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Fermi-liquid ground state of interacting Dirac fermions in two dimensions
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An unbiased zero-temperature auxiliary-field quantum Monte Carlo method is employed to analyze the nature
of the semimetallic phase of the two-dimensional Hubbard model on the honeycomb lattice at half filling. It is
shown that the quasiparticle weight Z of the massless Dirac fermions at the Fermi level, which characterizes the
coherence of zero-energy single-particle excitations, can be evaluated in terms of the long-distance equal-time
single-particle Green’s function. If this quantity remains finite in the thermodynamic limit, the low-energy
single-particle excitations of the correlated semimetallic phase are described by a Fermi-liquid-type single-
particle Green’s function. Based on the unprecedentedly large-scale numerical simulations on finite-size clusters
containing more than 10 000 sites, we show that the quasiparticle weight remains finite in the semimetallic phase
below a critical interaction strength. This is also supported by the long-distance algebraic behavior (∼r−2, where
r is distance) of the equal-time single-particle Green’s function that is expected for the Fermi liquid. Our result
thus provides a numerical confirmation of Fermi-liquid theory in two-dimensional correlated metals.
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I. INTRODUCTION

The characterization of different phases of matter is one
of the essential issues in solid state physics. In the field of
strongly correlated electrons, the correlation-induced metal-
insulator transition [1] is of particular importance since the
itinerancy and localization of electrons [2,3] can be regarded
as a many-electron realization of the wave-particle duality, the
fundamental concept of quantum mechanics.

The Hubbard model [4–6] is certainly one of the most
important models in condensed matter physics since it has
inspired many ideas and led to milestone achievements for
understanding the fascinating properties of the metal-insulator
transition. In particular, a semimetal-insulator transition oc-
curs in the Hubbard model in a certain class of lattices where
massless Dirac-like dispersion appears in the noninteracting
limit, and has therefore been a subject of intense activity
in recent years. Since such models can be constructed on
bipartite lattices and thereby they are free from the negative-
sign problem, the numerically exact auxiliary-field quantum
Monte Carlo (AFQMC) method has played a major role in the
study of this semimetal-insulator transition. To determine the
ground-state phase diagram, most of the previous calculations
have focused on the order parameters in the insulating phase,
including the single-particle excitation gap and the antiferro-
magnetic spin-structure factor [7–10]. Variants of such models
have been further extended recently by coupling interacting
Dirac fermions to Ising spins [11] or by introducing disor-
dered transfer integrals [12].

On the theoretical side, the Green’s-function-based for-
malism [13–17] of the Fermi-liquid theory [18] argues that

one of the most important characteristics in a correlated
metallic state is the quasiparticle weight Z at the Fermi level,
because finite Z implies the existence of coherent zero-energy
single-particle excitations. Although massless Dirac fermions
exhibit only Fermi points instead of full Fermi surfaces, the
quasiparticle weight Z remains well defined [19], despite that
the low-energy single-particle excitations and the electronic
transport can be substantially different from those in simple
metals [20,21]. In principle, Z can be estimated from the
imaginary-time-displaced single-particle Green’s function at
the Dirac point with the AFQMC method [22,23]. However,
the computation of imaginary-time-displaced quantities is
considerably more expensive and suffers from much larger
signal-to-noise ratio than the corresponding equal-time cor-
relations. This is probably the main reason for preventing
the calculation of Z in the semimetallic phase with the
AFQMC technique. In this regard, recently, three of us [24]
elucidated the quantum criticality emerging from the con-
tinuous semimetal-insulator transition with large-scale zero-
temperature AFQMC simulations [8,25–28]. So far, for inter-
acting Dirac fermion systems, Z has been estimated from the
momentum distribution function [24] or equivalently from the
off-diagonal equal-time Green’s function [29] at the momen-
tum closest to the Dirac node. However, no direct and sys-
tematic calculation of the quasiparticle weight for interacting
Dirac fermions has been reported yet. It should also be noted
that, in spite of the recent development of various numeri-
cal techniques and the continuous improvement of computer
performances, solid numerical evidence of the presence of
quasiparticles and, by consequence, clear validation of the

2469-9950/2019/99(12)/125145(10) 125145-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.125145&domain=pdf&date_stamp=2019-03-25
https://doi.org/10.1103/PhysRevB.99.125145


SEKI, OTSUKA, YUNOKI, AND SORELLA PHYSICAL REVIEW B 99, 125145 (2019)

Fermi-liquid theory, are still lacking for interacting fermions
on any two-dimensional lattices.

In this paper, we first show that the quasiparticle weight Z
of the massless Dirac fermions at the Fermi level can be evalu-
ated from the ratio of the interacting and noninteracting equal-
time single-particle Green’s functions in the long-distance
limit. The scheme is then demonstrated with the unbiased
zero-temperature AFQMC simulation for the Hubbard model
on unprecedentedly large finite-size clusters of the honey-
comb lattice at half filling. Based on the numerical results
for the quasiparticle weight, we address a fundamental and
long-standing issue: whether the Fermi liquid can be realized
in two spatial dimensions [30–32]. Our result implies that the
Fermi-liquid picture is valid in the correlated semimetallic
phase.

The rest of the paper is organized as follows. In Sec. II,
we define the Hubbard model on the honeycomb lattice and
describe the AFQMC method. In Sec. III, based on the Fermi-
liquid theory, we show that the quasiparticle weight Z of
interacting massless Dirac fermions is calculated from the
equal-time single-particle Green’s function. In Sec. IV, we
provide the numerical results, which strongly support the
Fermi-liquid behavior in the semimetallic phase. In Sec. V,
we summarize the paper and discuss the non-Fermi-liquid
behavior in graphene. In Appendices A and B, we analyze the
long-distance behavior of the equal-time Green’s function in
the semimetallic and insulating phases, respectively.

II. MODEL AND METHOD

A. Hubbard model on the honeycomb lattice

The Hamiltonian of the Hubbard model on the honeycomb
lattice is given by

Ĥ = Ĥt + ĤU , (1)

where

Ĥt = t
∑

i

∑
σ=↑,↓

(ĉ†
A,ri,σ

ĉB,ri,σ + ĉ†
A,ri+a1,σ

ĉB,ri,σ

+ ĉ†
A,ri+a2,σ

ĉB,ri,σ + H.c.) (2)

and

ĤU = U
∑

i

∑
α=A,B

n̂α,ri,↑n̂α,ri,↓. (3)

Here, ĉ†
α,ri,σ

(ĉα,ri,σ ) is a creation (annihilation) operator of a

fermion at unit cell i, located at ri = n(1)
i a1 + n(2)

i a2 (where
n(1)

i and n(2)
i are integer), and sublattice α (= A, B) with

spin σ (=↑,↓) and n̂α,ri,σ = ĉ†
α,ri,σ

ĉα,ri,σ (see Fig. 1). t is
the hopping integral between the nearest-neighbor sites of
the honeycomb lattice and U is the strength of the on-site
interaction. In this paper, we consider fermion density n f = 1,
i.e., half filling, for which the Dirac points are located exactly
at the Fermi level in the noninteracting limit.

Figure 1 shows the honeycomb lattice spanned by primi-
tive translational vectors a1 = a( 3

2 ,
√

3
2 ) and a2 = a( 3

2 ,−
√

3
2 )

with a being the lattice constant. A finite-size cluster of
the linear dimension L is defined by the two vectors
La1 and La2, containing Ncell = L2 unit cells and hence

FIG. 1. A finite-size cluster and a unit cell of the honeycomb
lattice. a1 = a( 3

2 ,
√

3
2 ) and a2 = a( 3

2 , −
√

3
2 ) are the primitive transla-

tional vectors with a being the lattice constant. The x and y axes are
indicated in the lower-left part of the figure. The small parallelogram
defined by a1 and a2 is the unit cell. The large parallelogram defined
by La1 and La2 is a finite-size cluster of L = 4. The filled (empty)
circles represent lattice sites belonging to sublattice A (B).

Nsite = 2Ncell = 2L2 sites. We choose the clusters of L =
8, 14, 20, 26, 32, 38, 44, 50, 62, and 74 under periodic
boundary conditions, for which the closed-shell condition
is satisfied [33]. The maximum size considered here thus
contains 10 952 sites, which is substantially (more than four
times) larger than the previous largest AFQMC simulations of
the two-dimensional Hubbard models [8,24].

B. Auxiliary-field quantum Monte Carlo method

We study the ground-state properties of the Hubbard model
Ĥ with the zero-temperature AFQMC method [25,26,28,34],
where the ground-state expectation value of an operator Ô is
evaluated as

〈Ô〉 = 〈�0|Ô|�0〉 = lim
τ→∞

〈�T|e−τ Ĥ/2Ôe−τ Ĥ/2|�T〉
〈�T|e−τ Ĥ |�T〉 , (4)

where |�0〉 is the normalized ground state of Ĥ , τ � 0 is the
projection time, and |�T〉 is a trial wave function such that
〈�0|�T〉 
= 0. We choose as |�T〉 the ground state of Ĥt , i.e.,
the Fermi sea.

The imaginary-time evolution is performed with
the second-order Trotter-Suzuki decomposition e−τ Ĥ =∏Nτ

l=1(e−�τ Ĥt /2e−�τ ĤU e−�τ Ĥt /2) + O(�2
τ ), where τ is

discretized into Nτ time slices with an interval �τ = τ/Nτ

and O(�2
τ ) is the systematic error due to the imaginary-time

discretization [35,36]. At each time slice l , the discrete
version of the Hubbard-Stratonovich transformation

e−�τ ĤU = C
∑
sA,1

∑
sB,1

· · ·
∑

sB,Ncell

exp

[
λ

∑
α,i

sα,i(n̂α,ri,↑ − n̂α,ri,↓)

]

(5)

is applied, where sα,i = ±1 is the auxiliary field on sub-
lattice α of the unit cell at ri, cosh(λ) = e�τU/2, and C =
(e−�τU/4/2)2L2

[37–39]. When this equation is used to evalu-
ate the full propagator

∏
l exp(−�τ Ĥ ), an explicit imaginary-

time (l) dependence of the field sα,i = sα,i(l ) appears in each
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time slice, according to Eq. (5). The multiple summation over
{sα,i(l )} is performed by the Monte Carlo method with the im-
portance sampling. The negative-sign problem does not arise
at half filling owing to the particle-hole symmetry [40]. In this
paper, we set �τ t = 0.1 without attempting the extrapolation
�τ → 0 because it already provides a satisfactory accuracy
(< 2%) in all correlation functions studied. Large enough
projection times τ t = 50 or equivalently Nτ = 500 (τ t = 80
or equivalently Nτ = 800) for clusters of L � 20 (L � 26) are
used to obtain the converged τ → ∞ results in Eq. (4).

C. Sparse-matrix exponential

One of the most computationally expensive operations in
the AFQMC method for large clusters is the multiplication
of e±�τ Ht (or e±�τ Ht /2) to the wave-function matrix or to
the Green’s function matrix, where H t is the (real-space)
matrix representation of Ĥt . Usually, e±�τ Ht is treated as
an Nsite × Nsite dense matrix with the spectral decomposition
e±�τ Ht = UT e±�τ DU , where U is a Nsite × Nsite orthogonal
matrix that diagonalizes Ht , i.e., H tU = UD. Although e±�τ D

is diagonal, U is generally dense and thus e±�τ Ht is dense.
Therefore, the computational cost of the matrix-matrix multi-
plication scales as O(N3

site ). Here, we describe an alternative
multiplication scheme of e±�τ Ht which is efficient for large
clusters by taking full advantage of the sparseness of H t .

In this scheme, we expand the matrix exponential as a
polynomial of degree M, i.e.,

e±�τ Ht ≈ I0(ρ�τ )I + 2
M∑

k=1

(±1)kIk (ρ�τ )Tk (H̃ t ), (6)

where I is the identity matrix, Ik (ρ�τ ) is the kth order
modified Bessel function of the first kind, ρ is the spec-
tral radius of Ht (ρ = 3|t | in the present case), and H̃ t =
H t/ρ. Tk (H̃ t ) is the kth order Chebyshev polynomial of the
first kind, which can be obtained iteratively as T0(H̃ t ) =
I, T1(H̃t ) = H̃ t , and Tk (H̃ t ) = 2H̃ t Tk−1(H̃ t ) − Tk−2(H̃t ) for
k � 2 [41–44]. A similar orthogonal-polynomial expansion
of the Boltzmann factor with the Legendre polynomial has
been employed in a finite-temperature dynamical density-
matrix-renormalization-group method [45]. As shown below,
we find that, for large Nsite, the multiplication of e±�τ Ht with
manipulating H t as a sparse matrix on the right-hand side of
Eq. (6) is faster than the direct multiplication of the dense
matrix e±�τ Ht , even when machine accuracy is reached with
large enough M.

Figure 2(a) shows the computational time of one space-
time Monte Carlo sweep with the two multiplication schemes
for fixed Nτ = 100, �τ t = 0.1, and U/t = 3.5. The same
initial auxiliary field configuration {sα,i(l )} with the same
random seed for the same random number generator is used
for both schemes. The stabilization (i.e., orthonormalization)
of the wave function [26,46,47] is made every ten time slices.
M = 8 (M = 7) is used for the expansion with ±�τ t (�τ t/2)
to achieve an accuracy of < 10−13 (see below). Since H t has
only zc (zc: the coordination number, i.e., zc = 3 for the hon-
eycomb lattice) nonzero matrix elements in each column and
row (thus, totally zcNsite nonzero elements), the computational
cost of the multiplication of e±�τ Ht to an Nsite × Nsite dense

FIG. 2. (a) Computational time of one space-time Monte Carlo
sweep with the two multiplication schemes (right axis) and speedup
of the sparse-matrix case in the polynomial expansion scheme rela-
tive to the dense-matrix case in the conventional scheme (left axis)
for Nsite = 2L2 with L = 20, 26, 32, 38, 44, 50, 56, 62, 68, and
74. The dashed line at Speedup = 1 is a guide to the eye. A single
thread is used for the calculations. (b) Speedup with multithreading
relative to the single-thread case. These benchmark calculations are
performed at the HOKUSAI GreatWave facility with SPARC64 XIfx
processors in RIKEN.

matrix scales as O(zcMN2
site ) when the polynomial expansion

scheme in Eq. (6) is employed. A convenient speedup larger
than one is achieved for Nsite � 2000 in our computing en-
vironment and increases with Nsite. Modern processors have
the possibility to perform several independent tasks, called
“threads” within the same computational unit. As shown in
Fig. 2(b), the speedup with threading is also as effective
as that in the dense-matrix case. Here, the compressed-row-
storage format (see for example Ref. [48]) is used to store
the nonzero matrix elements of H t within the polynomial
expansion scheme.

In analogy with the high-temperature series expan-
sion [49,50], the convergence of the polynomial expansion in
Eq. (6) with relatively small M is evident because usually �τ

is taken small (�τ t � 1) in the AFQMC simulation. Given a
desired accuracy ε for the polynomial expansion, M can be
determined to satisfy∣∣∣∣∣
∣∣∣∣∣e±�τ Ht−

(
I0(ρ�τ )I+2

M∑
k=1

(±1)kIk (ρ�τ )Tk (H̃ t )

)∣∣∣∣∣
∣∣∣∣∣
max

< ε,

(7)
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where ||A||max = maxi j |Ai j | is the maximum norm of A and
Ai j = [A]i j . We set ε = 10−13 and find that M = 8 (M = 7)
is the minimum value that satisfies the inequality Eq. (7) for
�τ t = 0.1 (�τ t/2 = 0.05 when e±�τ Ht /2 is expanded), irre-
spectively of the system size. This implies that the polynomial
expansion is well controlled and even does not introduce the
additional systematic error by terminating the expansion at
finite M as ε is negligibly smaller than the statistical error. Fi-
nally, we note that, if the degree M is the same, the Chebyshev
polynomial expansion in Eq. (6) gives better accuracy than the
Taylor expansion e±�τ Ht ≈ ∑M

k=0
(±�τ )k

k! Hk
t , in the sense that

the matrix norm of the difference from the exact e±�τ Ht is
smaller, for the model studied here.

Recently, a different approach to reduce the computational
effort of fermionic quantum Monte Carlo (QMC) simulations,
dubbed as effective momentum ultrasize QMC, has been pro-
posed and successfully used in some model systems [51,52].
This approach is designed to capture the low-energy physics
for original lattice models of interest. Finally, it is worth
mentioning that the checkerboard decomposition method for
the multiplication of e±�τ Ĥt [53] might be able to achieve
better performances by avoiding the dense-matrix multiplica-
tions, at the expense of an additional Trotter error required to
decompose Ĥt into two noncommuting terms.

III. QUASIPARTICLE WEIGHT

The main quantity considered here is the equal-time single-
particle Green’s function,

DAB,σ (r) = 1

Ncell

∑
r′

〈ĉ†
B,r′+r,σ ĉA,r′,σ 〉, (8)

where r denotes a relative spatial position of two unit cells at r′

and r′ + r, and the average 〈· · · 〉 = Tr[e−Ĥ/T · · · ]/Tr[e−Ĥ/T ]
is defined at a finite temperature T for the clarity of the fol-
lowing formulation. The zero-temperature limit will be taken
only at the end of the calculation. Since DAB,σ (r) represents
the probability amplitude that a hole created on sublattice A
in the unit cell at r′ propagates to sublattice B in the unit
cell at r + r′, the long-distance behavior of DAB,σ (r) should
enable us to distinguish whether the system is semimetallic or
insulating. Indeed, as shown in Appendices A and B, DAB,σ (r)
decays algebraically, with a prefactor proportional to Z , in
the semimetallic phase, while it decays exponentially in the
insulating phase.

A. Noninteracting limit

First, we analyze DAB,σ (r) in the noninteracting limit. For
this purpose, we diagonalize Ĥt as

Ĥt =
∑
k,σ

(|hk|ψ̂†
+,k,σ

ψ̂+,k,σ − |hk|ψ̂†
−,k,σ

ψ̂−,k,σ ), (9)

where hk = t (1 + e−ik·a1 + e−ik·a2 ), ψ̂+,k,σ =
1√
2
(ĉA,k,σ + eiθk ĉB,k,σ ), ψ̂−,k,σ = 1√

2
(ĉA,k,σ − eiθk ĉB,k,σ ),

eiθk = hk/|hk|, and ĉα,k,σ = N−1/2
cell

∑
i ĉα,ri,σ e−ik·ri . The

bonding- and antibonding-band energies are −|hk| and
|hk|, respectively. The zero-energy modes protected by
the chiral symmetry [54,55] appear at two inequivalent

momenta, K and K ′ points, which are specified by the
vectors K = 1

a ( 2π
3 , 2π

3
√

3
) and K ′ = 1

a ( 2π
3 ,− 2π

3
√

3
), respectively.

DAB,σ (r) in the noninteracting limit is now evaluated as

D(0)
AB,σ (r) = 1

Ncell

∑
k

〈ĉ†
B,k,σ

ĉA,k,σ 〉eik·r

= 1

2Ncell

∑
k

[nF(|hk|)− nF(−|hk|)] hk

|hk|eik·r (10)

=
T →0

− 1

2Ncell

∑
k 
=K,K ′

hk

|hk|eik·r, (11)

where the superscript (0) denotes that the quantity is in
the noninteracting limit. nF(E ) = 1/(eE/T + 1) is the Fermi
distribution function, which arises from the occupation of
the fermions 〈ψ̂†

±,k,σ
ψ̂±,k,σ 〉 = nF(±|hk|). The summand in

Eq. (10) exactly at the K and K ′ points is zero because
nF(|hK(K ′ )|) − nF(−|hK(K ′ )|) = 0 and thereby these two mo-
menta are excluded from the summation in Eq. (11).

We should note that, at variance with D(0)
AB,σ (r), D(0)

AA,σ (r) at
half filling gives merely a trivial r dependence, i.e.,

D(0)
AA,σ (r) = 1

Ncell

∑
k

〈ĉ†
A,k,σ

ĉA,k,σ 〉eik·r = 1

2
δr,0, (12)

because 〈ĉ†
A,k,σ

ĉA,k,σ 〉 = 1/2. Here, δr,0 = 1 when r = 0 and
zero otherwise. This is also the case when the interaction
U is finite because 〈ĉ†

Akσ
ĉAkσ 〉 = 1/2 as long as the particle-

hole symmetry is preserved. Therefore, DAA,σ (r) and similarly
DBB,σ (r) do not show any long-distance propagation of a hole
that can discriminate the nature of the different ground states.

B. Interacting case

To analyze DAB,σ (r) in an interacting system, we now
express this quantity with the single-particle Green’s func-
tion GAB,σ (r, iων ) in the Matsubara-frequency representa-
tion [56,57], i.e.,

DAB,σ (r) = T
∞∑

ν=−∞
GAB,σ (r, iων )

= 1

Ncell

∑
k

∮
C

dz

2π i
nF(z)GAB,σ (k, z)eik·r, (13)

where iων = (2ν + 1)π iT with ν integer is the
fermionic Matsubara frequency, GAB,σ (r, iων ) =
N−1

cell

∑
k GAB,σ (k, iων )eik·r, and the frequency sum is

converted to the contour integral. The contour C is chosen so
as to include all the singularities of GAB,σ (k, z), which lie on
the real axis, and therefore does not enclose the Matsubara
frequencies.

We now assume that the single-particle Green’s function
near the Fermi level has a Fermi-liquid-type pole [17], which
should be consistent with the particle-hole symmetry of the
model, i.e.,

Gσ (k, z) =
[

GAA,σ (k, z) GAB,σ (k, z)
GBA,σ (k, z) GBB,σ (k, z)

]

= Z

z2 − |h̃k|2
[

z h̃k

h̃∗
k z

]
+ (incoherent part), (14)
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FIG. 3. ln L dependence of ln |DAB,σ (rmax)| for (a) U/t = 3.5, (b) U/t = 3.7, and (c) U/t = 4. For comparison, the result for the
noninteracting case is also shown in (d). Lines are linear fit to the data of the form −α(Lmin ) ln L + b(Lmin ), where α(Lmin ) and b(Lmin )
are fitting parameters with Lmin being the minimum L used for the fit. The maximum L used for the fit is 74 for all cases, including (d).

where h̃k = (vF/v
(0)
F )hk with vF and v

(0)
F (= 3|t |a/2) being the

Fermi velocity of the interacting and noninteracting systems,
respectively, and Z is the quasiparticle weight at the nodal
Dirac point. The incoherent part is a function of z and the
singularities lie well away from the Fermi level.

By substituting GAB,σ (k, z) of Eq. (14) into Eq. (13) and
performing the contour integral, we obtain in the large-
distance limit (|r|/a � 1) that

DAB,σ (r) ≈ Z

2Ncell

∑
k

[nF(|h̃k|) − nF(−|h̃k|)] h̃k

|h̃k|
eik·r

=
T →0

− Z

2Ncell

∑
k 
=K,K ′

hk

|hk|eik·r = ZD(0)
AB,σ (r). (15)

Here, the incoherent part does not contribute to DAB,σ (r) in
the long-distance limit. This is because the singularities of
the incoherent part appear away from the Fermi level and
thus the contribution of the incoherent part to DAB,σ (r) decays
exponentially in |r| (see Appendix B). Note that the K and
K ′ points are excluded from the summation in Eq. (15), as
in the noninteracting case. This justifies the use of finite-
size clusters with L = 3n + 2 (or L = 3n + 1, where n is
integer) for our AFQMC simulations, where the closed-shell
condition in the noninteracting limit is convenient for accurate
simulations [33].

The form of DAB,σ (r) in Eq. (15) is quite natural as it
matches the simple substitution of the quasiparticle operators
ĉ†

B,r,σ �→ q̂†
B,r,σ = √

Zĉ†
B,r,σ and ĉA,r,σ �→ q̂A,r,σ = √

ZĉA,r,σ

into D(0)
AB,σ (r) [58]. The quasiparticle weight Z at the Fermi

point in the thermodynamic limit is now simply evaluated via
the ratio of the equal-time single-particle Green’s functions in
the long-distance limit, i.e.,

Z = lim
|r|→∞

DAB,σ (r)

D(0)
AB,σ (r)

. (16)

Since the Fermi velocity vF, another unknown quantity, does
not appear here, Z can be estimated independently of vF.
Finally, we emphasize that the above method for calculating
Z is applicable not only to the honeycomb lattice but also to
other two-dimensional lattices which possess massless Dirac
dispersions in Ĥt .

IV. NUMERICAL RESULTS

Employing the AFQMC method, we now examine numer-
ically the long-distance behavior of DAB,σ (r). As shown in
Appendices A and B, DAB,σ (r) decays in r = |r| as

DAB,σ (r) ∼ 1

r2
(17)

in the Fermi liquid, while DAB,σ (r) decays exponentially
in the insulating state. Figure 3 shows the cluster-size (L)
dependence of DAB,σ (rmax) for U/t = 3.5, 3.7, and 4, where
rmax = |rmax| is the maximum distance available in a given
finite-size cluster of linear dimension L (see Fig. 1). We take
rmax in the x direction to remove the phase factors in DAB,σ (r)
(for details, see Appendix A). The lines are linear fits to the
data of the form −α(Lmin) ln L + b(Lmin), where α(Lmin) and
b(Lmin) are fitting parameters with Lmin being the minimum L
used for the fit. As summarized in Fig. 4, α(Lmin) approaches
to 2 for U/t = 3.5 and 3.6, as expected for the Fermi liquid,
while α(Lmin) increases with Lmin for U/t = 3.8, 3.9 and 4,
indicating the insulating behavior. Only in the vicinity of

FIG. 4. Lmin dependence of α(Lmin ) for different values of U
indicated in the figure. For comparison, α(Lmin ) for U = 0 is also
shown by grey dots. The dashed lines indicate α = 2 and α = 2 + ηψ

with ηψ = 0.2.
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FIG. 5. The quasiparticle weight Z (L) given in Eq. (18) as a
function of 1/L. Lines are polynomial fits to the data for U/t = 3.5
and 3.6. The extrapolated values in the thermodynamic limit are also
shown at 1/L = 0. The quasiparticle weights estimated previously
from the jump of the momentum distribution function [24] are also
shown by stars next to the present results.

U/t � 3.7, we observe the non-Fermi-liquid behavior char-
acterized by the nontrivial exponent of 2 + ηψ , where ηψ �
0.2 [24] is the fermion anomalous dimension [59]. Therefore,
these results already imply that the semimetallic phase is a
Fermi liquid.

The value U/t � 3.7 where the non-Fermi liquid behavior
is observed is slightly different from the critical Uc/t ∼ 3.85
separating the semimetal and the antiferromagnetic insula-
tor [8,24]. We note that, alhough this paper includes larger
system sizes than the previous works, a systematic finite-size
scaling to determine Uc [24] has not been performed because
of the small number of U/t cases considered.

Next, we evaluate the quasiparticle weight on finite-size
clusters,

Z (L) = DAB,σ (rmax)

D(0)
AB,σ (rmax)

, (18)

as recently applied by the authors to identify the semimetallic
state on a triangular lattice [60]. For the Fermi-liquid ground
state, the quasiparticle weight in the thermodynamic limit, i.e.,
Z = limL→∞ Z (L), is finite. Figure 5 shows Z (L) as a function
of 1/L and lines are second-order polynomial fits of the form∑2

n=0 cnL−n to the data with {cn} being fitting parameters
determined by the least-squares method. The extrapolated
values of c0 = Z and their error bars in the thermodynamic
limit are also shown at 1/L = 0 for the semimetallic phase
where the Fermi-liquid-like asymptotic behavior is observed
in DAB,σ (r) (see Fig. 4). We find that these extrapolated
values are consistent, within two standard deviations, with our
previous results [24], which are estimated from the jump of
the momentum distribution function and indicated by stars
in Fig. 5. Our new calculations with Eq. (18) are not only
performed on the larger clusters but also more accurate as
the error bars are more than six times smaller, supporting the

validity of the Fermi-liquid theory in the semimetallic phase
of the Honeycomb lattice.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have shown by the AFQMC method that
a Fermi-liquid ground state is realized in the semimetallic
phase of the Hubbard model on the honeycomb lattice at half
filling. This conclusion is obtained by studying the asymptotic
behavior of the equal-time single-particle Green’s function
DAB,σ (r) ∼ 1/r2 and by providing firm numerical indication
of a finite quasiparticle weight Z in the semimetallic phase.
The finite Z immediately implies the presence of the quasi-
particles, each of which carries a spin 1

2 and a charge −e
(for many electron systems) with the Fermi surface unaltered
from the noninteracting one, due to the particle-hole sym-
metry [61,62]. In the vicinity of the quantum critical point,
the non Fermi liquid behavior characterized with a nontrivial
exponent is also probed directly by the asymptotic behavior of
DAB,σ (r).

Considering the Hubbard model as the minimal model for
graphene [63], our results imply a realization of Fermi liquid
in graphene, which has been often assumed, for example, in
Ref. [64]. However, because of the vanishing density of states
at half filling, the unscreened long-range Coulomb interac-
tions are certainly important for a more realistic modeling of
graphene to examine a possible non-Fermi-liquid behavior ac-
companied with the diverging Fermi velocity [65–72]. Indeed,
an anomalous increase of the Fermi velocity in graphene has
been reported experimentally [73]. The Hubbard-type models
with long-range Coulomb interaction [74] on the honeycomb
lattice might be promising to investigate the non-Fermi-liquid
state in graphene and also other possible many-body elec-
tronic states in carbon-based low-dimensional materials such
as condensed excitonic states [75,76].
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APPENDIX A: DAB,σ (r) IN THE SEMIMETALLIC PHASE

In this Appendix, we show that DAB(r) decays algebraically
in |r| for |r|/a � 1 in the semimetallic phase. First, we con-
sider the noninteracting limit. To examine the asymptotic form
of D(0)

AB,σ (r), we replace the sum over discrete k in Eq. (11) by
the integral over continuous k in the whole first Brillouin zone,

125145-6



FERMI-LIQUID GROUND STATE OF INTERACTING … PHYSICAL REVIEW B 99, 125145 (2019)

i.e.,

1

Ncell

∑
k

· · · → Scell

(2π )2

∫
d2k · · · , (A1)

where Scell = 3
√

3a2/2 is the area of the unit cell. This is jus-
tified in the thermodynamic limit and useful for analyzing the
low-energy and long-distance behavior. In the thermodynamic
limit, Eq. (11) now reduces to

D(0)
AB,σ (r) = −1

2

Scell

(2π )2

∫
d2k

hk

|hk|eik·r. (A2)

Since the long-distance behavior of D(0)
AB,σ (r) is dominated

by the low-energy spectrum around the Dirac (K and K ′)
points, it is convenient to measure the momentum from these
points. Around the K point, we write momentum as

k = K + q. (A3)

Expanding hk = hK+q around the K point with respect to q =
(qx, qy) and taking up to the linear term in q yields

hK+q = t
(
1 + e−i 4π

3 e−iq·a1 + e−i 2π
3 e−iq·a2

)
� t

[
1 + e−i 4π

3 (1 − iq · a1) + e−i 2π
3 (1 − iq · a2)

]
= 3ta

2
(iqx + qy). (A4)

The contribution to D(0)
AB,σ (r) from the momentum around the

K point is thus evaluated as

−1

2

Scell

(2π )2
eiK·r

∫
d2q

iqx + qy

q
eiq·r

= − 1

2

Scell

(2π )2
eiK·r

(
∂

∂rx
− i

∂

∂ry

) ∫
d2q

1

q
eiq·r

= − Scell

4π
eiK·r rx − iry

r3
, (A5)

where q = |q|, r = (rx, ry), and r = |r|. Here, the integral in
the second line is treated as

1

2π

∫ �

0
dq

∫ 2π

0
dφeiqr cos φ = 1

r

∫ r�

0
dsJ0(s), (A6)

where s = qr, J0(s) is the zeroth-order Bessel function of the
first kind, and � is a cutoff momentum of order � ∼ 1/a.
The upper bound of the integral satisfies r� � 1 because
our interest is in the long-distance (r/a � 1) behavior. Since
the long-distance behavior of the hole propagation should not
be affected by the cutoff momentum �, it is possible to set
r� → ∞. Then, the integral of the Bessel function can be
performed as

∫ ∞
0 dsJ0(s) = 1 and Eq. (A6) results in 1/r,

as in the Fourier transform (or the Hankel transform) of the
Coulomb potential in two dimensions,

1

2π

∫
d2q

1

q
eiq·r = 1

r
. (A7)

Therefore, the propagation of a hole is long ranged.

FIG. 6. Log-log plot of |D(0)
AB,σ (r)| with r = n(a1 + a2) =

(3na, 0) calculated directly using Eq. (11) on an L = 1000 cluster
up to |r|/a � 249 (red circles). The asymptotic algebraic decay of
Eq. (A11) is also shown by dashed line.

Similarly, around the K ′ point, we write the momentum as
k = K ′ + q. Then hK ′+q can be expanded as

hK ′+q = t
(
1 + e−i 2π

3 e−iq·a1 + e−i 4π
3 e−iq·a2

)
� t

[
1 + e−i 2π

3 (1 − iq · a1) + e−i 4π
3 (1 − iq · a2)

]
= 3ta

2
(iqx − qy). (A8)

The contribution to D(0)
AB,σ (r) from the momentum around the

K ′ point is thus evaluated as

−1

2

Scell

(2π )2
eiK ′ ·r

∫
d2q

iqx − qy

q
eiq·r

= −1

2

Scell

(2π )2
eiK ′ ·r

(
∂

∂rx
+ i

∂

∂ry

) ∫
d2q

1

q
eiq·r

= −Scell

4π
eiK ′ ·r rx + iry

r3
. (A9)

The asymptotic form of D(0)
AB,σ (r) for r/a � 1 is given by

the sum of Eqs. (A5) and (A9), i.e.,

D(0)
AB,σ (r) � −Scell

4π

(
eiK·r rx − iry

r3
+ eiK ′ ·r rx + iry

r3

)
. (A10)

Since the contributions from the K and K ′ points interfere with
each other, the r dependence of D(0)

AB,σ (r) is in general compli-
cated. Nevertheless, among several directions of r, one can
find that r in the x direction, i.e., r = n(a1 + a2) = (3na, 0)
with n integer, gives a simple asymptotic form

D(0)
AB,σ [n(a1 + a2)] � −Scell

2π

1

r2
(A11)

for r/a � 1. Figure 6 shows D(0)
AB,σ (n(a1 + a2)) calculated

directly on an L = 1000 cluster using Eq. (11), which is com-
pared with its asymptotic form in Eq. (A11). The agreement
of the two results for r/a � 1 verifies the algebraic decay of
D(0)

AB,σ (r), including the coefficient Scell/2π .
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In the case of an interacting system, it is apparent from
Eq. (15) that the asymptotic form of DAB,σ (r) for r/a � 1
under the assumption of Eq. (14) is given as

DAB,σ [n(a1 + a2)] � −Z
Scell

2π

1

r2
. (A12)

Therefore, in principle, the quasiparticle weight Z can be
estimated from the asymptotic behavior of the equal-time
single-particle Green’s function itself, without referring to the
noninteracting Green’s function.

As shown in Fig. 6, DAB,σ (r) of the noninteracting system
approaches its asymptotic form only at a very long distance in
a large cluster. This might also be the case for the interacting
systems. Therefore, the direct observation of the asymptotic
behavior of DAB,σ (r) is difficult within the cluster sizes af-
fordable at present within the AFQMC method. Nevertheless,
with an appropriate finite-size-scaling analysis, we can obtain
useful and reliable predictions on the asymptotic behavior,
within the available cluster studied by AFQMC. Indeed, we
have found that the quasiparticle weight can be estimated
more accurately from the finite-size scaling of the ratio of
DAB,σ (r) between the interacting and noninteracting systems
as in Eq. (18), instead of directly fitting the asymptotic behav-
ior of DAB,σ (r). On the other hand, the exponent characteriz-
ing the asymptotic behavior of DAB,σ (r) in the semimetallic
phase can be estimated with reasonable accuracy, also for the
noninteracting system, in the way shown in Figs. 3 and 4.

APPENDIX B: DAB,σ (r) IN THE INSULATING PHASE

In this Appendix, we show that DAB,σ (r) decays exponen-
tially in r for r/a � 1 in the insulating phase. The derivation
is essentially the same as that in Appendix A. The main
difference due to the finite single-particle excitation gap is that
the integral over q (the momentum measured from the Dirac
point), which yields a massless (Coulomb-potential-like) form
for the semimetallic phase as in Eq. (A7), now yields a
massive (Yukawa-potential-like) form for the insulating phase
as in Eq. (B4)

To examine the asymptotic form of DAB,σ (r) in the insu-
lating phase, we model the single-particle Green’s function
Gσ (k, z) with the same analytical form of an antiferromagnet-
ically ordered state, i.e.,

Gσ (k, z) ≈ 1

z2 − |h̃k|2 − �2

[
z − (−1)σ� h̃k

h̃∗
k z+(−1)σ�

]
,

(B1)

where (−1)σ ≡ +1 (−1) for σ =↑ (↓) and � is the gap
function corresponding to the staggered magnetization that
breaks the chiral symmetry [54,55]. Here, we assume that
the magnetization is along the z spin-quantization axis with
real � (> 0), for simplicity. The energy dispersion is obtained
by solving det G−1

σ (k, z) = 0 with respect to the frequency z,
i.e., ±

√
|h̃k|2 + �2, and thus it is massive. In particular, the

single-particle excitation gap at the K and K ′ points is 2�.

Inserting the model single-particle Green’s function into
Eq. (13) and taking the zero temperature limit, we can obtain
the equal-time single-particle Green’s function for the insulat-
ing phase, i.e.,

DAB,σ (r) = −1

2

Scell

(2π )2

∫
d2k

h̃k√
|h̃k|2 + �2

eik·r. (B2)

By expanding h̃k around the K point as in Eq. (A4), we find
that the contribution to DAB,σ (r) from the momenta around the
K point is given as

−1

2

Scell

(2π )2
eiK·r

∫
d2q

iqx + qy√
q2 + (�/vF)2

eiq·r

= −1

2

Scell

(2π )2
eiK·r

(
∂

∂rx
− i

∂

∂ry

)∫
d2q

1√
q2 + (�/vF)2

eiq·r

= −Scell

4π
eiK·r rx − iry

r3

(
1 − r�

vF

)
e−r�/vF , (B3)

where, with the same argument for Eq. (A6), the integral over
q is performed, as in the Fourier transform (or the Hankel
transform) of the Yukawa potential in two dimensions, i.e.,

1

2π

∫
d2q

1√
q2 + (1/ξ )2

eiq·r = e−r/ξ

r
(B4)

with

ξ = vF

�
. (B5)

The propagation of a hole is thus short ranged in the insulating
phase due to the finite single-particle excitation gap �.

With the propagation range ξ of a hole in the insulating
phase, Eq. (B3) can be written as

−Scell

4π
eiK·r rx − iry

r3

(
1 − r

ξ

)
e−r/ξ . (B6)

Similarly, the contribution to DAB,σ (r) from the momentum
around the K ′ point is evaluated as

−Scell

4π
eiK ′ ·r rx + iry

r3

(
1 − r

ξ

)
e−r/ξ . (B7)

Adding Eqs. (B6) and (B7) yields the asymptotic form

DAB,σ (r) � −Scell

4π

(
eiK·r rx − iry

r3
+ eiK ′ ·r rx + iry

r3

)

×
(

1 − r

ξ

)
e−r/ξ . (B8)

In the limit of ξ → ∞, i.e., � → 0, Eq. (B8) reduces to
the noninteracting limit in Eq. (A10). In conclusion, the
equal-time single-particle Green’s function DAB,σ (r) decays
exponentially in r in the single-particle-gapful system with a
characteristic length scale ξ given in Eq. (B5).
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