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Interaction-enhanced integer quantum Hall effect in disordered systems
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We study transport properties and topological phase transition in two-dimensional interacting disordered
systems. We derive the Hall conductance within real-space dynamical mean-field theory, which is quantized
and serves as a topological invariant for insulators, even when the energy gap is closed by localized states.
In the spinful Harper-Hofstadter-Hatsugai model, in the trivial insulator regime, we find that the repulsive
on-site interaction can assist weak disorder to induce the integer quantum Hall effect, while in the topologically
nontrivial regime, it impedes Anderson localization. Generally, the interaction broadens the regime of the
topological phase in the disordered system.

DOI: 10.1103/PhysRevB.99.125138

I. INTRODUCTION

The quantum Hall effect (QHE) in the presence of inter-
action and disorder has been of great interest for a long time.
Interactions play an essential role in the fractional QHE [1]
and disorder is responsible for the existence of the plateaux
in the Hall conductance [2–5]. For different models, the
perfect quantization of conductance can be violated [6–16]
or conversely induced [17–32] by disorder and interaction,
respectively. Topological invariants (TIs) are constructed to
classify the resulting transport properties [33–35] in systems
with bulk energy gaps. General expressions for the invariants
of interacting and disordered systems were developed from
the perspective of the many-body wave functions (MBWs)
[36–39]. Nonetheless, the MBWs can be captured numeri-
cally only for a rather small size of the interacting system.
Equivalent expressions in terms of the single-particle Green’s
function were developed thereafter, based on the microscopic
theory [40–42], which are numerically accessible even for in-
finite systems if translational symmetry (TS) is assumed [43].

Disorder destroys TS, which increases the difficulty of
studying topological phase transitions in interacting disor-
dered systems. A nonperturbative way of dealing with TIs in
systems of this type is rare. Most literature on disordered topo-
logical systems treats the interaction within the Hartree-Fock
approximation [44], the random-phase approximation [45],
or perturbative renormalization-group techniques [46–48]. A
nonperturbative treatment with quantum Monte Carlo is lim-
ited due to the sign problem [49].

In this paper, we focus on the combined effects of on-site
interaction and disorder on a topologically trivial or nontrivial
insulator, respectively. For general systems in the absence
of TS, we derive the Hall conductance within the real-space
dynamical mean-field theory (RDMFT). We name the re-
sulting formula the generalized Ishikawa-Matsuyama formula
(GIMF) [see Eq. (24)]. In the presence of a bulk energy gap,
the GIMF is quantized and serves as a TI. Furthermore, as
we will prove, localized states do not contribute to the Hall
conductance. Thus the GIMF is still a TI even for systems

with gapless bulk spectrum, if all states at the Fermi energy
are localized.

Numerically, the Hall conductance is directly evaluated
by employing RDMFT for a given disordered sample in a
finite-size system. The obtained Hall conductance depends
on the realization of the disorder. The statistically averaged
Hall conductance is obtained for a sufficiently large number of
samples. Our numerical result shows that for the topologically
nontrivial regime, the Hall conductance is well quantized and
the statistical fluctuations are strongly suppressed. Around the
phase-transition point, the gap of the system becomes small,
the quantization of the Hall conductance is violated due to
the finite-size effect, and the statistical fluctuations of the
Hall conductance are also increased. In contrast to statistical
dynamical mean-field theory (a simplified version of RDMFT
based on an ensemble description of disorder, which is applied
in Refs. [50,51] to describe phase transition between Ander-
son localization, metal phase, and a Mott insulator in strongly
correlated disordered lattice systems), the direct calculation
of the Hall conductance allows us to differentiate between the
topologically trivial and nontrivial insulating phases.

As an example, we calculate the Hall conductance of
the spinful Harper-Hofstadter-Hatsugai model (HHHM) on
a square lattice with half filling [52]. By tuning the strength
of the on-site staggered potential, the system can be initially
prepared in a topologically trivial or nontrivial state. Then the
on-site interaction and disorder are added to investigate their
effects. Using RDMFT, we find that, for a trivial insulator with
weak disorder, the repulsive on-site interaction can assist the
disorder to smoothen the staggered potential more efficiently,
and thus induce the integer QHE. This result is consistent
with the effective-medium theory (EMT) we develop for
weak disorder and weak interaction cases, in which inter-
action effects are included within the Born approximation.
For a topologically nontrivial insulator, the RDMFT results
show that the interaction impedes Anderson localization. In
general, the interaction broadens the regime of the topological
phase in the disordered system.
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The remaining parts of the paper are organized as follows.
In Sec. II, we derive the Hall conductance for a disordered
system within RDMFT, and confirm that it is quantized for in-
sulating phases. The EMT is also developed for weak disorder
and weak interaction. In Sec. III, we numerically calculate the
Hall conductance for the spinful Harper-Hofstadter-Hatsugai
model by using RDMFT. A short summary is given in Sec. IV.

II. HALL CONDUCTANCE WITHIN DYNAMICAL
MEAN-FIELD THEORY

In the following we derive the Hall conductance for sys-
tems without TS. The results are derived on a square lattice but
can similarly be generalized to any periodic lattice structure.
The Hamiltonian is

Ĥ = Ĥ0 + Ĥint, (1)

where

Ĥ0 =
∑
iα, jγ

ĉ†
iα[H0]iα, jγ ĉ jγ (2)

is the noninteracting part and

Ĥint = U
∑

i

n̂i↑n̂i↓ (3)

is the on-site interaction. Here, i and j are the lattice indices.
α and γ are spin indices. The noninteracting Hamiltonian still
contains two parts,

Ĥ0 = ĥ0 + Ĥdis, (4)

where

ĥ0 =
∑
iα, jγ

ĉ†
iα[h0]iα, jγ ĉ jγ (5)

is the translationally invariant part and Ĥdis represents disor-
der. Note that Ĥ0 is not diagonal in momentum space since
momentum is not a good quantum number anymore for disor-
dered systems. We denote its matrix elements in momentum
space as H0(k1α, k2γ ) ≡ [H0]k1α,k2γ .

A. Current operators from the continuity equation

Current operators (COs) can be derived from the continuity
equation and the equation of motion of the local-density op-
erator [53]. In the Heisenberg picture, the continuity equation
for the particle current is [53]

˙̂ρ(r, t ) + ∇ · Ĵ(r, t ) = 0. (6)

After Fourier transformation this becomes ˙̂ρq − iq · Ĵq = 0.
For a lattice structure, using the local-density operator ρ̂i =∑

α ĉ†
iα ĉiα , we obtain ρ̂q = 1√

N

∑
k ĉ†

(k+q)α ĉkα . By using the
equation of motion for the density operator, the continuity
equation yields

−q · Ĵq = i ˙̂ρq = [ρ̂q, Ĥ ]. (7)

Since the on-site interaction term is locally particle-number
conserving, it is easy to check [ρ̂i, Ĥint] = 0. For the

noninteracting part, we have

[ρ̂q, Ĥ0]

= 1√
N

∑
k1α,k2γ

[H0]k1α,k2γ {ĉ†
(k1+q)α ĉk2γ − ĉ†

k1α
ĉ(k2−q)γ }

= 1√
N

∑
k1α,k2γ

{[H0](k1−q/2)α,(k2−q/2)γ

− [H0](k1+q/2)α,(k2+q/2)γ }ĉ†
(k1+q/2)α ĉ(k2−q/2)γ . (8)

Thus, from Eqs. (7) and (8), we obtain each component of the
current operator,

Ĵμ
q =

∑
k1α,k2γ

ĉ†
(k1+q/2)α[ jμ]k1α,k2γ ĉ(k2−q/2)γ , (9)

for q → 0, where

[ jμ]k1α,k2γ = 1√
N

[∂̄kμ
H0]k1α,k2γ . (10)

Here, [∂̄kμ
A]k1α,k2γ ≡ (∂k1μ

+ ∂k2μ
)A(k1α, k2γ ) for any matrix

A and μ = x, y. N is the total number of lattice sites. We set
h̄ = e = a = 1, where h̄ is the Planck constant, a is the lattice
constant, and e is the electron charge. The CO is the sum of the
first derivatives of H0 with respect to the two momenta. The
formula (9) is a generalized CO for any disordered system.
From Eq. (9), we can find that the on-site disorder potential
does not contribute to the CO, but disordered tunneling terms
do. For the system with TS, the Hamiltonian becomes diag-
onal in momentum space and the CO recovers its ordinary
form [53].

B. Hall conductance

The Kubo formula for the dc Hall conductance is [54]

σH = lim
ω→0

1

ω
Im �yx(iωn → ω + i0+), (11)

where the current-current correlation function is

�yx(iωn) = lim
q→0

∫ β

0
dτeiωnτ 〈Tτ Ĵy

q (τ )Ĵx
−q(0)〉. (12)

Using l’Hôpital’s rule and the Cauchy-Riemann equations, we
have

σH = ∂ωx Im �yx(z)|z=i0+ = −∂ωy Re �yx(z)|z=i0+ , (13)

where z = ωx + iωy. So the dc Hall conductivity becomes

σH = −∂ωRe �yx(iω)|ω=0+ . (14)

1. Without vertex correction

Without considering the quantum correction to the vertex,
the current-current correlation function becomes

�yx = 1

β

∑
n′

Tr[ jyG(iωn′ + iωn) jxG(iωn′ )], (15)

where the trace is for both momentum and spin degree of
freedom. Note that in RDMFT, only the on-site self-energy
is taken into account in the Green’s function [43,55],

�iα, jγ (iω) = �iα,iγ (iω)δi j . (16)
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After Fourier transformation to momentum space, we find
[∂̄kμ

�]k1α,k2γ = 0. By using the fact

G−1
iω = iω1 − H0 − �iω, (17)

we have

jμ = − 1√
N

∂̄kμ
G−1

iω (18)

within RDMFT. Thus the correlation function (12) becomes

�yx(iωn) = 1

Nβ

∑
n′

Tr[∂̄ky G
−1(iωn′ )G(iωn′ + iωn)

× ∂̄kx G
−1(iωn′ )G(iωn′ )]. (19)

In the zero-temperature limit, we can use the replacement
1
β

∑
n′ → ∫

dω
2π

, and thus the summation becomes an integral.

In addition, using the fact that ∂ωG = −G∂ωG−1G, we obtain

Fμν ≡ −∂ω�μν (iω)|ω=0+

= 1

2πN

∫
dωTr[Giω∂̄kμ

G−1
iω Giω∂ωG−1

iω Giω∂̄kν
G−1

iω ],

(20)

for μ, ν = x, y. Note that the Hall conductance is defined
as σH = Re Fyx = (Fyx + F ∗

yx )/2. From the Lehmann repre-
sentation, we can find that the Green’s function satisfies the
following relation: (

G−1
iω

)∗ = (
G−1

−iω

)T
, (21)

where T means transpose. It implies

(
∂̄kμ

G−1
iω

)∗ = ∂̄kμ

(
G−1

−iω

)T = ∂̄kμ

(
G−1

iω̃

)T ∣∣
ω̃=−ω

, (22)

(
∂ωG−1

iω

)∗ = ∂ω

(
G−1

−iω

)T = −∂ω̃

(
G−1

iω̃

)T ∣∣
ω̃=−ω

. (23)

Using the fact that a matrix and its transpose have the same
trace, we can obtain σH = (Fyx − Fxy)/2. Since the trace is
invariant under cyclic permutations, the Hall conductance in
the zero-temperature limit becomes σH = χ/2π , where

χ ≡ εμ̃ν̃ρ̃

6N

∫
dωTr

[
Giω

(
∂̄μ̃G−1

iω

)
Giω

(
∂̄ν̃G−1

iω

)
Giω

(
∂̄ρ̃G−1

iω

)]
.

(24)

The indices μ̃, ν̃, and ρ̃ run through kx, ky, and ω, and
[∂̄ωGiω]k1α,k2γ ≡ ∂ωGiω(k1α, k2γ ). We denote the quantity χ

as GIMF. The GIMF reduces to the original formula [40]
when the TS is recovered.

2. Quantum correction for the vertex

In the above, the quantum correction for the vertex is
excluded. Actually, within RDMFT, the contribution from
the vertex corrections of the CO to the Hall conductance is
suppressed by the dimensionality of the system in the absence
of disorder [43,56]. In Appendix C, we show that in the
presence of disorder, using the Ward-Takahashi identity, the
vertex at the long-wave limit (i.e., with a long-wave and zero
mode photon as an external leg) is − 1√

N
∂̄kμ

G−1
iω , with full

quantum corrections. In RDMFT, this quantity is exactly the
same as the bare vertex, i.e., 1√

N
∂̄kμ

G−1
iω = 1√

N
∂̄kμ

G−1
0,iω, where

G−1
0,iω = iω1 − H0 is the inverse of the free Green’s function.

Therefore Eq. (24) exactly represents the Hall conductance
within the approximation of RDMFT. To obtain a better
expression for the Hall conductance, one has to go beyond the
single-site dynamical mean-field theory and apply the cluster
dynamical mean-field theory to include the nonlocal self-
energies �iα, jγ (iω) with i �= j [57]. The nonlocal selfenergies
contribute quantum corrections to the hopping terms and also
the current operators, which will not be discussed here.

3. Properties of χ

An important result for Eq. (24) is that the GIMF χ is
quantized and serves as a TI for insulators, regardless of
whether the bulk spectrum is gapped or gapless. The result
is evident for gapped cases (see Appendix A). However, for
disordered systems, the gap can be closed by disorder. The
system can still be an insulator, but with all of the states at
the Fermi energy being localized. In next subsection, we will
illustrate that none of the localized states contributes to the
conductance. Thus, the Hall conductance is unchanged and
still quantized when these localized states cross through the
Fermi energy.

C. Numerical realization

The above Hall conductivity is derived in the
thermodynamic limit. In the numerical approach, the sample
for the disorder configuration can be realized only for a finite
size system (FSS) with nx × ny lattices. To apply Eq. (24)
to the disordered system, we construct an extended infinite
system (EIS), by periodically repeating the FSS in space [58].
The EIS is a quasidisordered system. The real disordered
system can be approached when nx and ny become large. The
idea is equivalent to introducing twisted boundary conditions
to the FSS. In the EIS, the system again becomes periodic
in the real space, in which the FSS is a supercell [58,59]. In
the first Brillouin zone, the Bloch wave vector is θ ≡ (θx, θy)
with θμ ∈ [0, 2π/nμ) for μ = x, y. Each supercell has 2nxny

internal degrees of freedom, where the factor 2 is contributed
by the spin. The position i in the EIS can be expressed as
i = R + r, where R is the position of the corresponding
supercell and r is the relative position in the supercell.

We define the twisted matrix Aθ as follows:

Aθ
rα,r′γ ≡

∑
R

A(R+r)α,r′γ exp[iθ · (R + r − r′)], (25)

for a general matrix A in real space. We find that �θ
iω = �iω

and Gθ
iω = 1/(iω1 − H θ

0 − �iω ), with 1 being the identity
matrix. Then, the GIMF can be rewritten as

χ = εμ̃ν̃

8π2

∫
dωdθTr

[(
∂μ̃H θ

0

)
Gθ

iω

(
∂ν̃H θ

0

)
Gθ

iωAiωGθ
iω

]
, (26)

where μ̃ and ν̃ run through θx and θy now, and Aiω = i1 −
∂ω�iω. A detailed derivation can be found in Appendix B.
Equation (26) is exactly the first Chern number of a periodic
system with the Bloch momentum θ, in which the sites in
the supercell are treated as internal degrees of freedom, i.e.,
a pseudospin. The method is consistent with the proposal of
a topological index in a disordered system via introducing
twisted phases for the Green’s function [41].
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1. Contribution from local states

Now we illustrate that the localized states do not contribute
to the Hall conductance. Following the contour-integration
method developed in Refs. [60] and [61], Eq. (26) can be
expressed by the summation of the Berry curvature of all
occupied quasiparticle states. The GIMF becomes

χ =
∑
occu.

εμ̃ν̃

2π i

∫
d2θ〈∂μ̃ψθ|∂ν̃ψ

θ〉. (27)

Here, the quasiparticle state ψθ is the eigenstate of Gθ
ω at

its pole for real frequencies. It is also the eigenvector of
ω1 − H θ

0 − �ω at the zeros. By varying the twisted phase, we
obtain quasiparticle bands in θ space. Let us suppose that the
size of the supercell is significantly larger than the localization
length. Considering a localized state ψ for θ = 0, we can shift
the position of the supercell so that the localized state is almost
in the center of the supercell and thus ψ vanishes away from
the center. Note that the difference between ω1 − H θ

0 − �ω

and ω1 − H θ=0
0 − �ω is only the unitary transformation eiθ·r

besides the elements near the edge of the supercell. Then
for a localized state, the twisted boundary condition does not
change the position of the pole of the Green’s function and the
corresponding eigenstate apart from a unitary transformation,
since the eigenstate vanishes at the boundary if we properly
choose the position of the edge of the supercell. For the
localized state, the difference at the edge of the supercell
has no effect, and thus ψθ = eiθ·rψθ=0. A localized state
forms a flat band upon varying the twisted phase and the
corresponding Berry curvature is always trivial by substituting
ψθ into Eq. (27). This implies that localized states do not
contribute to the conductance. The Hall conductance is still
quantized regardless of whether these localized states (bands)
cross through the Fermi energy.

2. RDMFT

The self-energy in the Green’s function can be obtained
by using RDMFT [55] for each disorder configuration in
a FSS. Within this approach, the system is mapped to a
set of coupled single impurity problems, where the other
sites, acting as a bath, are integrated out. The effective ac-
tion for each single impurity is Si = − ∫

dτdτ ′c†(τ )G−1
0,i (τ −

τ ′)c(τ ′) + U
∫

dτni↓ni↑, where G0,i is the Weiss function at
the site i and the spin indices are hidden [43]. The full
Green’s function is given by the Dyson equation, G−1

i (iωn) =
G−1

0,i (iωn) − �ii(iωn), where each term depends on the site i
in the supercell. We use iterative perturbation theory to obtain
the self-energy for each single impurity problem [62,63]. The
full lattice Green’s function is given by G(iωn) = 1/(iωn1 −
H0 − �). A self-consistent solution is found by closing the
loop with Gi = Gii.

D. Effective-medium theory for weak disorder
and weak interaction limit

In this subsection, we show the EMT for the case of
weak disorder and interaction. It is a perturbative mean-field
method, in which the effective Hamiltonian Heff ≡ h0 + �

obtains a translationally invariant form. The self-energy is the
statistically averaged result over different disorder samples.

Specifically, we focus on a system with an on-site potential
Ĥdis = ∑

iα Vin̂iα , where Vi is random and position dependent
but uniformly distributed in [−W,W ]. The self-energy is
defined through the expression G = 1/(ω1 − h0 − �) at ω =
0, where G is the disorder-averaged Green’s function. As we
prove in Appendix D, the self-energy, up to the order of W 2

and U , is given by

�iα,iγ = �
dis
iα,iγ + �

U
iα,iγ , (28)

where �
dis
iα,iγ = W 2Giα,iγ /3 is contributed by the disorder [23]

and �
U
iα,iγ is the statistical average of the Hartree-Fock self-

energy U 〈ĉiα ĉ†
iᾱ〉δᾱγ + U 〈ĉ†

iᾱ ĉiᾱ〉δαγ with ↑̄ =↓ and ↓̄ =↑.
The statistical expectation values of the local operators ĉiα ĉ†

iᾱ

and ĉ†
iᾱ ĉiᾱ can be calculated through the effective Hamiltonian

Heff . Thus the self-energy can be solved self-consistently.
Note that this EMT cannot predict Anderson localization. It
only describes the contribution of the extended states. Later,
we will see that the self-energy � can effectively describe the
band inversion due to weak interaction and weak disorder.

III. SPINFUL HARPER-HOFSTADTER-HATSUGAI MODEL

Now, we consider the HHHM on the square lattice [52].
The translationally invariant part of the Hamiltonian is

ĥ0 = −
∑
i,α

[txĉ†
i+x̂,α ĉiα + tyei2πξ ix ĉ†

i+ŷ,α ĉiα + H.c.]

−
∑
i,α

tz[e
i2πξ (ix+1/2)(ĉ†

i+x̂+ŷ,α ĉiα + ĉ†
i+ŷ,α ĉi+x̂,α ) + H.c.]

+
∑
i,α

[(−1)ix � − μ0]n̂iα. (29)

Here, tx and ty are the nearest-neighbor hopping along the x
and y direction respectively, tz is the next-nearest-neighbor
hopping, μ0 is the chemical potential determined by the
filling, x̂ = (1, 0) and ŷ = (0, 1) are the unit vectors, and
i = (ix, iy). We focus on the case with ξ = 1/2, in which there
is a π flux in each unit square. The total particle number is
fixed to be N , so that the average filling is 1/2.

Without disorder and interaction, since the spin is con-
served and due to the SU(2) symmetry in spin space,
the Hamiltonian becomes h0 = vvv(k) · σ − μ0 in momen-
tum space. Here, vvv(k) = −(2tx cos kx, 4tz sin ky sin kx,� −
2ty cos ky) is the Bloch vector and σ are the Pauli matrices
in the pseudospin corresponding to the odd (up) and even
(down) position along the x axis. The identity matrices in
spin and pseudospin spaces are omitted. For |�| < 2ty, the
Bloch vector covers the origin, and thus, the system is a
topological insulator. Increasing the staggered potential, the
system closes the band gap at |�| = 2ty; it becomes a trivial
insulator thereafter.

A. Weak disorder and weak interaction case (EMT)

For the weakly disordered and interacting case, we give
a discussion based on the EMT for the HHHM. In the
EMT, the effective Hamiltonian is Heff = h0 + �, where � =
�0 + �zσz. For the half filling case, with a small but finite
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temperature, we have μ0 = �0 due to the particle-hole sym-
metry. Thus, the effective Hamiltonian becomes Heff = d ·
σ, where dx = vvvx, dy = vvvy, and dz = vvvz + �z. From the

EMT, we get �
dis = − W 2

12π2

∫
d2k dzσz

|d|2 and �
U = U

2 (no +
ne ) + U

2 (no − ne )σz, where no and ne are the particle number
for each spin at the odd and the even position along the x axis.
The integral region is kx, ky ∈ [0, 2π ], which is the doubling
of the Brillouin zone (one can also use the first Brillouin
zone as the integral region, then the coefficient in front of
the integral becomes twice as large accordingly). The Fock

term does not appear in �
U

since the spin is conserved. At
half filling, for each spin, we have no + ne = 1. Note that
no − ne = 〈σz〉 is the pseudospin polarization. Thus, we obtain
the chemical potential μ0 = U/2 and the self-consistent self-
energy

� = U

2
−

{
W 2

12π2

∫
d2k

dz

|d|2 + U

8π2

∫
d2k

dz

|d|
}
σz. (30)

As an approximation, one can use vvv to replace d in the
integral above. The effective staggered potential in Heff then
becomes �eff = (1 − κ )�, where κ� = − W 2

12π2

∫
d2k vvvz

|vvv|2 −
U

8π2

∫
d2k vvvz

|vvv| . Independently of the sign of �, we find κ > 0,
which means that the weak disorder and interaction effectively
smoothen the staggered potential. Intuitively, one would ex-
pect that the disorder may randomly intensify or weaken the
staggering. However, states are preferably localized around
those positions where the staggered potential has been in-
creased. Thus for the extended states, which contribute to
the conductance, the effective staggered potential becomes
smooth. In addition, the repulsive interaction prefers to induce
a uniform distribution of particles in space. This explains why
the interaction assists the disorder in decreasing the effective
staggered potential.

B. General case (RDMFT)

For the general case of arbitrary interaction and disorder
strengths, we use RDMFT to describe interaction effects.
In Figs. 1 and 2, we show our numerical results for the
case nx = ny = 24. For simplicity, we choose parameters
tx = ty = tz = t and kBT = t/40. The grid for the twisted
phase θ is 8 × 8. For each value of U and W , we generate
5–100 sample realizations of the disorder. We also assume
that the SU(2) symmetry holds for the spin components for
weak and moderate interaction. The final Hall conductance
is obtained by averaging the Hall conductance over these
samples. Numerically, deviations of the obtained conductance
from the quantized value are mainly due to finite-size effects
and partially due to finite-temperature effects.

In Fig. 1, we show the RDMFT results for the Hall
conductance for a system without staggered potential. For
W = U = 0, the system is a topological insulator. In the EMT,
the effective Hamiltonian is not changed by interaction and
disorder, i.e., �eff = � = 0. This means that no band inver-
sion occurs and no topological phase transition is predicted
in EMT. However, disorder broadens the distribution of the
spectrum in each of the two bands. The marginal states of
each band become localized. In the RDMFT calculation, by

FIG. 1. The density plot (upper) and error list plot (lower) of
χ/2 as a function of disorder strength and interaction strength, for
� = 0. The inset shows the disorder strength where χ/2 = 0.5, as
a function of 1/L2 and for different interaction strengths, where L2

is the size of the supercell with nx = ny = L (from left to right:
L = 44, 28, 24, 14, 10).

increasing the disorder strength, the Hall conductance, as a TI,
is well quantized before the gap is closed. Thereafter the Hall
conductance decreases when further increasing the disorder.
As illustrated in Ref. [23], for strong disorder, the topological
phase transition follows a localization transition. From Fig. 1,
we observe that the interaction effectively impedes the closing

FIG. 2. The density plot (upper) and error list plot (lower) of χ/2
as a function of disorder strength and interaction strength, for � =
2.2t . The dashed black line shown in the upper figure is given by the
EMT; see Eq. (30). The inset in the lower figure shows how the value
of χ/2 depends on the size of supercell, where the blue (red) lines
are for U = 0.0t (0.5t ).
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of gap and the subsequent topological phase transition and
Anderson localization. This shows the fact that the repulsive
on-site interaction effectively smoothens the disordered po-
tential. To get rid of the finite size effect, in the inset, we
also plot the critical disorder strength (where χ/2 = 0.5) as a
function of 1/L2 and for different interaction strengths, where
nx = ny = L is the size of the supercell. The scaling behavior
shows an approximately linear dependence of the critical dis-
order strength on 1/L2. The vertical intercepts of these lines
represent the critical disorder strength of the topological phase
transition in the thermodynamic limit for different interaction
strength. The vertical intercept is monotonically increasing
with respect to the interaction strength, which again confirms
that topological phase transition is impeded by the interaction.

In Fig. 2, we show the RDMFT result of the Hall con-
ductance for � = 2.2t . The system is a topologically trivial
insulator for W = U = 0. For weak disorder and weak inter-
action, both increasing the disorder strength and increasing
the interaction strength will raise the Hall conductance. From
EMT we know that the repulsive on-site interaction can assist
the disorder to smoothen the large staggered potential more
effectively, and induce the integer quantum Hall effect through
band inversion, which occurs at �eff = 2.0t . Comparing with
the RDMFT results, the EMT gives an accurate prediction for
the topological phase-transition line for weak disorder and
interaction (see the dashed black line shown in the density
plot of χ/2 in Fig. 2). When disorder becomes stronger,
the Hall conductance decreases again. The interaction also
impedes formation of Anderson localization through many-
body effects. In the inset, we show χ/2 for different sizes
of the supercell. The intersection points of different curves
approximately predict the location of the phase transition.
From the inset, we observe that the phase transition is lo-
cated around W = 2.0t for U = 0 and around W = 1.0t for
U = 0.5t , which is really close to the predictions from the
EMT. Note the EMT is limited. The effective Hamiltonian
is translationally invariant. Thus it is an effective description
only for the extended states. It cannot predict the Anderson
localization of the system with strong disorder.

In both cases, the interaction broadens the regime of the
topological phase in the disordered system. The interaction
effectively smoothens the staggered potential and has a de-
localizing effect. The prediction from EMT deviates from the
RDMFT results when disorder becomes large. The delocaliza-
tion due to interaction is also observed in topologically trivial
systems [50,51,64–66]. We attribute this effect to the follow-
ing two facts. The repulsive interaction prefers to induce a
uniform distribution of particles in space for minimizing the
energy, which impedes the formation of localized states. On
the other hand, given the localized states in a noninteracting
system, the interactions enhance the coupling between them.
These “island” states are thus delocalized, provided that the
“electron” becomes itinerant between these states.

In the current numerical calculation, we have assumed that
the SU(2) symmetry still holds for the spin components for
weak and moderate interaction strength. This is not true when
the interaction strength becomes stronger, where the system
goes into a magnetization regime [21].

Note that the corresponding one-dimensional model after
the dimensional reduction of the HHHM is the Rice-Mele

model, the Thouless pumping of which has been observed in
experiments for both bosonic and fermionic systems [67,68].
This method can be used to measure the Hall coefficient
in the absence of disorder. In electronic condensed matter,
quenched disorder is generically present [48], and in cold
atom systems it can be realized by creating an optical speckle
potential through a holographic diffuser [66,69–73]. Recently,
the nonzero winding number of the disordered Su-Schrieffer-
Heeger model has been observed by measuring the chiral
displacement, identifying the one-dimensional topological
Anderson insulator [74]. On the other hand, the Chern num-
ber of the Harper-Hofstadter model has also been measured
through the transverse deflection of an atomic cloud in re-
sponse to an optical gradient [75]. For the HHHM, only
an additional next-nearest-neighbor hopping is needed. In
combination with the speckle-induced disorder, it should be
realizable in experiments in the foreseeable future.

IV. SUMMARY

In summary, we have generalized the Ishikawa-Matsuyama
formula for the topological index to systems without transla-
tional invariance and calculated the Hall conductance for a
lattice system in the presence of disorder by using RDMFT.
The combined effect of interaction and disorder is discussed.
We find that the integer quantum Hall effect is enhanced by
the on-site interaction for disordered systems.
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APPENDIX A: HALL CONDUCTANCE AS A
TOPOLOGICAL INDEX FOR GAPED SYSTEMS

For any two matrices A and B in k space, according to our
convention, we have

[∂̄kμ
(AB)]k1,k2 = (∂k1,μ

+ ∂k2,μ
)
∑

k3

A(k1, k3)B(k3, k2). (A1)

In addition, we also have∑
k3

∂k3,μ
{A(k1, k3)B(k3, k2)} = 0, (A2)

which is obvious if we use the fact
∑

k ∝ ∫
dk. Here, the spin

indices α and γ are omitted for notation simplicity. The above
two equations show that the derivative operator ∂̄kμ

satisfies
the Leibniz product rule,

∂̄kμ
(AB) = (∂̄kμ

A)B + A∂̄kμ
B. (A3)

Besides, using the fact that GiωG−1
iω = 1 (for well defined G

and G−1), we have

δ
(
Giω∂̄kμ

G−1
iω

) = −Giω
(
∂̄kμ

G−1
iω

)
δGiωG−1

iω − (∂̄kμ
δGiω )G−1

iω .

(A4)
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With these preparations, similar in the Ref. [76], it is not
difficult to check that

δχ [Giω] ∝ εμ̃ν̃ρ̃

∫
dωTr

[
∂̄μ̃

(
G−1

iω δGiω∂̄ν̃G−1
iω Giω∂̄ρ̃G−1

iω Giω
)]

= 0. (A5)

Thus, χ is invariant under infinitesimal deformations of the
Green’s function, and therefore is a topological index. Note
that the deduction requires well defined G and G−1, which
means the system is gapped at the Fermi energy.

APPENDIX B: HALL CONDUCTANCE IN
THE EXTENDED INFINITE SYSTEM

The position i in the EIS can be expressed as i = R + r,
where R refers to the position of the corresponding supercell
and r is the relative position in the supercell. For a general
matrix A in real space, the translational symmetry implies the
relation

A(R+r)α,(R′+r′ )γ = A(R−R′+r)α,r′γ . (B1)

Using the Fourier transformation, in momentum space, we
have

Akα,k′γ ≡ 1

N

∑
RR′rr′

A(R+r)α,(R′+r′ )γ eik·(R+r)−ik′ ·(R′+r′ ), (B2)

for kμ, k′
μ ∈ [0, 2π ) with μ = x, y, where the lattice constant

is set to be a = 1. The EIS retains the translational symmetry
at a large scale, and the Bloch wave vector is denoted as θμ ∈
[0, 2π/nμ), where nx × ny is the size of the supercell. Split-
ting the momenta as kμ = k̃μ + θμ and k′

μ = k̃′
μ + θ ′

μ, with
k̃μ = 2π l/nμ and k̃′

μ = 2π l ′/nμ (l, l ′ = 0, 1, . . . , nμ − 1),

and using the fact that eik̃·R = eik̃
′·R′ = 1, we obtain

Akα,k′γ = 1

N

∑
RR′rr′

A(R−R′+r)α,r′γ eiθ·(R+r)−iθ′ ·(R′+r′ )eik̃·r−ik̃
′ ·r′

.

(B3)

Introducing new variables Rs ≡ R′ and Ra ≡ R − R′, and
using the fact that

∑
Rs

ei(θ−θ′ )·Rs = N
nxny

δθθ′ , we obtain

A(k̃+θ)α,(k̃
′+θ′ )γ = 1

nxny

∑
Rarr′

A(Ra+r)α,r′γ eiθ·(Ra+r−r′ )eik̃·r−ik̃
′ ·r′

δθθ′ ,

(B4)

so that we have

Akα,k′γ = A(k̃+θ)α,(k̃
′+θ)γ δθθ′ , (B5)

which is exactly due to the translational symmetry. It also
implies that

∂̄μAkα,k′γ = [∂θμ
A(k̃+θ)α,(k̃

′+θ)γ ]δθθ′ . (B6)

Let us define

Aθ
rα,r′γ ≡

∑
R

A(R+r)α,r′γ eiθ·(R+r−r′ ), (B7)

and then

A(k̃+θ)α,(k̃
′+θ)γ = 1

nxny

∑
rr′

Aθ
rα,r′γ eik̃·r−ik̃

′ ·r′
(B8)

is exactly the Fourier transformation of Aθ
rα,r′γ in a supercell.

In the following, we would like to show that Aθ
rα,r′γ is

corresponding to the matrix with twist phases. Denote the
right eigenvectors of Aθ

rα,r′γ as ψθ with an eigenvalue E , then
we have∑

r′γ

Aθ
rα,r′γ ψθ

r′γ =
∑
R′r′γ

A(R+r)α,(R′+r′ )γ eiθ·(R−R′+r−r′ )ψθ
r′γ

= Eψθ
rα, (B9)

and thus∑
R′r′γ

A(R+r)α,(R′+r′ )γ e−iθ·(R′+r′ )ψθ
r′γ = Ee−iθ·(R+r)ψθ

rα. (B10)

So the corresponding eigenstates of A(R+r)α,(R′+r′ )γ be-
come φ(R+r)α ≡ e−iθ·(R+r)ψθ

rα , which shows the relation at
the boundary of the supercell, φ(r+nμμ̂)α = e−iθμnμφrα . The
phase θμnμ is an effective twisted phase boundary condition
in the supercell.

Applying this definition (B7) for the Hamiltonian H0, self-
energy, and the Green’s function, we find that �θ

iω = �iω and
Gθ

iω = 1/(iω1 − H θ
0 − �iω ). After combining these results

with Eqs. (B5)–(B8), the conductance Eq. (20) becomes

σH = εμ̃ν̃ρ̃

12πN

∫
dω

∑
θ

Tr
{
Gθ

iω∂μ̃

[
Gθ

iω

]−1
Gθ

iω∂ν̃

[
Gθ

iω

]−1
Gθ

iω

× ∂ρ̃

[
Gθ

iω

]−1}
, (B11)

where μ̃, ν̃, and ρ̃ run through θx, θy, and ω now and the
trace is only for the supercell lattice and spin index. Using the
fact that ∂μ̃[Gθ

iω]−1 = −∂μ̃H θ
0 for μ̃ = θx, θy and ∂ω[Gθ

iω]−1 =
i1 − ∂ω�iω, and using the replacement 1

N

∑
θ = 1

4π2

∫
dθ, we

obtain σH = χ/2π , where

χ = εμ̃ν̃

8π2

∫
dωdθTr

[
Gθ

iω

(
∂μ̃H θ

0

)
Gθ

iω

(
∂ν̃H θ

0

)
Gθ

iωAiω
]
. (B12)

Here, μ̃ and ν̃ run through θx and θy now, and Aiω =
∂ω[Gθ

iω]−1 = i1 − ∂ω�iω. The expression (B12) is exactly the
Chern number of a periodic system with the Bloch momentum
θ, and the site index in the supercell becomes an internal
degree of freedom like a pseudospin. Our method is consistent
with the proposal for the Chern number in a disordered system
via introducing twisted phases for the Green’s function [41].

APPENDIX C: WARD-TAKAHASHI IDENTITY

In this section, we derive the Ward-Takahashi identity
in disordered systems, and prove that the vertex with full
quantum corrections within (R)DMFT is consistent with the
bare vertex.

For a general two-dimensional system in the continuous
space, we write the Hermitian current operator as

ĵμ(x) = ĉ†(x)�μĉ(x), (C1)

where the bare vertex �μ is a Hermitian matrix (and �0 = 1
for the charge density ĵ0). Here we use the convention x =
(x1, x2, x0) for 2 + 1-dimensional space-time. x0 represents
the real time. The position in two-dimensional space is de-
noted as x = (x1, x2). Here we consider the zero-temperature
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limit (β → ∞). The particle number operator satisfies the
equal-time commutation relation

[ ĵ0(x), ĉ(y)]δ(x0 − y0) = −ĉ(y)δ3(x − y), (C2)

[ ĵ0(x), ĉ†(y)]δ(x0 − y0) = ĉ†(y)δ3(x − y), (C3)

where δ3(x − y) ≡ δ(x1 − y1)δ(x2 − y2)δ(x0 − y0). The con-
tinuity equation in Heisenberg picture is

∂xμ ĵμ(x) = 0, (C4)

which represents the charge conservation due to the U(1)
symmetry. Here the Einstein summation convention is used.
The metric matrix for the space-time is g = diag(1, 1,−1).
The above three equations also work for the imaginary time
x0 = −iτ . This is obvious for Eqs. (C2) and (C3). In the
following, we prove that Eq. (C4) works for the imaginary
time. For the real time x0 = t , we can rewrite Eq. (C4) as

∂t ĵ0(x, t ) = −∇ · ĵ(x, t ). (C5)

Using the definition ĵ0(x, t ) ≡ eitĤ ĵ0(x, 0)e−it Ĥ , we have the
following relation:

i[Ĥ, ĵ0(x, 0)] = −∇ · ĵ(x, 0). (C6)

Thus for ĵ0(x, τ ) ≡ eτ Ĥ ĵ0(x, 0)e−τ Ĥ , we also have Eq. (C4)
with ∂t replaced by ∂−iτ .

In the following, we would like to derive the Ward-
Takahashi identity in imaginary time space (i.e., x0 = −iτ )
for a disordered system. Equations (C2)–(C4) imply the fol-
lowing relation:

∂xμ〈Tτ ĵμ(x)ĉ(y)ĉ†(z)〉
= −i〈Tτ ĉ(y)ĉ†(z)〉{δ̃3(x − y) − δ̃3(x − z)}. (C7)

Here in imaginary time space, we use the conven-
tions δ̃3(x − y) ≡ δ(x1 − y1)δ(x2 − y2)δ(ix0 − iy0), d3x =
idx1dx2dx0, p = (p1, p2, p0 = iω), and d3 p = d p1d p2dω.
For a disordered system, the impurity violates the translational
symmetry. We use the Fourier transformation to obtain the
momentum representation for the Green’s function,∫

d3xd3ye−i(p′x−py)〈Tτ ĉ(x)ĉ†(y)〉

= −(2π )3δ(ip′0 − ip0)Gp0 (p′, p), (C8)

where p′x ≡ p′
μxμ and all internal degrees of freedom (such as

spin) are hidden. Note that the Green’s function is not diagonal
in momentum space due to the disorder. The delta function
here is due to the energy conservation. The factor (2π )3 comes
from the fact that ĉ(x) = 1

(2π )3/2

∫
d3 peipxĉ(p). Similarly, we

have∫
d3xd3yd3ze−i(p′y−pz−qx)〈Tτ ĵμ(x)ĉ(y)ĉ†(z)〉

= (2π )3δ(ip′0 − ip0 − iq0)
∑
k,k′

Gp′0 (p′, k′)�μ

q,p0 (k′, k)

× Gp0 (k, p), (C9)

where �μ is the dressed vertex with full quantum correc-
tions [it represents a vertex with one ingoing particle with
(k′, p0 + q0), one outgoing particle with (k, p0), and one out-
going gauge field with q ≡ (q, q0)]. Using partial integration,

we have∫
d3xd3yd3ze−i(p′y−pz−qx)∂xμ〈Tτ ĵμ(x)ĉ(y)ĉ†(z)〉

= − (2π )3iqμδ(ip′0 − ip0 − iq0)
∑
k,k′

Gp′0 (p′, k′)

×�
μ

q,p0 (k′, k)Gp0 (k, p), (C10)

and then using Eqs. (C7) and (C8), we obtain

−qμ

∑
k,k′

Gp′0 (p′, k′)�μ

q,p0 (k′, k)Gp0 (k, p)

= Gp0 (p′ − q, p) − Gp′0 (p′, p + q), (C11)

where p′0 = p0 + q0. By left and right multiplying the inverse
of the Green’s function to Eq. (C11), we find the Ward-
Takahashi identity of the disordered system,

−qμ�
μ

q,p0 (p′, p)=G−1
p′0 (p′, p+q)−G−1

p0 (p′−q, p). (C12)

Thus for q = (q, q0) → (0, 0), we have

�
μ

q=0,p0 (p′, p) = −∂̄μG−1
p0 (p′, p) for μ = 1, 2; (C13)

�0
q=0,p0 (p′, p) = ∂p0 G−1

p0 (k′, p); (C14)

Here, ∂̄μA(p′, p) ≡ (∂p′μ + ∂pμ )A(p′, p). The change of the
sign in Eq. (C14) occurs when lowering the index. As we have
shown in the main text, within (R)DMFT, −∂̄μG−1

p0 (p′, p) is
exactly the bare vertex jμ (for lattice structure, an additional
factor 1/

√
N is introduced). Thus, the vertex with full quan-

tum corrections within (R)DMFT is consistent with the bare
vertex.

APPENDIX D: EFFECTIVE-MEDIUM THEORY

In the following, we derive the self-energy of a system with
weak disorder and interaction, within the framework of the
effective-medium theory. The averaged Green’s function over
different disorder samples can be written as

G(ω) ≡ 〈〈G({Vi}, ω)〉〉 = 1

ω − h0 − �
, (D1)

where 〈〈O〉〉 means the averaged result of O over different
disorder samples. Given a sample of disorder {Vi}, the Green’s
function is denoted as

G({Vi}, ω) ≡ 1

G−1
0 − V − �U

. (D2)

Here, G0 = 1/(ω − h0) is the free Green’s function with-
out disorder and interaction, and �U

iα, jγ ≡ U 〈ĉiα ĉ†
iᾱ〉δi jδᾱγ +

U 〈ĉ†
iᾱ ĉiᾱ〉δi jδαγ is the self-energy within the Hartree-Fock

approximation for the weakly interacting case. The matrix V
refers to the disorder potential, with elements Vi j = Viδi j .

The averaged Green’s function can be evaluated by ex-
panding the formula (D2) up to the order of W 2 and U . Then
we have

〈〈G({Vi}, ω)〉〉 = [1 + G0〈〈V 〉〉 + G0〈〈�U〉〉
+ G0〈〈V G0V 〉〉]G0(ω). (D3)
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Denoting �
U ≡ 〈〈�U〉〉 and using the fact that 〈〈V 〉〉 = 0 for

the random events governed by the uniform distribution in
[−W,W ], we get

G
−1

(ω) = G−1
0 (ω)[1 − G0�

U − G0〈〈V G0V 〉〉]. (D4)

According the definition of the self-energy (D1) in the
effective-medium theory, we find

� = �
U + 〈〈V G0V 〉〉. (D5)

Since the disorder potential at different positions is indepen-
dent, we have 〈〈ViVj〉〉 = δi jW 2/3 for the uniform probability
distribution. Finally, we get

�i j = δi j
{
�

U
ii + G0,ii

〈〈
V 2

i

〉〉}
. (D6)

Note that the averaged Hartree-Fock self-energy �
U
ii can be

obtained by evaluating the averaged value of the local oper-
ators ĉiα ĉ†

iᾱ and ĉ†
iᾱ ĉiᾱ . These quantities can be calculated by

using the effective Hamiltonian, Heff = h0 + �. The Green’s
function G0 in Eq. (D6) can also be replaced by G. The
difference of the final results is of higher order.
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