
dent parameters decreases upon imposing further symmetry
constraints.

In order to elucidate the interplay between symmetry and
band structure in the Luttinger model, we define the effective
band mass m∗ by

1

2m∗ = |α2 + α3|, (4)

the particle-hole asymmetry parameter by

x = α1

|α2 + α3| , (5)

and the spatial anisotropy parameter by

δ = α3 − α2

α2 + α3
∈ [−1, 1]. (6)

The single-particle energies that follow from the Luttinger
Hamiltonian then take the form

E±(p) = α1 p2 ±
⎡
⎣4α2

2 p4 + 12
(
α2

3 − α2
2

)∑
i< j

p2
i p2

j

⎤
⎦

1/2

= 1

2m∗

⎛
⎝xp2 ±

⎡
⎣(1 − δ)2 p4 + 12δ

∑
i< j

p2
i p2

j

⎤
⎦

1/2⎞
⎠.

(7)

Each eigenvalue is doubly degenerate due to time-reversal and
inversion symmetry. We consider here the band inverted case
which corresponds to

|x| < 1. (8)

The band structure then features an upper band with positive
energies E+ and a lower band with negative energies E− for
nonzero momenta. Furthermore, for x = 0 the spectrum of
excitations becomes particle-hole symmetric, whereas δ = 0
implies a spatially isotropic band structure with

E±(p) = (x ± 1)

2m∗ p2, (9)

corresponding to an effective upper and lower band mass of

m∗
up = m∗

1 + x
, m∗

low = m∗

1 − x
, (10)

respectively. Although in a given material at hand these
symmetries may not be realized exactly, it is a useful sim-
plification to neglect x and δ in calculations as long as
these parameters are small compared to unity. Therefore,
unless stated otherwise we set x = δ = 0 in this work, but
discuss the influence of nonvanishing x and δ on the homo-
geneous response functions in the normal state at the end of
Sec. IV B.

A particularly important role for the faithful description of
experimental data by means of the Luttinger model is played
by the chemical potential μ. For our investigation we allow
μ to have either sign, and define the Fermi energy and Fermi
momentum from its modulus according to

EF := p2
F

2m∗ := |μ|. (11)

The condition that the low-energy physics are captured by
the QBT in the band dispersion then implies that EF 	 Eκ ,
where Eκ = κ2/(2m∗) is an “ultraviolet” energy scale where
either the electronic band structure deviates significantly from
the quadratic dispersion for q > κ , or where other low-energy
degrees of freedom such as phonons become relevant. On the
other hand, the parabolic band structure may be screened by a
linear band structure at low momenta that results, for instance,
from adding Ĥlin = β1(p̂ · �J ) + β2

∑
i piJ3

i to the Hamiltonian
in Eq. (3). Such contributions arise in noncentrosymmetric
materials due to asymmetric spin-orbit coupling, and their
presence implies a typical “infrared” energy scale Elin ∼
|β1,2|pF. Consequently, the linear terms can be neglected if
the chemical potential is sufficiently large so that Elin 	 EF

and, therefore, the relevant excitations at the Fermi level
are dominated by the quadratic terms. Consequently, in the
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following the limit μ → 0 needs to be understood within the
Luttinger model, meaning that the Fermi level is close enough
to the QBT point so that μ ≈ 0 is a good approximation,
but the chemical potential is still large enough so that lin-
early dispersing terms at even lower energies (if present) are
irrelevant.

III. OPTICAL RESPONSE FUNCTIONS

The electrodynamic properties of solids in the linear re-
sponse regime are encoded in the dielectric tensor εi j relating
electric displacement field �D and electric field �E according to
[48–50]

Di(ω, p) = ε0εi j (ω, p)Ej (ω, p). (12)

Here ε0 is the vacuum permittivity, ω and p constitute (angu-
lar) frequency and momentum of the incident electromagnetic
field, and we have defined εi j to be a dimensionless quantity.
Throughout this work we use the Einstein sum convention that
we sum over repeated indices. In the following we consider
nonmagnetic materials with permeability equal to 1. The
linear response is then equivalently expressed in terms of the
conductivity σi j given by

σi j (ω, p) = iωε0[δi j − εi j (ω, p)], (13)

which relates the internal current density �jint and electric field
according to

jint,i(ω, p) = σi j (ω, p)Ej (ω, p). (14)

In a spatially isotropic medium, the tensorial response
functions for nonzero p can be decomposed into longitudinal
(L) and transverse (T) components according to

σi j (ω, p) = σL(ω, p)
pi p j

p2
+ σT(ω, p)

(
δi j − pi p j

p2

)
. (15)

Crucially, a longitudinal (transverse) electromagnetic probe
field can only induce a longitudinal (transverse) response, i.e.,

�jint,L(ω, p) = σL(ω, p) �EL(ω, p), (16)

�jint,T(ω, p) = σT(ω, p) �ET(ω, p), (17)

with the usual definition of the longitudinal and transverse
parts of the vector fields. Equation (13) implies

σL(ω, p) = iωε0[1 − εL(ω, p)], (18)

σT(ω, p) = iωε0[1 − εT(ω, p)]. (19)

The advantage of studying σL,T(ω, p) over σi j (ω, p) lies in
the fact that the L and T components are scalar functions of
p = |p|, and so the limit p → 0 is defined unambiguously.

The experiments we attempt to quantify with our analysis
are such that the spatial inhomogeneity of the external probe
fields is irrelevant so that setting p = 0 is a valid approxima-
tion. In this limit, the distinction between L and T components
is meaningless and Eq. (14) provides a definition of σi j (ω, 0)
that does not require referencing to an external momentum.
The tensorial character of this quantity is necessarily trivial

and so

σi j (ω, 0) = σ (ω)δi j, (20)

which defines the homogeneous conductivity σ (ω). This
quantity also coincides with the p → 0 limit of the L and
T contributions when the limit is taken for ω > 0, as gen-
erally the limits p → 0 and ω → 0 do not commute. In
fact, although any spatial dependence of the electric field
is unimportant, in practice it will not be strictly zero. We
can then perform the limit p → 0 in Eq. (15) explicitly by
assuming (without loss of generality) that the strongest spatial
inhomogeneity of p is in the z direction, hence p ≈ (0, 0, p)T.
Then, by computing the individual components σi j (ω, p) in
the limit p → 0 and comparing to Eq. (20), we deduce that

ε(ω) = εL(ω, 0) = εT(ω, 0), (21)

σ (ω) = σL(ω, 0) = σT(ω, 0). (22)

Equations (21) and (22) allow us to conveniently discuss the
optical response of materials in terms of a single frequency-
dependent function.

In order to facilitate the comparison with experiment we
employ SI units here with ε0 = 8.854 × 10−12 F m−1 and
electric charge e = 1.602 × 10−19 C. For computing the re-
sponse functions from the underlying microscopic model, as
it is presented in the SM [47], we conveniently use Gauss
units. The corresponding electric charge in Gauss units will
be denoted by an overbar, and is given by ē = 1.519 ×
10−14 m3/2 kg1/2 s−1. Both quantities are related by

ē2 = e2

4πε0
. (23)

Furthermore, the dielectric function and conductivity in Gauss
units, denoted as ε̄ and σ̄ with an overbar, are defined from
�D(ω, p) = ε̄(ω, p) �E (ω, p) and �jint (ω, p) = σ̄ (ω, p) �E (ω, p).
They are mutually related by σ̄ (ω, p) = iω

4π
[1 − ε̄(ω, p)],

and are obtained from the response function in SI units by
means of

ε̄(ω, p) = ε(ω, p), (24)

σ̄ (ω, p) = 1

4πε0
σ (ω, p), (25)

with the charge translated according to Eq. (23).
Our approach to computing the optical response lies in

a field theoretic determination of the density-density re-
sponse function −χ (ω, p) and current-current response func-
tion −Ki j (ω, p) within RPA. We refer to the SM [47] for
their definition, and limit ourselves here to a brief discussion
of their key properties. We first note that gauge invariance
implies

ω2χ (ω, p) = −p2KL(ω, p). (26)

The L component of the dielectric function is given by

εL(ω, p) = 1 + 4π
χ (ω, p)

p2
, (27)
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and the conductivity reads

σi j (ω, p) = −4πε0

iω
Ki j (ω, p). (28)

Equation (26) guarantees that the L components satisfy σL =
iωε0(1 − εL). Furthermore, it implies that χ (ω, 0) = 0 for
ω > 0. For small momenta we may then expand the density
response in power of p and obtain

χ (ω, p) = Z (ω)p2 + O(p4). (29)

Consequently, in the limit p = 0 the dielectric function is
given by

ε(ω) = 1 + 4πZ (ω), (30)

and we have σ (ω) = −iω4πε0Z (ω) for the conductivity.
The function Ki j (ω, p) is useful for studying several im-

portant conceptual aspects of the optical response of media
[51]. First note that gauge invariance through Eq. (26) implies
KL(0, p) = 0. Hence the static response (meaning ω = 0) is
purely transverse. On a technical level, the absence of the
static L component requires a perfect cancellation between
the diamagnetic (d) and paramagnetic (p) contributions to the
current-current response. Referring to the SM [47] for details
of their definition, we note here that the response function is
naturally split into the diamagnetic and paramagnetic contri-
butions according to

Ki j (ω, p) = K (d)
i j (ω, p) + K (p)

i j (ω, p). (31)

Whereas the perfect cancellation is also valid for the static T
component in the normal state, this situation is fundamentally
altered in the superconducting state. Intuitively, the diamag-
netic contribution comes from all electrons of the system,
whereas only electrons on the Fermi surface contribute to the
paramagnetic term. Since electron excitations at the Fermi
surface are gapped (hence only thermally populated) in a
superconductor, the diamagnetic term then dominates over the
paramagnetic one. In this context, the superfluid density ns is
defined according to

lim
p→0

KT(0, p) = e2ns

4πε0m∗ . (32)

Clearly we have ns = 0 in the normal state. For a clean single-
band superconductor in the mean-field approximation, we
find that the paramagnetic contribution vanishes completely
at zero temperature, and the transverse response is entirely
given by the diamagnetic term K (d)

T (ω, p) = e2n
4πε0m∗ , and so the

superfluid density agrees with the electron density: ns = n. In
a more realistic setup, considering interaction and impurity
effects, we generally have ns < n even at zero temperature.

IV. NORMAL STATE RESPONSE

We begin our analysis of optical response in Luttinger
semimetals by considering systems in the normal state. Unless
explicitly stated we consider the particle-hole and rotationally
symmetric case with x = δ = 0, which encompasses the key
qualitative features of the optical response within the Lut-
tinger model as long as these parameters are small compared

to unity. The formulas presented here are derived in Sec. S.III
of the SM [47].

A. Scales and limits

The optical response in the normal state is determined by
the frequency and momentum of the probe field ω and p,
and the thermodynamic parameters μ and T . The density of
charge carriers within RPA reads

n = 2
∫

q

[
nF

(
q2

2m∗ − μ

)
+ nF

(
q2

2m∗ + μ

)]
, (33)

where we denote
∫

q = ∫ d3q
(2π )3 and nF(E ) = (eE/T + 1)−1. At

zero temperature we obtain

n0 := p3
F

3π2
= (2m∗|μ|)3/2

3π2
. (34)

This coincides with the density of carriers of a single parabolic
band at zero temperature since fluctuation effects between
electrons in distinct bands are suppressed in our mean-field
approximation.

In the following we consider two ways of taking the low-
momentum limit p2/(2m∗ω) → 0, which is typically well
satisfied for spectroscopic experiments. The first approach,
which we refer to as the homogeneous limit, corresponds
to taking the limit for a fixed ratio of ω/μ. This basically
corresponds to setting p = 0 in the response functions. Impor-
tantly, in the homogeneous limit, longitudinal and transverse
response coincide. The second way to perform the limit,
which we refer to as quasistatic limit, corresponds to keeping
the ratio ω/vp fixed, where

v := pF

m∗ =
√

2|μ|
m∗ (35)

is the Fermi velocity. Clearly p2

2m∗ω → 0 while ω
vp < ∞ im-

plies that ω 	 μ. The dominance of the chemical potential
over all other scales, on the other hand, is a common scenario
in solid state systems and thus clearly deserves consideration
here. If in addition ω/vp 	 1 we are in a regime such that

p2

2m∗ 	 ω 	 vp. (36)

These inequalities are often taken as the definition of the qua-
sistatic limit [49], so our definition is slightly more generous.
We summarize the setup in Fig. 2.

B. Homogeneous limit

The intraband contribution from the upper and lower bands
in the clean limit takes the usual form

ε(intra)(ω) = − ω2
p

ω(ω + i0)
, (37)

σ (intra)(ω) = − ε0ω
2
p

i(ω + i0)
, (38)
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FIG. 2. The low-momentum regime with p2/(2m∗) 	 ω natu-
rally decomposes into two sectors depending on whether the pro-
duct vp with Fermi velocity v ∝ √

EF is dominating or irrelevant
compared to the remaining energy scales such as ω or T . For
vp 	 ω, which amounts to setting p = 0 in practice, we obtain the
homogeneous limit, where L and T response coincide. For vp � ω,
on the other hand, frequencies are necessarily small compared to μ

and hence this regime is labeled the quasistatic limit. The inherent
momentum dependence of the response then implies that L and T
contributions differ.

with the plasma frequency ωp defined from the carrier density
n according to

ω2
p = ne2

ε0m∗ . (39)

The individual contributions from the upper and lower bands
to the conductivity are given by

ε(upper)(ω) = − 2e2

ε0m∗
1

ω2

∫
q

nF

(
q2

2m∗ − μ

)
, (40)

ε(lower)(ω) = − 2e2

ε0m∗
1

ω2

∫
q

nF

(
q2

2m∗ + μ

)
. (41)

The effect of nonmagnetic impurities can be included in
Eqs. (37) and (38) by a shift ω → ω + i/τ with scattering
time τ , or scattering rate 
 = τ−1. Assuming for simplicity
that the scattering rates for the upper and lower band are equal,
we obtain

ε(intra)(ω) = − ω2
p

ω(ω + i/τ )
, (42)

σ (intra)(ω) = ε0ω
2
pτ

1 − iωτ
. (43)

For large scattering rate, the conductivity is approximately
real and frequency independent. For small scattering rate
τ−1 → 0, on the other hand, Eq. (38) implies

σ
(intra)
1 (ω) = π

2

ne2

m∗ δ(ω), (44)

σ
(intra)
2 (ω) = ne2

m∗ω
(45)

for the real and imaginary parts. The δ-function in σ1(ω) is re-
stricted to non-negative frequencies, hence the normalization
with π/2.

The interband or QBT contribution to the dielectric func-
tion in the clean limit is given by [39]

ε(QBT)(ω) = e2

4πε0

√
m∗

ω
(1 + i)

− 2e2

ε0m∗

∫
q

nF
( q2

2m∗ − μ
)+ nF

( q2

2m∗ + μ
)

−(ω + i0)2 + q4/(m∗)2
. (46)

Here the first contribution is of particular significance. Its pe-
culiar form originates from the appearance of the square root
of iω after analytic continuation from Matsubara frequencies
p0, ip0 → ω + i0, according to

1√
p0

→ 1√−iω
= 1√

2ω
(1 + i). (47)

In the limit μ, T → 0, only the first line of Eq. (46) con-
tributes to the response, and we obtain a 1/

√
ω-divergent

low-energy response according to

lim
μ,T →0

ε(QBT)(ω) = e2

4πε0

√
m∗

ω
(1 + i). (48)

Since the intraband contribution from the upper and lower
bands vanishes in this limit, the optical response is then
entirely dominated by the interband transitions, and thus
genuinely different from a single band system.

For general μ and T , the imaginary part of Eq. (46) can be
computed analytically and reads

ε
(QBT)
2 (ω) = e2

4πε0

√
m∗

ω

[
1 − nF

(ω

2
− μ

)
− nF

(ω

2
+ μ

)]
.

(49)

In particular, at zero temperature we arrive at

ε
(QBT)
2 (ω) = e2

4πε0

√
m∗

ω
θ (ω − 2EF). (50)

In order to compute the real part of Eq. (46) for nonzero tem-
peratures, the integral can be evaluated for a small finite value
of i0 or in terms of the principal value. At zero temperature
we have

ε
(QBT)
1 (ω) = e2

4πε0

√
m∗

ω

[
1 − 2

π
arctan

(√
2EF

ω

)

− 1

π
ln

( |1 − √
ω/(2EF)|

1 + √
ω/(2EF)

)]
. (51)

In the limit ω → 0 we are left with a real response given by

ε(QBT)(0) = e2

2π2ε0

√
2m∗

EF
. (52)

We observe that a nonzero Fermi energy regularizes the 1/
√

ω

divergence of both the real and imaginary parts of the low-
frequency response. We display the temperature dependence
of the QBT contribution in Fig. 3.

In the spatially anisotropic case with δ 
= 0 (while still
keeping particle-hole symmetry so that x = 0), the intraband
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FIG. 3. QBT contribution to the homogeneous dielectric func-
tion ε(ω). We show the real and imaginary part in the upper and
lower plot, respectively, as a function of ω/EF. Here we normalize
the expressions by the zero temperature limit ε(0) = e2

2π2ε0

√
2m∗/EF.

The distinct curves (from bottom to top along the zero frequency
axis) correspond to T/EF values of 0 (black), 0.1 (orange), 0.3 (blue),
and 0.5 (magenta). At zero temperature we observe singular behavior
at ω = 2EF, which extends to an anomalously large, 1/

√
ω-divergent

contribution to both the real and imaginary parts of the optical
response as EF → 0. At nonzero temperature the functions remain
regular.

and interband contributions to the response functions factorize
into the isotropic formula and a δ-dependent prefactor. In
particular, this prefactor is identical for the individual terms,
and so we have an overall factorization according to

σ (ω) = λ(δ)√
1 − δ2

σ (ω)|δ=0. (53)

The factorization also holds for nonzero temperatures.
Here λ(δ) is a regular function for all values of δ and
can be computed numerically to arbitrary precision in terms
of the two-dimensional angular integral given in Eq. (S.164)
in the SM [47]. For all practical purposes the quadratic
approximation

λ(δ) = 1 − 1

10
δ + 229

280
δ2 + O(δ3) (54)

should be sufficient, which captures the exact function with
10% accuracy. Equation (53) then implies a divergent re-

FIG. 4. The homogeneous optical response for nonvanishing
spatial anisotropy δ gets renormalized by a prefactor λ(δ)/

√
1 − δ2

that diverges for strong anisotropy. This statement is true for both
the intraband and interband contributions, at both zero and nonzero
temperature, for x = 0. For δ = 0 we have, of course, λ(0) = 1.
The solid line shows the function λ(δ) computed from the two-
dimensional integral in Eq. (S.164) in the SM [47], whereas the
dashed line corresponds to the expansion around δ = 0 to quadratic
order from Eq. (54). The latter should be sufficient for all practical
purposes.

sponse in the strongly anisotropic limits δ → ±1, resulting
in an increase of conductivity. We display λ(δ) together with
the quadratic approximation in Fig. 4.

In the particle-hole asymmetric case with x 
= 0 (while
maintaining spatial isotropy δ = 0 for simplicity), the intra-
band contributions are obtained by replacing the mass m∗ with
the effective band masses from Eq. (10) and thus read

ε(upper)(ω) = − 2e2

ε0m∗
up

1

ω2

∫
q

nF

(
q2

2m∗
up

− μ

)
, (55)

ε(lower)(ω) = − 2e2

ε0m∗
low

1

ω2

∫
q

nF

(
q2

2m∗
low

+ μ

)
. (56)

The corresponding QBT contribution in the absence of
particle-hole symmetry is given by

ε(QBT)(ω) = e2

4πε0

√
m∗

ω
(1 + i)

− 2e2

ε0m∗

∫
q

nF
( q2

2m∗
up

− μ
)+ nF

( q2

2m∗
low

+ μ
)

−(ω + i0)2 + q4/(m∗)2
,

(57)

see our discussion at the end of Sec. S.III.A of the SM [47].
Therein we also describe how x 
= 0 can be implemented
easily when needed, which is necessary for studying the
optical response of materials with sizable x, while still keeping
|x| < 1 in order to have an inverted band structure. For the
half-Heusler material YPtBi, however, x � 0.17 is estimated
to be small [6,27]. Furthermore, x is an irrelevant parameter
in the sense of the renormalization group so that x → 0 for
μ = 0 and very low frequencies [18,22]. Hence for the rest
of the paper we assume x = 0, which additionally implies an
appealingly symmetric structure of the results.
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C. Quasistatic limit

We now discuss the intraband and interband contributions
in the quasistatic limit, where longitudinal and transverse
components differ. We begin with the zero temperature case
as it allows us to give analytical expressions for the response
functions. We assume x = δ = 0. The intraband contributions
to the longitudinal and transverse response functions in the
limit p2/(2m∗ω) → 0 with ω/vp held fixed read

ε
(intra)
L (ω, p) = n0e2

ε0m∗
3

v2 p2

[
1 − ω

2vp
ln

(
ω + vp + i0

ω − vp + i0

)]
,

(58)

ε
(intra)
T (ω, p) = − n0e2

ε0m∗
3

2v2 p2

{
1 + vp

2ω

[
1 −

(
ω

vp

)2
]

× ln

(
ω + vp + i0

ω − vp + i0

)}
. (59)

Here the logarithm for nonzero 0 
= r ∈ R is defined as

ln(r ± i0) =
{

ln r (r > 0),
ln(−r) ± iπ (r < 0). (60)

Note that the longitudinal contribution is logarithmically di-
vergent for ω = vp, whereas the transverse contributions re-
mains finite for this frequency. We plot the functions, together
with the finite temperature results presented below, in Fig. 5.

It is instructive to expand the response as a function of
ω/vp in the asymptotic regimes. For ω 	 vp we obtain

ε
(intra)
L (ω, p) = n0e2

ε0m∗
3

p2v2

[
1 + π

2

iω

vp
−
(

ω

vp

)2
]
, (61)

ε
(intra)
T (ω, p) = n0e2

ε0m∗
3π

4ω2

iω

vp

[
1 + 4

π

iω

vp
−
(

ω

vp

)2

+ · · ·
]
.

(62)

We observe that the leading L contribution is real, whereas the
T contribution is predominantly imaginary. Furthermore, the
L component is subleading compared to the T component, as
it is suppressed by an additional power of ω/vp. The response
functions in the quasistatic limit can also be expanded for
vp/ω 	 1, which yields

ε
(intra)
L (ω, p) = − n0e2

ε0m∗
1

ω2

[
1 + 3

5

(vp

ω

)2
+ · · ·

]
, (63)

ε
(intra)
T (ω, p) = − n0e2

ε0m∗
1

ω2

[
1 + 1

5

(vp

ω

)2
+ · · ·

]
. (64)

We observe to recover the homogeneous result in the limit
vp/ω → 0.

The interband or QBT contributions at zero temperature in
the quasistatic limit read

ε
(QBT)
L (ω, p) = e2

4π2ε0

√
2m∗

EF

{
1 + 3

2

(
ω

vp

)2

+ 3ω

4vp

[
1 −

(
ω

vp

)2
]

ln

(
ω + vp + i0

ω − vp + i0

)}
,

(65)

FIG. 5. Intraband contributions to the dielectric tensor in the
quasistatic limit as a function of ω/vp. Results are plotted in units
of n0e2

ε0m∗
3

p2v2 , the solid lines constitute the longitudinal response, the
dashed lines the transverse response. The zero temperature results,
shown in black, display singular behavior at ω = vp. In particular,
the real longitudinal component diverges logarithmically at this
point. At nonzero temperature the functions are regular, shown
here for T/EF = 0.1 (orange) and T/EF = 0.3 (blue). We observe
the leading contribution at small frequencies to be imaginary and
transverse. For large ω/vp � 1, longitudinal and transverse response
converge to the homogeneous limit.

ε
(QBT)
T (ω, p) = 5e2

8π2ε0

√
2m∗

EF

[
1 + 3

4

(
ω

vp

)−2
]

×
{

1 − 3

10

(
ω

vp

)2

− 3ω

20vp

[
1 −

(
ω

vp

)2
]

ln

(
ω + vp + i0

ω − vp + i0

)}
.

(66)

The corresponding real and imaginary parts are shown in
Fig. 6, together with the finite temperature results. Both
longitudinal and transverse response, although nonanalytic at
ω = vp, remain finite at this frequency. Expanding the QBT
contribution in powers of ω/vp we obtain

ε
(QBT)
L (ω, p) = e2

4π2ε0

√
2m∗

EF

[
1 − 3π

4

iω

vp
+ 3

(
ω

vp

)2

+ · · ·
]
,

(67)
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FIG. 6. QBT contribution to the dielectric tensor in the qua-
sistatic limit as a function of ω/vp. Curves are normalized by

e2

4π2ε0

√
2m∗/EF, and longitudinal (solid lines) and transverse (dashed

lines) contributions are shown for T/EF = 0 (black), T/EF = 0.1
(orange), and T/EF = 0.3 (blue). The interband contributions remain
finite at ω = vp, although showing nonanalytic behavior at zero tem-
perature. For large ω/vp we recover the large additive contribution
to the real part of ε(ω). For small ω/vp, the longitudinal contribution
settles at a real value which is half the homogeneous limit. The
transverse component diverges in both the real and imaginary parts
with the real part being most dominant. As a result, the limit ω/vp →
0 of εL,T(ω, p) is fully dominated by the QBT contribution, see the
discussion in the main text.

ε
(QBT)
T (ω, p) = 15e2

32π2ε0

√
2m∗

EF

( ω

vp

)−2

×
[

1 + 3π i

20

ω

vp
+ 11

15

(
ω

vp

)2

+ · · ·
]
. (68)

In contrast to the intraband response, both leading contribu-
tions are real. Furthermore, as ω/vp → 0 we observe that
the longitudinal response becomes frequency independent and
settles at half the homogeneous value for ω 	 μ given by

ε(QBT)(0) = e2

2π2ε0

√
2m∗
EF

. In contrast, the transverse contribu-

tion is divergent as ω/vp → 0. The quasistatic limit expres-
sions for vp/ω 	 1 read

ε
(QBT)
L (ω, p) = e2

2π2ε0

√
2m∗

EF

[
1 + 1

10

(vp

ω

)2
+ · · ·

]
, (69)

ε
(QBT)
T (ω, p) = e2

2π2ε0

√
2m∗

EF

[
1 + 7

10

(vp

ω

)2
+ · · ·

]
. (70)

In particular, for vp/ω → 0 we obtain the homogeneous re-
sult for ω 	 μ, whereas the nontrivial frequency dependence
of the homogeneous QBT contribution is lost in the quasistatic
limit at zero temperature.

The very distinct behavior of the intraband and interband
contributions as a function of ω/vp is striking. For large
ω/vp, and so in the homogeneous limit, the QBT contribu-
tion is frequency independent and amounts to the constant
anomalous contribution adding to the real part of ε(ω). For
small ω/vp, on the other hand, the intraband contributions are
suppressed by powers of ω/vp or (ω/vp)2. The QBT contri-
butions, on the other hand, are real and remain constant (lon-
gitudinal component) or diverge like (ω/vp)−2 (transverse
component). Hence the quasistatic limit is entirely dominated
by the interband transitions and so genuinely different from
systems with a single parabolic band.

At nonzero temperature the intraband contributions to the
longitudinal and transverse response in the quasistatic limit
are given by

ε
(intra)
L (ω, p) = 2e2

ε0m∗

∫
q

nF
( q2

2m∗ − μ
)+ nF

( q2

2m∗ + μ
)

−(ω + i0)2 + q2 p2/(m∗)2
, (71)

ε
(intra)
T (ω, p) = − e2

ε0ω

∫
q

nF
( q2

2m∗ − μ
)+ nF

( q2

2m∗ + μ
)

qp

× ln
(ω + qp∗ + i0

ω − qp∗ + i0

)
, (72)

with p∗ = p/m∗. We observe that a finite temperature regular-
izes the logarithmic divergence of the longitudinal contribu-
tion at ω = vp. The temperature dependence of the transverse
response is weak. The QBT contributions at finite temperature
read

ε
(QBT)
L (ω, p) = ε(QBT)(ω)

+ e2m∗

ε0

∫
q

nF
( q2

2m∗ − μ
)+ nF

( q2

2m∗ + μ
)

q4

×
{

1 − 6

(
ω

qp∗

)2

− 3ω

2qp∗

[
1 − 2

(
ω

qp∗

)2
]

ln

(
ω + qp∗ + i0

ω − qp∗ + i0

)}

(73)

and

ε
(QBT)
T (ω, p) = ε(QBT)(ω)

+ 15e2m∗

8ε0

∫
q

nF
( q2

2m∗ − μ
)+ nF

( q2

2m∗ + μ
)

q4

×
{(

ω

qp∗

)−2

+ 1

3
+ 8

5

(
ω

qp∗

)2

+ ω

10qp∗

[
1 − 8

(
ω

qp∗

)2
]

log

(
ω + qp∗+ i0

ω − qp∗+ i0

)}
.

(74)
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Here ε(QBT)(ω) is the homogeneous contribution from
Eq. (46). For nonzero temperature this term can have a resid-
ual (nonuniversal) dependence on ω/EF. For this note that for
a generic value of ω/vp ∼ 1, we have ω/EF ∼ p2/(2m∗ω).
Hence, although ω/EF → 0 in the strict quasistatic limit, a
finite value of p implies a nonzero value of ω/EF. This small
value of ω/EF does not affect the zero temperature value of
ε(QBT)(0) in Eq. (49). In fact, although the integrand has a
singularity at q2 = m∗ω, this singularity is not resolved at
T = 0 due to the infrared cutoff provided from the Fermi-
Dirac distribution, which limits the integration to q > pF. In
striking contrast, for T/EF > 0 the whole range of momenta
is supported due to the Fermi-Dirac distribution, and so every
small ω/EF 
= 0 contributes to the integral. In the curves
shown in Fig. 6 we suppress this nonuniversal contribution by
assuming p2/(2m∗ω) to be small enough so that ω/EF ≈ 0,
and so

ε(QBT)(ω) ≈ ε(QBT)(0)

= 2e2

ε0m∗

∫
q

1 − nF
( q2

2m∗ − μ
)− nF

( q2

2m∗ + μ
)

q4/(m∗)2
,

(75)

which is a universal function of T/EF.

V. SUPERCONDUCTING STATE RESPONSE

In this section, after reviewing some general facts about
superconductivity in Luttinger semimetals, we compute the
intraband and interband contributions to the homogeneous op-
tical response in the s-wave superconducting state. In particu-
lar, we derive explicit expressions for the QBT contribution to
the Drude weight factor and superfluid density within RPA for
both finite and zero chemical potential, which comprises weak
and strong coupling superconductors. The result presented
here are derived in Sec. S.IV of the SM [47].

A. Superconductivity in Luttinger semimetals

The complexity of the quadratic band touching point
in Luttinger semimetals allows for a rich variety of pos-
sible superconducting ordered states. The corresponding
Bogoliubov–de Gennes (BdG) Hamiltonian is given by

HBdG(p) =
(

Ĥ (p) − μ �̂(p)

�̂(p)† −Ĥ (p)T + μ

)
, (76)

with Ĥ (p) the Luttinger Hamiltonian from Eq. (3) and �̂(p)
a 4 × 4 gap matrix, so that the order parameter is given by
〈�̂(p)〉. In the simplest yet far from trivial case, the ordering
is local and the gap matrix momentum independent. It can
then be written as a sum of two parts according to

〈�̂〉 = (�14 + φi jJiJj )T , (77)

where T is the unitary part of the time-reversal operator (see
Sec. S.I of the SM [47] for an explicit definition). The first
term in Eq. (77) describes s-wave singlet superconducting
order with order parameter �, whereas φi j is a symmetric and
traceless complex tensor order parameter which represents
Cooper pairs having spin 2 [27,52]. The onset of complex

tensor order leads to very nontrivial momentum structures
of the gap, having either line nodes or inflated Bogoliubov
Fermi surfaces, that should manifest in nontrivial signatures
in the optical conductivity. We do not explore this highly
promising direction in this work, but refer to the next section
for an outlook on aspects that should be addressed in the
future.

For the present work we focus on the s-wave singlet
superconducting order and assume without loss of generality
that the order parameter is real, � ∈ R. The presence of a
nonzero expectation value � 
= 0 then leads to a full gap
in the excitation spectrum. For μ = 0, the opening of this
gap requires sufficiently strong short-range interactions in the
s-wave channel. At the critical coupling, the system features
a quantum critical point at zero temperature, with non-Fermi
liquid scaling of correlation functions and several other un-
usual scaling properties [18]. For μ 
= 0, an infinitesimally
small attraction in the s-wave channel is sufficient for ordering
below an (exponentially small) critical temperature due to the
Cooper instability. We therefore refer to the superconducting
states that arise for μ = 0 and μ 
= 0 as strong coupling and
weak coupling superconductors, respectively. In both cases
the transition is of second order and the gap �(T ) vanishes
continuously at the critical temperature. The temperature
dependence of the order parameter �(T ) follows from the
solution to an appropriate gap equation, which, however,
requires knowledge of the coupling constant of the material.
Since this quantity is generally not known in practice, we
present our results as a function of independent parameters
� and T , which comprises the same information and seems
more accessible.

The RPA is known to yield an insufficient description of
the optical response of superconductors in the single band
case as it leads to expressions that violate gauge invariance.
In particular, Eq. (26) for the longitudinal response is not sat-
isfied by the RPA expressions and thus leads to the question on
how to interpret the outcome of the approximate calculation. It
turns out that the RPA expression for the transverse response
can be used to define the optical conductivity, whereas gauge
invariance of the longitudinal components is restored by in-
cluding vertex corrections (see, e.g., Ref. [53] for a compre-
hensive discussion). We adopt this strategy for our analysis
here as well and define the conductivity in the homogeneous
case by

σ (ω) := − 4πε0

i(ω + i0)
KT(ω, 0). (78)

For small frequencies the conductivity behaves like [51,54]

σ1(ω) = π

2
δ(ω)

n′e2

m∗ , (79)

σ2(ω) = n′e2

m∗ω
, (80)

with Drude weight factor

n′ := 4πε0m∗

e2
lim
ω→0

KT(ω, 0). (81)

Note that just like in Eq. (44) we define the δ-function to be
restricted to ω � 0, which explains the prefactor of π

2 when
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going from Eq. (78) to (79). A quantity closely related to n′ is
the superfluid density defined by

ns := 4πε0m∗

e2
lim
p→0

KT(0, p). (82)

The superfluid density allows for computing the London
penetration depth.

B. s-wave singlet superconductor

Let us first discuss the superconductor with μ 
= 0 and
typically μ � ω, T,� for weak coupling, although we do
not impose the latter restriction on our formulas. The in-
traband contribution to the conductivity is of the form of
Eqs. (79) and (80) for all frequencies with Drude weight
factor

n′(intra) =
∫

q

(
2 − εq

Eq
[1 − 2nF(Eq)] + fq

Fq
[1 − 2nF(Fq)]

)
,

(83)

with upper and lower band quasiparticle dispersions

εq = q2

2m∗ − μ, Eq =
√

ε2
q + �2, (84)

fq = − q2

2m∗ − μ, Fq =
√

f 2
q + �2. (85)

Note that the paramagnetic term K (p,intra)
T (ω, 0) vanishes

within RPA, and so only the diamagnetic term con-
tributes to Eq. (81). Furthermore, for � 
= 0 the cancella-
tion between diamagnetic and paramagnetic contribution to
limp→0 K (intra)

T (0, p) is not perfect, and we obtain a finite
contribution to the superfluid density given by

n(intra)
s = n′(intra)

+ 4

3

∫
q

q2

2m∗

[
∂

∂Eq
nF(Eq) + ∂

∂Fq
nF(Fq)

]
. (86)

Notice that the term in the second line is negative and so
we have n′(intra) � n(intra)

s , with equality at zero temperature.
For vanishing gap, � → 0, the intraband contribution to the
Drude weight reproduces n from Eq. (33) and the superfluid
density vanishes.

The QBT contribution to the optical conductivity is given by

σ (QBT)(ω) = − e2/m∗

i(ω + i0)

∫
q

1

(ω + i0)4 − 4(ω + i0)2
[ q4

(2m∗ )2 + μ2 + �2
]+ 16μ2 q4

(2m∗ )2

×
{[

ω4εq − 4ω2εq(μ2 + �2) + 16μ�2 q4

(2m∗)2

]
1

Eq
[1 − 2nF(Eq)]

−
[
ω4 fq − 4ω2 fq(μ2 + �2) + 16μ�2 q4

(2m∗)2

]
1

Fq
[1 − 2nF(Fq)]

}
. (87)

For ω � � the response function resembles the features of
the normal state response, whereas for smaller ω ∼ � the
conductivity has the form of Eqs. (79) and (80) with

n′(QBT) = �2

μ

∫
q

(
1

Eq
[1 − 2nF(Eq)] − 1

Fq
[1 − 2nF(Fq)]

)
.

(88)

This expression is positive for either sign of μ. Remarkably,
the QBT contributions to n′ and ns coincide for all tempera-
tures,

n′(QBT) = n(QBT)
s for μ 
= 0, (89)

due to

lim
p→0

K (QBT)
T (0, p) = lim

ω→0
K (QBT)

T (ω, 0) (90)

for μ 
= 0. This also holds in the normal phase, where
n′(QBT) = n(QBT)

s = 0. Indeed, the normal state QBT contribu-
tion is finite for ω = 0 and μ 
= 0, and the singular part of
the optical response purely stems from the intraband terms.
Note that both the intraband and QBT contributions to the
Drude weight and superfluid density satisfy n′ � ns. (This is
also true in the case of μ = 0 discussed in the next section.)
Consequently, there is no violation of the necessary require-
ment that the superfluid density must not exceed the density

of charge carriers. In Fig. 7 we show the crossover of the
conductivity from the normal state behavior for ω � � to the
superfluid behavior for small ω ∼ �.

Equation (89) implies the usual exponentially weak tem-
perature dependence ∼e−�/T of the superfluid density and
penetration depth for small temperatures that is characteristic
for s-wave superconductors. In particular, for small temper-
atures T 	 Tc such as in the experiments of Ref. [6], the
temperature dependence of the gap �0(T ) that solves the
corresponding gap equation is weak for an s-wave supercon-
ductor and so we can assume �0(T ) ≈ �0(0) to be constant
at low temperatures.

C. Strong coupling superconductor

A conceptually interesting limit of the formulas from
the previous section consists in considering the case of
μ = 0. Such a superconductor with � 
= 0 can obviously
not be caused by the Cooper instability and requires very
strong coupling between fermions, but as a theoretic limit
it is still worthwhile to study. The gap � then constitutes
the only energy scale of the system at zero temperature,
and thus is the only quantity that alters the universal limit

ε(ω) = e2

4πε0

√
m∗
ω

(1 + i) in Eq. (48). Note that the strong
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FIG. 7. Crossover from normal to superfluid behavior in the QBT
contribution to the optical conductivity at T = 0. The black solid
line shows the result in the s-wave superconducting case with gap
�/EF = 0.1, whereas the black dashed line shows the corresponding
normal state result. The orange long-dashed line corresponds to the
low-frequency behavior n′(QBT)e2/(m∗ω) with QBT contribution to
the Drude weight from Eq. (88). We observe that σ2(ω) changes
sign and so connects the negative normal state limit for ω � � to
the positive Drude like scaling at low frequencies ω ∼ �. The same
behavior is found in the strong coupling case with μ = 0, see Fig. 8.

coupling required here to form the superconductor is remi-
niscent of the critical coupling for the existence of a bound
state or dimer of two-component fermions in vacuum (i.e.,
for μ = 0) [55,56], which leads to the phenomenology of the
BCS-BEC crossover for μ > 0 and is realized with Feshbach
resonances in ultracold Fermi gases [57–59].

The transverse response function for μ = 0 is given by

K (QBT)
T (ω, 0) = e2(4�2 − ω2)

2πε0m∗

∫
q

q2

2m∗ [1 − 2nF(Eq)]

Eq
[− (ω + i0)2 + 4E2

q

] ,
(91)

with Eq =
√

q4/(2m∗)2 + �2. We define σ (ω) through
K (QBT)

T (ω, 0) by Eq. (78). The corresponding optical conduc-
tivity is plotted in Fig. 8 for a representative set of tempera-
tures. The real part is given by

σ
(QBT)
1 (ω) = π

2
δ(ω)

n′(QBT)e2

m∗ + e2

4π
θ (ω − 2�)

√
m∗ω

×
(

1 − 4�2

ω2

)5/4

[1 − 2nF(ω/2)], (92)

with Drude weight factor

n′(QBT) = 2�2
∫

q

q2

2m∗
1

E3
q

[1 − 2nF(Eq)]. (93)

Similarly, the imaginary part for small ω follows Eq. (80) with
n′(QBT). Importantly, the conductivity is finite at ω = 2�. The
contribution to the superfluid density is given by

n(QBT)
s = 2�2

∫
q

q2

2m∗

(
1

E3
q

[1 − 2nF(Eq)] + 2

E2
q

∂

∂Eq
nF(Eq)

)
,

(94)

which is the μ → 0 limit of Eq. (88). We conclude that
n′(QBT) > n(QBT)

s for the superconductor with μ = 0 at fi-

FIG. 8. QBT contribution to the optical conductivity of a strong
coupling superconductor with μ = 0. The solid lines in the upper
and lower panel show the real and imaginary part, respectively, for
T = 0 (black), T/� = 1 (orange), and T/� = 2 (blue). We only plot
the regular part of σ1(ω), see Eq. (92). The dashed lines show the
corresponding normal state limit σ (ω) = e2

4π

√
m∗ω(1 − i) for μ =

T = 0. The real part displays threshold behavior at ω = 2�, whereas
the imaginary part changes sign at this frequency. As a result, the
imaginary part is negative for large frequencies—in agreement with
the negative normal state limit—and it is positive with Drude-like
behavior as in Eq. (80) for small frequencies.

nite temperature. At zero temperature we find the explicit
expression

n′(QBT) = n(QBT)
s = 2


(
5
4

)2

π5/2
(2m∗�)3/2, (95)

with Euler’s 
-function 
(z).
The case of μ = 0 allows us to make the shortcomings of

the RPA with respect to gauge invariance particularly visible.
In fact, Eq. (26) implies that gauge invariance requires

K (QBT)
L (ω, 0)

!= −ω2ZQBT(ω). (96)

However, the RPA equations for μ = 0 result in

K (QBT,RPA)
L (ω, 0) = (4�2 − ω2)Z (RPA)

QBT (ω), (97)

which also holds at finite temperature, see Eq. (S.336)
in the SM [47]. We added the superscript RPA to em-
phasize that these quantities deviate from the physical or
measurable observable which satisfy gauge invariance. If
we use Z (RPA)

QBT (ω) to define a conductivity by means of
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σ̃ (QBT)(ω) := −4πε0iωZ (RPA)
QBT (ω), then

σ̃ (QBT)(ω) = ω2

ω2 − 4�2
σ (QBT)(ω). (98)

This quantity differs from σ (QBT)(ω) in two crucial aspects:
First, the imaginary part σ̃

(QBT)
2 (ω) has a divergence at ω =

2�. Second, for ω → 0 we have σ̃
(QBT)
2 (ω) ∼ − n′(QBT)e2

4m∗�2 ω →
0, and so there is no Drude-like behavior at small frequencies.
We leave it for future work to study how gauge invariance can
be restored by including corrections that go beyond the RPA.

VI. SUMMARY AND OUTLOOK

In this work we have explored the optical conductivity
of Luttinger semimetals in the normal and superconducting
states. The motivation for this investigation is, on the one
hand, recent experiments on the optical properties of py-
rochlore iridates and half-Heusler superconductors, and, on
the other hand, the recent theoretical discovery of a plethora
of possible novel unconventional superconducting orders in
QBT materials. Thus, although the optical properties of QBT
systems in the normal state have been studied before in the
context of α-Sn [39,60,61], these current experimental and
theoretical developments call for a more refined understand-
ing of the electromagnetic properties of Luttinger semimetals,
especially when interactions are strong or the material is in the
superconducting state.

Our analysis has been built on the RPA, which consti-
tutes the natural first step towards understanding the optical
response functions. Crucially, in our analysis we have kept
the full internal 4 × 4 structure of the Luttinger Hamiltonian,
which results in considerably unwieldy computations, but
allows us to identify both intraband and interband contribu-
tions in an unbiased way. In the normal state, the genuine
QBT contribution from interband transitions is large at low
frequencies in the homogeneous limit, and it dominates the
quasistatic limit. Furthermore, in the superconducting state
the contribution from interband transitions is important to
capture effects that are absent for single band systems. In
particular, this includes Bogoliubov Fermi surfaces of cer-
tain superconducting orders in Luttinger semimetals. In the
present work we have derived the general expression for the
optical response in the superconducting state and applied it
to the s-wave singlet superconducting case, where we find a
genuine QBT contribution to the superfluid density and Drude
weight.

The results that are shown in the main text of this work
are either analytically evaluated or in terms of simple one-
dimensional integrals. To achieve this simplicity we have
restricted the presentation to the homogeneous and quasistatic
limits, which are by far the most practically relevant ones.
However, the full frequency and momentum dependence for
the normal state response can be inferred from Eq. (S.225)
for K (QBT)

T and Eq. (S.262) for χQBT in the SM [47]. In
particular, in Sec. S.III.C [47] we show that the longitudinal
QBT component satisfies the gauge invariance condition (26)
for all values of ω and p, and so K (QBT)

L can be deduced from
χQBT. This leaves us with a consistent picture in the normal

state, where the L component of ε
(QBT)
i j can be computed from

either the density or current response functions.
The consistent picture of the normal state response is

absent at the RPA level in the superconducting state, where
χ (RPA) and K (RPA)

L do not satisfy the gauge invariance condi-
tion (26). Consequently an ambiguity arises when defining,
for instance, the homogeneous conductivity σ (ω) from either
of the two functions. This is a well-known feature for the
single parabolic band, and a way around consists in either
including vertex corrections to restore gauge invariance, or to
use the transverse component of the current response function
to define σ (ω). We applied the second strategy here to infer
the QBT contribution in the superconducting state, which
gives the conveniently short expression for the conductivity in
Eq. (87), but since we have not considered the effect of vertex
corrections it is too early to conclude whether this approach
is correct. For the superconductor with μ = 0 we discussed in
Eqs. (96)–(98) how the conductivity in the homogeneous limit
differs qualitatively when defined from either KT or χ .

The present work can be extended in several directions, out
of which we name a few in the following. One application
in the normal and superconducting state is to quantify the
anomalous skin effect in Luttinger semimetals, both in the
normal and superconducting phase. In fact, the quasistatic
limit q2/(2m∗) 	 ω 	 vp considered above is typically re-
ferred to as an “extreme anomalous limit” in superconduc-
tors. The corresponding intraband contribution from the up-
per band has been derived in the seminal works by Mattis,
Bardeen [62], and by Abrikosov, Gor’kov, and Khalatnikov
[63]. Since we have found the normal state response in the
quasistatic limit to be dominated by the QBT contribution,
the behavior of Luttinger semimetals is likely to be distinc-
tively different from single band systems in the anomalous
limit, with striking observable effects in both the normal and
superconducting states.

The optical response in other than s-wave singlet supercon-
ducting states can be obtained by using the general expression
for the fermion propagator in the mean-field approximation
in Eq. (S.102) in the SM [47] with a suitable gap matrix
�̂ and repeating the steps outlined in Sec. S.IV. In fact,
two very interesting and important cases are covered by the
local gap matrix from Eq. (77) with φi j 
= 0: (i) By choosing
a real tensor φ 
= 0, the effect of nematic superconducting
order on the optical response can be probed. In particular, the
nematic orders feature line nodes of the gap and a spontaneous
breaking of rotation symmetry. It will be exciting to see how
both effects manifest in the optical response and how they
relate to the measurements on half-Heusler superconductors.
(ii) Choosing a genuinely complex tensor φ such that tr(φ2) =
0 we can study superconducting orders that spontaneously
break time-reversal symmetry and lead to Bogoliubov sur-
faces in the gap [23,45,46]. Again, this very intriguing finding
calls to be explored within the framework of electromagnetic
response functions.

In order to study the effects of strong interactions and criti-
cal fluctuations on the optical response of Luttinger semimet-
als, it is mandatory to go beyond the RPA. First, Coulomb
interactions between the electrons are relevant and famously
lead to Abrikosov’s non-Fermi liquid scaling of correlation
functions (at least within certain regimes). Second, in the
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vicinity of a quantum critical point, as may be the case for
Pr-227 as discussed in the Introduction, critical fluctuations
of the order parameter can modify the nature of fermionic
excitations. To solve such a setup self-consistently is a very
challenging task and worth exploring. In a less ambitious
attempt, however, it will also be interesting to assume that the
mentioned strong interactions merely result in a renormaliza-
tion of the fermion propagator and then use the renormalized
propagator to estimate the optical response function from the
fermionic one-loop diagram. Furthermore, the infrared regime
can be addressed self-consistently by a scaling or renormal-
ization group approach to infer the scaling exponents. These

theoretical studies will help to design and interpret future
experiments on Luttinger semimetals.
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