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Fundamental gaps of quantum dots on the cheap
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We show that the fundamental gaps of quantum dots can be accurately estimated at the computational effort of
a standard ground-state calculation supplemented with a non-self-consistent step of negligible cost, all performed
within density-functional theory at the level of the local-density approximation.
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I. INTRODUCTION

In single-electron transport through a semiconductor quan-
tum dot [1] (QD), an electron can pass from one reservoir (the
source) to another (the drain) when a voltage is applied. In
this process, an electron is first added to and then removed
from the dot. Assuming a weak coupling of the dots to the
reservoirs, the addition of an electron requires us to overcome
the so-called charging energy. Coulomb blockade resonances
arise in the conductance from the sequence of charging and
discharging the QD [2]. The interval between two consecutive
conductance peaks is the difference between the removal en-
ergy Er

N = EN−1 − EN and (the negative of) the addition energy
Ea

N = EN − EN+1, where EN is the ground state energy of the
QD with N electrons. Thus, the fundamental gap is defined as

GE,N := Er
N − Ea

N

= EN−1 − 2EN + EN+1. (1)

This quantity is useful in the evaluation of the electronic
properties of a QD, especially in the context of applying them
in a circuit or in lattices such as QD cellular automata.

In Kohn-Sham (KS) density-functional theory (DFT)
[3–5]—through the ionization potential theorem [6–11]—the
fundamental gap can also be expressed as follows [12]

Gε,N = εH,N+1 − εH,N, (2)

where εH,N is the energy of the highest (H) occupied KS
level for the system with N electrons—hence the subscript N ;
the corresponding orbital may be referred to as the highest
occupied “molecular” orbital (HOMO). Note that, throughout
this work, we are primarily concerned with nondegenerate
levels.

By mixing states with different integer electron numbers
and, thus, switching from DFT to ensemble DFT (EDFT)
[6,7,12], one finds that the fundamental gap can be expressed
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in terms of two contributions [11]

G�,N = �KS,N + �XC,N , (3)

where

�KS,N = εL,N − εH,N (4)

is the energy gap between the last occupied and the first un-
occupied KS levels. In εL,N, L refers to the lowest unoccupied
“molecular” orbital (LUMO) and N to the fact that this is an
eigenvalue of the KS system with N electrons. Finally,

�XC,N = lim
δN→0+

{vXC(r)|N+δN − vXC(r)|N−δN} (5)

is the exchange-correlation (xc) contribution that can be
obtained from the xc-potential vXC(r) for ensemble particle
densities. Thus, �XC,N is due to the discontinuities of vXC(r)
that can occur at integer electron numbers [6,13].

A few notes should be briefly made: (a) Eq. (3) is derived
by borrowing the expression of the Hartree energy from
regular DFT [see Eq. (9) below] by evaluating it on the
ensemble particle density. The result is a smooth functional
of N and, thus, the Hartree potential does not contribute to the
fundamental gap. But generalizations of the Hartree-xc energy
may also allow ‘Hartree-like’ contributions, with formal and
practical advantages [14–16]. In a different framework, a
similar expression to Eq. (3) is derived without invoking
fractional electron numbers [17]. Moreover, in a recently
derived framework, ensemble densities and corresponding xc
functionals are employed to tackle optical and fundamental
gaps in a unified fashion [18]. In this work, however, we stay
within the original EDFT formulation [6,7].

Finally, let us note that Eq. (2) together with Eq. (3) and
Eq. (4) imply

�XC,N = εH,N+1 − εL,N . (6)

Thus, it should be apparent that �XC,N yields in general a non-
vanishing contribution. Artificially confined many-electron
systems, such as QDs, can exhibit �XC,N of sizable magnitude
[1,19].

Although Eqs. (1), (2), and (3) give access to the same
fundamental gap (i.e., GE,N ≡ Gε,N ≡ G�,N), the procedures and
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corresponding computational efforts can differ substantially.
Equation (1) entails three distinct self-consistent calculations
performed for N − 1, N , and N + 1, respectively. On the other
hand, Eq. (2) requires two independent self-consistent calcu-
lations performed for N and N + 1. Finally, Eq. (3) involves
only one self-consistent calculation for N electrons, once the
limit in Eq. (5) is expressed analytically. Below, we come back
to this point when discussing the x-only contribution in detail.
Next, let us briefly discuss approximate calculations.

It is well known that the issue of getting vanishing �XC,N—
when local-density approximation (LDA) or generalized-
gradient approximation (GGA) is directly evaluated on the
ensemble densities as in Eq. (5)—can be overcome by adding
many-body corrections as in the GW calculations [20–23].
Nevertheless, here we stick to computationally less expensive
DFT-based approaches.

For finite systems, it has been shown that the LDA and
GGA forms may become useful if they are properly upgraded
to EDFT [15,16,24]. Here, instead, we proceed within a some-
what more traditional approach, to minimize both numerical
and formal efforts.

A reason of inaccuracy ascribed to procedures based on
LDA and GGA when computing fundamental gaps of atoms,
molecules, and their arrays through Eq. (2), has been the
overdamped tail of the xc potential, which does not bind the
outer electrons sufficiently (if at all). Non-Coulombic (e.g.,
harmonic) potentials can model effectively the confinement of
electrons in artificial nanostructures (such as semiconductor
interfaces). When such confinements are sufficiently strong,
the overdamped tail of the LDA or GGA xc potentials may
not have dramatic implications. Indeed, Capelle et al. [19]
have demonstrated that LDA calculations of fundamental gaps
based on Eq. (2) are equally accurate as those obtained from
Eq. (1). In the same work, excellent agreement between LDA
and full configuration interaction results [25] was also pointed
out. We discuss these cases in more detail below.

For the calculation of the fundamental gaps, meta-GGAs
(MGGAs) are promising alternatives but still with mixed
results [26–28]. A class of models for the xc potential (GGA-
like and MGGA-like) have stimulated a surge of attention
[29–35]. Due to their computational simplicity and reasonable
accuracy, they may offer a suitable tradeoff especially in
(pre)screening of large data sets [36].

Reaching a satisfactory accuracy in the calculation of fun-
damental gaps usually requires orbital-dependent functionals,
e.g., in the form of hybrids. In this case, the generalized
rather than the regular KS approach is adopted as a convenient
computational procedure, and a part of �XC,N is absorbed in the
corresponding generalized KS gap [37–42]. However, hybrid-
based calculations can be rather expensive computationally.

In this work, we show that accurate estimations of the
fundamental gap for QDs can be obtained by means of a
computationally straightforward procedure, which requires
a single set of self-consistent calculations supplied with a
non-self-consistent calculation of negligible computational
burden—all at the LDA level. Our attention was drawn to
such a procedure by earlier works [43,44] that have considered
atoms, molecules, and extended systems. Here, our focus is on
two-dimensional QDs—for which, we will also analyze the
case of x-only approximations extensively.

This paper is organized as follows. Theoretical preliminar-
ies illustrating the approach and the necessary computational
steps are given in Sec. II. Results of the applications are
reported in Sec. III. The paper is summarized with an outlook
in Sec. IV.

II. THEORY

In the following, as in the typical calculations reported
in the literature for QDs, we work within a spin-unrestricted
formulation. Furthermore, we focus on electrons which are ef-
fectively confined to two spatial dimensions, which is the case
of main interest when considering semiconductor QDs [1]. In
spin DFT [45] (SDFT), under the restriction of collinear spin
polarization, the total energy, E , of N interacting electrons in a
given (local) external potential (i.e., the confinement), v0σ (r),
can be expressed as a functional of the two spin densities
nσ (r) (with σ =↑,↓)

E [n] = TKS[n] + EH[n] + EXC[n]

+
∑

σ=↑,↓

∫
d2r v0σ (r)nσ (r) , (7)

where d2r is the infinitesimal volume in two dimensions, r =
(x, y) is the position vector and x and y are the coordinates,
n denotes the pair (n↑, n↓), and n = n↑ + n↓ is the total
particle density. TKS[n] is the kinetic energy of the Kohn-Sham
systems, which is defined as

TKS[n] =
∑

σ=↑,↓

Nσ∑
j=1

∫
d2r ϕ∗

jσ (r)

(
−∇2

2

)
ϕjσ (r) ; (8)

here the Laplacian takes into account only two-dimensional
partial derivatives, namely ∇2 = ∂2

x + ∂2
y . Nσ is the number

of electrons with spin σ , and N = N↑ + N↓. EH[n] is the
(Hartree) electrostatic interaction energy defined as

EH[n] = 1

2

∫
d2r

∫
d2r′ n(r)n(r′)

|r − r′| . (9)

Finally, E XC[n] is the exchange-correlation energy functional
that in practice needs to be approximated.

The KS single-particle orbitals are solutions of the equa-
tions [45]

−∇2

2
ϕjσ (r) + vKSσ [n](r)ϕjσ (r) = εjσ ϕjσ (r) . (10)

The KS potential may be decomposed as

vKSσ [n](r) = v0σ (r) + vH[n](r) + vXCσ [n](r) , (11)

where

vH(r)[n] =
∫

d2r′ n(r′)
|r − r′| , (12)

and

vXCσ [n](r) = δEXC[n]

δnσ (r)
. (13)

The exact spin densities can be calculated from the exact KS
orbitals, in principle, by summing njσ (r) = |ϕjσ (r)|2 over the
occupied single-particle states, nσ (r) = ∑Nσ

j=1 njσ (r).
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As mentioned in the introduction, the KS scheme provides
us with all the ingredients to compute the fundamental gap
either via differences of total energies [as in Eq. (1) ] or KS
eigenvalues [as in Eq. (2)]. In the next subsection, however,
we are after the third (approximate) procedure, which is sug-
gested by working with Eq. (3) at the level of the exchange-
only approximation.

A. From exact to approximate x-only expressions

Ensemble SDFT allows us to consider a fractional num-
ber of electrons, which are realized by mixing pure states
with different integer numbers of electrons. The ensemble
xc potential can jump by a well-defined (spin-dependent)
constant, whenever the number of electrons passes through an
integer value. This leads to an appealing way to compute the
fundamental gap [6] [see Eq. (3)].

To conclude our analysis, however, we do not go into
the details of ensemble SDFT. It is sufficient to recall that
through Eq. (5) we can isolate the exact x contribution to the
fundamental gap as follows [46,47]:

�X,N = 〈uXLσ [n]〉Lσ − 〈vXσ [n]〉Lσ , (14)

where

uXjσ [n](r) = −
Nσ∑
i=1

ϕ∗
iσ (r)

ϕ∗
jσ (r)

∫
d2r′ ϕ

∗
jσ (r′)ϕiσ (r′)

|r − r′| , (15)

〈vXσ [n]〉jσ =
∫

d2r ϕ∗
jσ (r)vXσ [n](r)ϕjσ (r) , (16)

and

〈uXjσ [n]〉jσ =
∫

d2r ϕ∗
jσ (r)uXjσ [n](r)ϕjσ (r) . (17)

For later convenience, we emphasize that the above quantities
are well defined also for jσ �= Lσ . Writing Eq. (14), we have
assumed that the variation of the electron number occurs only
within a given spin channel. For the sake of simplicity, we
have also assumed that the considered states do not involve
degeneracies.

So far, exchange and correlation were included and treated
exactly. Next, we neglect the correlation and restrict ourselves
to the exact-exchange-only approximation (EXX). Thus

EXC → EX = −1

2

∑
σ=↑,↓

Nσ∑
i,k=1

∫
d2r′

×
∫

d2r′′ ϕiσ (r′′)ϕ∗
iσ (r′)ϕ∗

kσ (r′′)ϕkσ (r′)
|r′ − r′′| . (18)

First we notice that EX depends on n implicitly, i.e., through
the KS orbitals ϕjσ (r) ≡ ϕjσ [n](r). Thus, in the case of
Eq. (18), the evaluation of the functional derivative as in
Eq. (13) requires the solution of an integral equation for the
EXX potential, to be used self-consistently in the solution
of the KS equations [48–52]. In what follows, however, we
simplify both our numerical efforts and analysis by adopting
the Krieger, Li, and Iafrate (KLI) approximation [53,54].

The EXX potential in the KLI approximation is given by

vKLI
Xσ [n](r) = vSlσ [n](r) + �vKLI

Xσ [n](r), (19)

where

vSlσ [n](r) = 1

nσ (r)

Nσ∑
j=1

njσ (r)uXjσ [n](r) (20)

is the Slater (SL) potential and

�vKLI
Xσ [n](r) = 1

nσ (r)

Nσ∑
j=1

njσ (r)

× [〈
vKLI

Xσ [n]
〉

jσ
− 〈uXjσ [n]〉jσ

]
(21)

can be regarded as a correction to the Slater potential.
As long as the particle density and the spin polarization

are preserved, the KS potential can be shifted, for each spin
channel, by an arbitrary constant and thus the term with
j = Nσ in Eq. (21) can be set to zero. It may also be useful
to remind that for strongly confined systems such as QDs—
which are the systems of interest in this work—the Slater
potential yields the leading contribution to the x-only potential
and vanishes for r → +∞ (Refs. [55,56]).

Next, we seek to further minimize our numerical efforts.
As shown in Appendix A, elementary but tedious algebraic
steps allow us to define an approximation to �X,N in terms of
the difference of single-particle energies, as follows

�KLI
X,N = ε̃KLI

Hσ,N+1 − εKLI
Lσ,N . (22)

In Eq. (22), ε̃KLI
Hσ,N+1 is a single-particle energy that refers to the

system with N + 1 electrons but it is obtained by using as
an input the single-particle orbitals from the (self-consistent
solution of) the corresponding N-electron problem—hence,
the tilde is used here to stress that “frozen” orbitals are
employed. ε̃KLI

Hσ,N+1 can be computed through a single iteration
of the EXX-KLI procedure. In this step, the KS potential
must be shifted—at most by a constant value—such that it
goes to zero at large distance from the system. Thus, ε̃KLI

Hσ,N+1

may be related to an approximate ionization potential for the
systems with N + 1 electrons. εKLI

Lσ,N is obtained as usual from
the self-consistent solution for the system with N electrons.

The importance of Eq. (22) is in the fact that it readily
suggests to us that a nonvanishing—albeit approximate—�X,N

may be obtained by replacing the EXX-KLI quantities with
quantities that do not necessarily entail orbital-dependent
functionals. Especially for the systems considered in this
work, it is compelling to try with the simplest approximation

�KLI
X,N → �LDA

X,N := ε̃X,LDA
Hσ,N+1 − εX,LDA

Lσ,N , (23)

where LDA, for brevity, stands for local-spin-density approx-
imation, and the notation emphasizes that eigenvalues are
determined within x-only LDA calculations. Equation (23) re-
quires no extra implementations, in codes that already imple-
ment regular calculations (including a restart procedure from
given orbitals and the control of the number of iterations).
Further details on the numerical procedure are reported in the
section devoted to our applications (see below).

B. Inclusion of correlation

It is tempting to extend Eq. (23) to include the correlation as
follows:

�LDA
XC,N := ε̃LDA

Hσ,N+1 − εLDA
Lσ,N . (24)

125140-3



ALBERTO GUANDALINI et al. PHYSICAL REVIEW B 99, 125140 (2019)

This equation expressed through the xc potential [see
Eq. (A4)] has been previously suggested in Ref. [43] and—
with improved models for the xc potential [29,32]—also in
Ref. [44]. Comparing Eq. (24) with Eq. (6), we see that
Eq. (24) not only invokes an ‘LDA replacement’ but also
makes use of frozen orbitals [similarly as in Eq. (23)]. In
Ref. [43] it is shown that ε̃Hσ,N+1 can be connected to εHσ,N+1 in a
perturbative fashion—but we will not explore such corrections
in this work. In Refs. [43,44] neither electrons in artificial
confinements nor the x-only limit were scrutinized. We carry
out these analyses on QDs in the next section.

III. APPLICATIONS

In this section, we show that the fundamental gaps of
QDs computed up to exchange-only effects by using Eq. (23)
compare very well with those obtained by using Eq. (22).
More importantly, we show that the estimations including
correlations through Eq. (24) are notable as well.

A. Quantum-dot model and numerical methods

We model electrons in a semiconductor QD with a two-
dimensional harmonic external potential in effective atomic
units [57] as

v0σ (r) = 1
2ω2(x2 + α2y2) , (25)

where ω determines the strength of the confinement, and α

defines the elliptical deformation. The harmonic confinement
is the standard approximation for electrons in semiconductor
QDs [1]. We use the material parameters of GaAs, m∗ =
0.067me and ε = 12.4ε0. In practice, the purpose of the el-
lipticity is to model more realistic QDs that are not perfectly
symmetric due to deformations and impurities, etc. For the x-
only calculations in Sec. III B, we set α = 1.05 corresponding
to an eccentricity of e ≈ 0.30. These cases are free from
degeneracies of the relevant single-particle levels. Whereas in
Sec. III C, we set α = 1 to compare with numerically exact
results for conventional parabolic QDs—some of these cases
include degeneracies. In all the cases, however, we could
employ integer occupation numbers.

We carry out all our calculations with the OCTOPUS
code [58–60] that solves the KS equations on a regular
grid with Dirichlet boundary conditions. We select a grid
spacing of g = 0.1/

√
ω eff. a.u. The simulation box con-

taining the real-space domain is circular with a radius of
R = K/

√
ω, where K = 5.0 eff. a.u. is used for N = 2, 4, 5

and K = {6.0, 6.5, 7.0, 7.5, 8.0, 8.5} eff. a.u. is used for
N = {6, 12, 20, 30, 42, 56}, respectively. The self-consistent
criteria for the solution of the KS equation is εconv =∫

dr|nold(r) − nnew(r)|/N < 10−6. We verified numerically
that these parameters are sufficient to get fundamental gaps
converged within the fourth significant digit.

B. Exchange-only results

In Fig. 1 we show the fundamental gaps resulting from our
EXX-KLI calculations for QDs with N = 2, . . . , 20 electrons.
The considered confinements are such α = 1.05 and ω =
0.50, 1.50, and 2.50, corresponding to the three sets of bars
for each N in Fig. 1, respectively. We compare the results for

FIG. 1. EXX-KLI results for the fundamental gaps computed
according to GE,N [Eq. (1)], Gε,N [Eq. (2)], and G�,N [Eq. (3) together
with Eq. (22)]. For each N , the bars from left to right correspond to
ω = 0.50, 1.50, and 2.50, respectively, and α = 1.05 [see Eq. (25)].

the EXX-KLI fundamental gap obtained by means of three
different procedures as suggested by Eqs. (1), (2), and (3).
According to Fig. 1, the values for the gaps given by the
aforementioned expressions are relatively close to each other
in all cases. We stress that no deviations would be observed
if the exact xc-energy functional could be used. These results
support in particular the usefulness of Eq. (3), which corre-
sponds to the simplest procedure [see also Eq. (22)].

Next we compare our EXX-KLI results based on Eq. (22)
with the simpler and numerically more efficient LDA calcu-
lations as performed according to Eq. (23). The results are
reported in Table I in the Appendix. Some of the key results
are visualized for fixed N = 12 and variable ω in Fig. 2, and
for fixed ω = 0.5 and variable N in Fig. 3. Generally, the LDA
values computed according to Eqs. (4) and (23) agree well
with the EXX-KLI approximation: the mean absolute relative
deviations being only 4%, with a maximum deviation of 8%.
The LDA errors in the fundamental gap are mostly due to
the derivative discontinuity. This can be seen in the KS gaps

FIG. 2. Fundamental gaps G�,N obtained with the exchange-only
KLI and LDA approximations, respectively, for elliptic quantum
dots [Eq. (25) with α = 1.05] with N = 12 electrons and varying
confinement strength ω. The contributions of the Kohn-Sham gap
[Eq. (4)] are marked by shaded open boxes. The remaining part is
given by the derivative discontinuity, that is, Eq. (22) and Eq. (23) in
the case of KLI and LDA, respectively. All the numerical results are
given in Table I.
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FIG. 3. Same as Fig. (2) but for a fixed value of the confinement
strength ω = 0.5 and varying number of electrons N .

(open boxes in Figs. 2 and 3) that are in most cases very close
to each other. Equation (23) underestimates the EXX-KLI
discontinuity but only slightly in most cases.

C. Results including correlations

Finally, we consider the full gaps when including correla-
tions. We consider parabolic QDs by setting α = 1 in Eq. (25)
and compare our results against full configuration interaction
results reported in Ref. [19]. Although alternative methodolo-
gies to direct exact diagonalization have been developed [61],
large benchmark data sets are still challenging to be produced.

Figure 4 shows the results for ω = 0.35 and N = 2 . . . 6.
All the values—along with additional cases for different
ω—can be found in Table II of the Appendix. Since the
values of the exact KS gaps are not available, KS gaps are
not highlighted. The agreement between our scheme and the
many-body (MB) results is reasonable with a mean absolute
error of 14%.

We stress that our procedure exploits Eq. (24) as in GLDA
�,N =

�LDA
KS,N + �LDA

XC,N = ε̃LDA
Hσ,N+1 − εLDA

Hσ,N, while the LDA procedure of
Ref. [19]—for which data is also shown both in Fig. (4)
and in Table II of the Appendix—computes GLDA

ε,N = εLDA
Hσ,N+1 −

εLDA
Hσ,N. Thus when comparing GLDA

�,N with GLDA
ε,N , the systematic

FIG. 4. Fundamental gaps including correlations for parabolic
quantum dots [Eq. (25) with α = 1] with a fixed confinement
strength of ω = 0.35 and variable number of electrons N . GMB

E ,N is the
full configuration interaction value from Ref. [19]; GLDA

ε,N is obtained
from Eq. (2) at the LDA level; GLDA

�,N from Eq. (24). See also Table II.

overestimation GLDA
�,N � GLDA

ε,N may be explained in terms of the
lack of relaxation of the frozen orbitals which are used in
Eq. (24).

IV. CONCLUSIONS AND OUTLOOK

In this work, we have given evidence that the fundamental
gaps of artificially confined systems such as semiconductor
quantum dots can be accurately estimated by means of a
simple procedure within a minimal computational effort: a
regular Kohn-Sham calculation plus a straightforward non-
self-consistent (one-shot) evaluation—all carried within the
local-density approximation. Specifically, we have considered
the case of quantum dots defined by parabolic and elliptical
confinements.

It would be interesting to explore whether our conclusions
can apply also to a larger variety of artificially confined
nanoscale systems. Corrections in the form of the gradients
of the particle density may help to preserve accuracy without
substantially increasing the numerical effort. But functional
forms that explicitly depend only on the particle density
and, possibly, gradients thereof, can still fail in the case of
periodic systems [44] for which an approach based on forms
considered in Refs. [29,32,44] (if properly extended also to
lower dimensions) appears to be the most promising.
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APPENDIX A: DERIVATION OF EQ. (22)

Let us start with the self-consistent EXX-KLI solution of
a closed-shell N-electron system. As before, we assume non-
degeneracy for the relevant occupied and unoccupied single-
particle levels (within each spin channel).

Next, let us add one electron to the system and keep the
single-particle orbitals frozen; i.e., equal to the orbitals of
the N-electron system. Let the ‘additional’ electron be in the
spin channel σ . The spin density for the (N + 1)-electron
system is, thus, given by ñσ = nσ + |̃ϕHσ,N+1|2, where ϕ̃Hσ,N+1 ≡
ϕLσ,N and nσ is the spin density of the N-electron system.
No modification needs to be considered in the other spin
channel. The corresponding x potential, vXσ [̃n], can be readily
expressed in the EXX-KLI approximation [see Sec. II A]. We
remind that vXσ [̃n] may be shifted by a constant in such a way

〈vXσ [̃n]〉Hσ − 〈uXHσ [̃n]〉Hσ ≡ 0 . (A1)

Now, let us consider the single-particle energies

ε̃KLI
Hσ,N+1 = 〈

ĥ0σ + vH[̃n] + vKLI
Xσ [̃n]

〉
Hσ

(A2)

for the HOMO of the system with N + 1 electrons, and

εKLI
Lσ,N = 〈

ĥ0σ + vH[n] + vKLI
Xσ [n]

〉
Lσ

(A3)

for the LUMO of the system with N electrons. Note that
ĥ0σ (r) = −∇2/2 + v0σ (r) and vH[̃n] = vH[n] + vH[|̃ϕHσ,N+1|2].
Thus the difference of Eq. (A2) and Eq. (A3) can be readily
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TABLE I. Fundamental gaps of elliptic quantum dots [Eq. (25)
with α = 1.05] are reported together with the the contributions
of the corresponding Kohn-Sham (KS) gap and exchange-only (x)
discontinuities within two procedures that employ either the KLI or
the local-density approximation. For the x discontinuities, the KLI
calculations use Eq. (22) while the LDA calculations use Eq. (23).
Values in effective atomic units [57].

�KS �X := ε̃H,N+1 − εL,N �KS + �X

ω N LDA KLI LDA KLI LDA KLI

5.00 2 4.31 4.37 1.30 1.33 5.61 5.70
5.00 6 3.77 3.81 1.19 1.23 4.96 5.03
5.00 12 3.27 3.29 1.09 1.15 4.36 4.44
5.00 20 2.82 2.82 0.99 1.07 3.80 3.90
5.00 30 2.38 2.38 0.90 1.01 3.28 3.39
5.00 42 1.95 1.95 0.84 0.95 2.79 2.90
5.00 56 1.54 1.53 0.79 0.90 2.32 2.43

2.50 2 2.04 2.08 0.91 0.92 2.95 3.00
2.50 6 1.73 1.76 0.82 0.84 2.55 2.59
2.50 12 1.46 1.47 0.73 0.77 2.19 2.25
2.50 20 1.21 1.22 0.66 0.72 1.87 1.93
2.50 30 0.98 0.98 0.60 0.67 1.58 1.65
2.50 42 0.75 0.75 0.55 0.63 1.31 1.38
2.50 56 0.54 0.53 0.52 0.59 1.06 1.13

1.50 2 1.16 1.19 0.69 0.70 1.85 1.89
1.50 6 0.97 0.98 0.62 0.63 1.58 1.61
1.50 12 0.79 0.80 0.54 0.58 1.33 1.37
1.50 20 0.64 0.64 0.48 0.53 1.12 1.17
1.50 30 0.49 0.49 0.44 0.49 0.93 0.98
1.50 42 0.36 0.35 0.41 0.46 0.76 0.81
1.50 56 0.23 0.23 0.38 0.43 0.61 0.65

0.50 2 0.33 0.34 0.38 0.38 0.72 0.72
0.50 6 0.26 0.27 0.33 0.33 0.59 0.60
0.50 12 0.20 0.20 0.28 0.30 0.48 0.50
0.50 20 0.15 0.15 0.25 0.27 0.40 0.42
0.50 30 0.10 0.10 0.23 0.25 0.33 0.35
0.50 42 0.06 0.06 0.21 0.23 0.27 0.29
0.50 56 0.02 0.02 0.19 0.21 0.21 0.23

written as follows

ε̃KLI
Hσ,N+1 − εKLI

Lσ,N = 〈
vKLI

Xσ [̃n]
〉

Hσ
− 〈

vKLI
Xσ [n]

〉
Lσ

+ 〈vH[|ϕLσ,N|2]〉Lσ .

(A4)

TABLE II. Fundamental gaps of parabolic quantum dots
[Eq. (25) with α = 1]. N . GLDA

�,N is obtained from Eq. (24), GLDA
ε,N from

Eq. (2) at the LDA level, GMB
E ,N is the full configuration interaction

value from Ref. [19]. Values in effective atomic units [57].

N ω GLDA
�,N GLDA

ε,N GMB
E ,N

2 0.35 0.56 0.53 0.56

4 0.15 0.26 0.22 0.22
4 0.25 0.36 0.31 0.32
4 0.35 0.44 0.38 0.39

5 0.15 0.21 0.17 0.20
5 0.25 0.28 0.23 0.24
5 0.35 0.34 0.28 0.30

6 0.15 0.23 0.21 0.25
6 0.25 0.35 0.32 0.38
6 0.35 0.46 0.43 0.48

Next, Eq. (A1) together with the identity

〈uXHσ [̃n]〉Hσ ≡ 〈uXLσ [n]〉Lσ − 〈vH[|ϕLσ,N|2]〉Lσ , (A5)

which can be derived from Eq. (15), allow us to rewrite
Eq. (A4) as follows

ε̃KLI
Hσ,N+1 − εKLI

Lσ,N = 〈uXLσ [n]〉Lσ − 〈
vKLI

Xσ [n]
〉

Lσ
. (A6)

Note that in the steps above, we have repeatedly used ϕ̃Hσ,N+1 ≡
ϕLσ,N.

Evaluating Eq. (14) on EXX-KLI quantities and comparing
with Eq. (A6), we conclude that

�KLI
X,N ≡ ε̃KLI

Hσ,N+1 − εKLI
Lσ,N . (A7)

Note, the KLI approximation is not essential—it is used here
for simplicity. Correlation forms restricted to have an explicit
dependence only on occupied orbitals may also be easily
accommodated.

APPENDIX B: TABLES OF THE NUMERICAL RESULTS

See Tables I and II.
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