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Quantum Hall inter-plateau transitions are physical exemplars of quantum phase transitions. Near each of
these transitions, the measured electrical conductivity scales with the same correlation length and dynamical
critical exponents, i.e., the critical points are superuniversal. In apparent contradiction to these experiments, prior
theoretical studies of quantum Hall phase transitions within the framework of Abelian Chern-Simons theory
coupled to matter found correlation length exponents that depend on the value of the quantum critical Hall
conductivity. Here, we use non-Abelian bosonization and modular transformations to theoretically study the
phenomenon of superuniversality. Specifically, we introduce a new effective theory that has an emergent U (N )
gauge symmetry with any N > 1 for a quantum phase transition between an integer quantum Hall state and an
insulator. We then use modular transformations to generate from this theory effective descriptions for transitions
between a large class of fractional quantum Hall states whose quasiparticle excitations have Abelian statistics.
We find the correlation length and dynamical critical exponents are independent of the particular transition within
a controlled ’t Hooft large N expansion, i.e., superuniversal! We argue that this superuniversality could survive
away from this controlled large N limit using recent duality conjectures.
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I. INTRODUCTION

As a two-dimensional electron gas is tuned by a perpendic-
ular magnetic field from one quantum Hall state to another, the
longitudinal electrical resistance exhibits a peak with a width
�B ∝ T 1/νz, where ν and z are correlation length and dynam-
ical critical exponents and T is the temperature; the slope of
the Hall resistance likewise diverges as �B as a particular
transition is approached [1]. The surprising feature is that
the observed ν ≈ 7/3 and z ≈ 1 appear to be insensitive to
whether the transition is between integer or fractional Abelian
quantum Hall states [2–10] (see note [11]). Taken at face
value, the implication is that the associated quantum critical
points [12,13] have the same critical indices for comparable
observables [14–21] and are instead distinguished by their
critical conductivity [22–24] (see [25]); this phenomenon is
known as superuniversality [19].

The root cause of superuniversality has been a puzzle since
its observation over three decades ago. Numerical studies of
the integer quantum Hall transition, modeled by disordered
noninteracting electrons, find a correlation length exponent
in qualitative agreement with experiment [26–28]; however,
these theories have z ≈ 2 and it is challenging to general-
ize these works to transitions between fractional quantum
Hall states [29]. Theories of Abelian Chern-Simons gauge
fields coupled to matter, i.e., theories of composite bosons
or composite fermions [30–36], provide a unifying, physical
framework for studying both integer and fractional quan-
tum Hall transitions. Thus far, controlled approximations to
these strongly coupled theories, obtained when the number
of fermion or boson flavors is large and there is no disorder,
have failed to yield superuniversal behavior: the calculated

correlation length exponent depends on the particular quan-
tum Hall transition [37–40]. It is important to determine
whether these calculations reveal a generic behavior of the
field theoretical models or, instead, reflect certain artifacts
of the approximation scheme [41]. In this paper, we provide
evidence for the latter.

As a step toward understanding the observed behavior, we
focus here on the fundamental theoretical question raised by
the appearance of superuniversality, i.e., how distinct inter-
acting critical points can share the same critical exponents.
To this end, we introduce new theories, involving a single
Dirac fermion coupled to a non-Abelian U (N ) Chern-Simons
gauge field for any N > 1, that exhibit quantum phase tran-
sitions between Abelian quantum Hall states. Intuitively, the
U (N ) gauge symmetry of our theories generalizes the Abelian
gauge symmetry implementing flux attachment in familiar
composite boson/fermion theories. In fact, as demonstrated
in Appendix E, these U (N ) gauge theories are dual to theories
with an Abelian group. The advantage of the enlarged gauge
group is that it motivates an alternate approximation to our
strongly coupled theories, namely, a controlled ’t Hooft large
N expansion [42,43], within which we find that superuniver-
sality occurs without the inclusion of disorder.

We emphasize that the theories we consider here have more
symmetries than the physical systems motivating our work;
for instance, our theories are Lorentz-invariant and, in partic-
ular, preserve translational invariance. Our hope is that our
theories might represent “parent” theories for more realistic
descriptions of the experimental systems. Consequently, we
defer quantitative questions specific to the particular experi-
mental systems to the future.
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FIG. 1. Schematic zero-temperature phase diagram [16] in the
space of Hall ρxy and longitudinal resistivity ρxx . Phases are de-
noted by their zero-temperature complex conductivity σ = σxy +
iσxx , measured in units of e2/h. The blue boundary denotes the
1 → 0 integer quantum Hall transition, while the green boundaries
denote transitions we derive from the 1 → 0 transition via modular
transformations.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a new description for an integer quantum
Hall transition; this theory is inspired by fermion particle-
vortex duality [44–48] (see the related work [49–53]) and
various bosonization dualities in 2 + 1 dimensions [54–66].
Guided by Ref. [16], where the phase diagram in Fig. 1 was
proposed by extending the theory of two-parameter scaling
of the Hall and longitudinal resistivity for the integer Hall
effect [67] to the fractional Hall regime using the “law of
corresponding states” [15,16], we then derive in Sec. III new
effective theories for various fractional quantum Hall transi-
tions using modular transformations [68]. In Sec. IV, we show
that the correlation length and dynamical critical exponents
of our theories are insensitive to the particular quantum Hall
phase transition within a controlled ’t Hooft large N limit.
In Sec. V, we discuss how recent duality conjectures imply
that the physics of our U (N ) Chern-Simons coupled to matter
theories is independent of N > 1. This is the crucial feature
that allows us to argue that critical exponents, calculated in the
’t Hooft large N limit, are exact at the leading planar order and
that superuniversality may persist away from the controlled ’t
Hooft large N limit. In addition, there are six Appendixes that
discuss details of arguments presented in the main text.

II. INTEGER QUANTUM HALL TRANSITION

Our starting point is an effective Lagrangian for an integer
quantum Hall transition,

LIQHT(A) = iψ̄ /Daψ − Mψψ̄ψ − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]

− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA. (1)

The notation is as follows: ψ is a two-component Dirac
fermion transforming in the fundamental representation of
U (N ); a and b are dynamical U (N ) and U (1) Chern-Simons
gauge fields; A (above and throughout) is a nondynamical

Abelian gauge field that we think of as electromagnetism;
/Da = γ μ(∂μ − iaμ) for μ ∈ {t, x, y} and γ matrices satisfying
{γ μ, γ ν} = 2ημν where ημν = diag(1,−1,−1); ψ̄ = ψ†γ t ;
N is a positive integer; Abelian Chern-Simons terms A dB =
εμνρAμ∂νBρ , and the cubic interaction in the non-Abelian
Chern-Simons term a3 = 1

2εμνρaμaνaρ . For simplicity of pre-
sentation, we regularize the theory in (1) by implicitly includ-
ing a Yang-Mills term for a and Maxwell term for b [69,70].
See Appendix A for further explanation of the notation and
for a few pertinent facts about Chern-Simons theories.

Prior work studying Chern-Simons gauge theories coupled
to matter suggests that the theory in (1) realizes a critical point
with conformal symmetry [70,71]. In Appendix E, we argue
nonperturbatively that this critical point is in the free Dirac
fermion universality class for any integer N � 1.

For the moment, we verify that (1) describes a transition
between an integer quantum Hall state and an insulator as
the fermion mass Mψ is tuned through zero, consistent with
our identification in Appendix E of (1) with the theory of a
free Dirac fermion. See Appendix B for additional details.
Remarkably, this demonstration applies for any integer N�1.
In our theory, the mass Mψ represents an effective control
parameter for a particular quantum phase transition. For def-
initeness, it may be helpful to think about Mψ in terms of
the analogous tuning parameter that appears in lattice models
for integer quantum Hall transitions [72,73]. In these latter
models, the transition is controlled by the ratio of the on-site
chemical potential to the second nearest-neighbor hopping.
This theory matches the realistic integer quantum Hall tran-
sition insofar that it describes some transition between two
integer quantum Hall states, as is commonly done in the
literature.

Our strategy is to identify the insulating and integer quan-
tum Hall states through their electrical response to the elec-
tromagnetic gauge field A. Below the energy scale of the mass
|Mψ |, we can integrate out ψ to obtain

Leff = sign(Mψ ) − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]

− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA. (2)

In this effective Lagrangian, only relevant and marginal terms
in the renormalization group sense are written. If Mψ < 0,
rank/level duality [61,74,75] (Appendix B) implies that

Leff (Mψ < 0) = 1

4π
A dA, (3)

i.e., the effective electrical response Lagrangian of an integer
quantum Hall state. Consequently, we identify the phase
obtained for Mψ < 0 with an integer quantum Hall state. Inte-
grating out fermions with Mψ > 0, the non-Abelian Chern-
Simons term for a disappears. Only Tr[a] remains in the
effective Lagrangian; the SU (N ) ⊂ U (N ) component of a
decouples and we assume it confines [76]. The equation of
motion for Tr[a] sets b = 0 [68] and the resulting effective
Lagrangian,

Leff (Mψ > 0) = 0, (4)
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describes an electrical insulator. We expect the leading ir-
relevant operator supplementing the effective Lagrangian in
Eq. (4) to be a Maxwell term for A, consistent with our
identification of the phase obtained when Mψ > 0 with an
insulator.

III. GENERATING FRACTIONAL QUANTUM HALL
TRANSITIONS

We now show how to generate effective descriptions with
U (N ) gauge symmetry for fractional quantum Hall transitions
using the modular group, PSL(2,Z), i.e., the group of 2 ×
2 matrices with integer entries and unit determinant. On a
complex number, like the complexified zero-temperature dc
conductivity σ = σxy + iσxx (measured in units of e2/h) [77],
the modular group takes

σ �→ pσ + q

rσ + s
, for

(
p q
r s

)
∈ PSL(2,Z). (5)

Because the modular group is generated by two elements,
T = (1 1

0 1) and S = ( 0 1
−1 0), any element of PSL(2,Z) can

be decomposed into a product of T and S operators.
Reference [68] showed how the modular group in Eq. (5)

acts on the Lagrangian of a conformal field theory with U (1)
global symmetry. (See [78] for the effects on higher-spin
currents.) Denoting the Lagrangian of an arbitrary conformal
field theory by L(�, A), where � collectively represents all
dynamical fields and A is a background field coupling to the
U (1) symmetry, the modular group acts as follows:

T : L(�, A) �→ L(�, A) + 1

4π
A dA,

S : L(�, A) �→ L(�, c) − 1

2π
c dB. (6)

Equation (6) induces the action of the modular group on the
complexified conductivity of the U (1) symmetry of L(�, A).
T simply shifts the Hall conductivity by one unit; S inverts
σ → −1/σ through its replacement of A with a dynamical
U (1) gauge field c and introduction of a new background field
B via the coupling − 1

2π
c dB.

Reminiscent of the “law of corresponding states” [16] (see
Fig. 1) we can generate using Eq. (6) an effective description
for a transition between any two quantum Hall states related
by a modular transformation to either the insulator (σ = 0)
or integer quantum Hall state (σ = 1). The pertinent subset
of transformations can be decomposed into two operations:
(i) addition of a Landau level = T and (ii) attachment of m
units of flux = S−1T −mS .

Any transition from σ = j → j − 1 between integer quan-
tum Hall states is found by adding j − 1 Landau levels,
i.e., applying T j−1 with j ∈ Z to Eq. (1). On the other
hand, the fractional quantum Hall transition, 1/(m + 1) →
0, is obtained by applying S−1T −mS to Eq. (1). We can
combine the operations of adding a Landau level and flux
attachment to find a description for the 1/3 → 2/5 transition
using S−1T −2ST . The 2/3 → 1 transition, that is, the lowest
Landau level particle-hole conjugate of the 1/3 → 0 transi-
tion, is obtained by acting on the Lagrangian in Eq. (1) with
T S−1T 2ST −1. Other transitions can be generated by further

iteration of these methods. Hence, modular transformations
formalize the “law of corresponding states” [15,16,31]. Be-
cause we have not included effects of disorder, we are, in a
sense, effectively considering the horizontal axis of Fig. 1.

In the remainder of the paper, we focus on the 1
m+1 → 0

transition where the even integer m � 0; qualitatively similar
arguments apply for other transitions. Applying the modular
transformation described above to (1), we find the Lagrangian

Lm = LIQHT(c) + Lmod(A), (7)

where LIQHT(c) is given in Eq. (1) with the replacement A →
c and

Lmod(A) = − 1

2π
c dg − m

4π
gdg + 1

2π
gdA, (8)

with dynamical U (1) gauge fields c and g. Thus, the modular
transformation simply introduces additional Chern-Simons
gauge fields coupling to the U (1) ⊂ U (N ) gauge field Tr[a]
in LIQHT. Appendix C lists the corresponding effective La-
grangians, analogous to Eqs. (7) and (8), for other simple
quantum Hall transitions. When m = 0, we may integrate out
c and g using their equations of motion to recover the La-
grangian in Eq. (1); when m � 2, we can no longer integrate
out g to recover an effective Lagrangian whose Chern-Simons
terms have integer levels.

It is straightforward to check (see Appendix D for details)
using the arguments given below Eq. (2) that Lm in Eq. (7) and
its generalizations describe a large class of fractional quantum
Hall phase transitions, tuned by the fermion mass. We assume
these transitions are continuous for any m � 0.

IV. SUPERUNIVERSALITY IN THE ’T HOOFT
LARGE N LIMIT

Our goal is to determine the correlation length and dy-
namical critical exponents exhibited by Lm in Eq. (7) for
m � 0. The (inverse) correlation length exponent, ν−1 = 1 −
γψ̄ψ , measures the anomalous dimension γψ̄ψ of the operator
ψ̄ψ (x) [79], whose coefficient Mψ is the tuning parameter for
the various fractional quantum Hall transitions we consider.
Since our effective theories are Lorentz-invariant, z = 1 au-
tomatically. Because Lm depends on the rank N of the U (N )
gauge group of a, it is necessary to choose a particular value of
N at which to evaluate ν. We choose N = ∞ and determine ν

in a controlled ’t Hooft large N limit. In Sec. V, we will argue
that the physics of Lm is independent of N . Consequently,
N = ∞ represents a reliable value of the parameter N at
which to determine the critical exponents of Lm.

In order to determine the correlation length exponent, it is
helpful to first simplify the Lagrangian Lm as follows: we set
the background field A = 0; next, we integrate out all Abelian
gauge fields (i.e., b, c, and g) not minimally coupled to ψ ;
finally, we decompose a = aSU (N ) + aU (1)I, where aSU (N ) is a
SU (N ) ⊂ U (N ) gauge field, aU (1) is an Abelian gauge field,
and I is the N × N identity matrix. After performing these
steps, Lm becomes

Ls = iψ̄ /Daψ + kU (1)

4π
aU (1) daU (1)

+ kSU (N )

4π
Tr

[
aSU (N ) daSU (N ) − 2

3
ia3

SU (N )

]
, (9)
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FIG. 2. (a) One-loop fermion self-energy decomposed into
SU (N ) ⊂ U (N ) and U (1) ⊂ U (N ) contributions. The closed ori-
ented loop produces the relative factor of N between the second
and third diagrams. (b) The leading Feynman diagrams contributing
to γψ̄ψ in the ’t Hooft large N limit. Directed lines are fermion
propagators; wavy lines are U (N ) gauge field propagators; a double
line is a SU (N ) gauge field propagator; a dashed line denotes a U (1)
gauge field propagator; insertion of ψ̄ψ is represented by ⊗.

with kU (1) = N2−N−Nm
2(N+1+m) and kSU (N ) = − 1

2 − N . We included
the one-loop exact correction [69,70] to the SU (N ) ⊂ U (N )
Chern-Simons level kSU (N ). Although Ls obscures the topo-
logical structure of our quantum critical state and any gapped
phase obtained from it when Mψ 
= 0 [80], the perturbative
analysis is unchanged.

To gain some intuition for the possible behavior of Ls

(and, therefore, Lm), suppose the fluctuations of aSU (N ) were
ignored. Then, Ls would effectively describe N flavors of
fermions interacting with the Abelian Chern-Simons gauge
field aU (1). For such theories, it is known that γψ̄ψ = 1 +
O( 1

kU (1)N
) at large N [38]. Because kU (1) ∝ N as N → ∞

for any fixed m, the effects mediated by aU (1) could then
be made arbitrarily small as N → ∞. (This is true for the
other quantum Hall transitions considered in Appendix C.)
Consequently, since m only appears in kU (1), γψ̄ψ would be
independent of m at N = ∞, i.e., superuniversal. Our task
now is to determine the extent to which this conclusion
survives the inclusion of aSU (N ) fluctuations.

The ’t Hooft large N limit [42] (see [81] for a review)
provides an expansion within which to calculate γψ̄ψ . This
limit, which is distinct from the limit that obtains within large
flavor expansions, is defined by taking the rank of the U (N )
gauge group N → ∞ with the ratios λSU (N ) = N/kSU (N ) and
λU (1) = N/kU (1) held fixed. Observables like γψ̄ψ are then
calculated in an expansion in powers of 1/N ; the coefficient
of a particular power of 1/N is generally a series in λSU (N ) and
λU (1). In addition, there could be nonperturbative λSU (N ) and
λU (1) contributions to γψ̄ψ . Our result in this section ignores
any such corrections; our duality argument in the next section
indicates such corrections are absent at least when m = 0.

As an illustrative example of how large N scaling works,
Fig. 2(a) decomposes the aSU (N ) and aU (1) one-loop contri-
butions to the fermion self-energy. In our conventions, ver-
tices scale as N0, while gauge field propagators come with
factors of k−1

SU (N ) or k−1
U (1) depending upon whether aSU (N ) or

aU (1) propagates; ψ propagators scale as N0. At large N , the
aSU (N ) contribution in Fig. 2(a) scales as λSU (N ), while the

aU (1) correction scales as λU (1)/N . [Here, we have assumed
the U (N ) coupling constant achieves its fixed point value,
proportional to N0.] Thus, the contribution of aU (1) in Fig. 2(a)
is subdominant to that of aSU (N ) as N → ∞ by a factor of
1/N . This is a general feature: in perturbation theory, the
’t Hooft large N limits of SU (N ) and U (N ) gauge theories
give identical results for shared observables [81]. For Chern-
Simons gauge theories with U (N ) gauge group, this relies
on the 1/N suppression of diagrams containing closed loops
of aU (1) relative to the corresponding planar diagrams that
instead contain loops of aSU (N ).

So long as |kU (1)| ∝ N as N → ∞, the effects of aU (1) are
subdominant by a factor of 1/N in the ’t Hooft large N limit.
In particular, only the fluctuations of aSU (N ) contribute to γψ̄ψ

at N = ∞. The planar contribution to γψ̄ψ scales with N as
N0 and consists of an infinite expansion in λSU (N ); the first
subplanar contribution scales as 1/N and consists of an infinite
series in λSU (N ) and λU (1). Thus, the ’t Hooft expansion for
γψ̄ψ has the form

γψ̄ψ = f0(λSU (N ) ) + 1

N
f1(λSU (N ), λU (1) ) + · · · , (10)

where the planar term f0(λSU (N ) ) is a power series in λSU (N ),
the first subplanar term f1(λSU (N ), λU (1) ) is a power series in
λSU (N ) and λU (1), and · · · represent higher powers of 1/N
which are expected to be subdominant in this expansion. (The
assumption that f0 and f1 are power series of their arguments
is the statement that we are ignoring possible nonperturbative
contributions to γψ̄ψ .) Because m only appears in λU (1),
through its appearance in the effective Chern-Simons level
kU (1) of aU (1) [see Eq. (9) and Appendix C], ν is insensitive
to the particular 1/(m + 1) → 0 transition at N = ∞. This is
superuniversality in the ’t Hooft large N limit.

The specific value of ν is determined by f0(λSU (N ) ) at N =
∞. An important point is that the ’t Hooft large N limits of
the theories we consider remain nontrivial even when N =
∞. For instance, |λSU (N )| = 1 for N = ∞, so that an infinite
number of terms generally need to be summed to determine
f0(λSU (N ) ). Here, we find γψ̄ψ in a controlled ’t Hooft large N
limit, where it is necessary to continue kSU (N ) away from its
physical value given below Eq. (9)] such that λSU (N ) � 1 and
f0(λSU (N ) ) can be reliably approximated by the leading terms
in its expansion in λSU (N ).

Figure 2(b) displays the leading contributions to γψ̄ψ aris-
ing from the fluctuations of aSU (N ) [82]. In [54], it was shown
that these two contributions cancel, i.e., γψ̄ψ = 0 to two-loop
planar order or, equivalently, f0(λSU (N ) ) = 0 to O(λ2

SU (N ) ).
Thus, at the critical point described by Lm in Eq. (7):

ν = 1 + O
(
λ3

SU (N )

)
, (11)

for any m � 0 in the controlled ’t Hooft large N limit. In
perturbation theory, the dependence on m, i.e., the particular
fractional quantum Hall critical point, appears at subplanar
order and is unobservable at N = ∞.

V. N INDEPENDENCE AND DUALITY

We now explore the degree to which the superuniversality
of Eq. (11) persists away from this controlled large N limit,
i.e., when kSU (N ) is continued back to its physical value given
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below Eq. (9). We will use duality to argue that the physics
described by Lm is independent of the particular value of N
appearing in the Lagrangian and that one consequence of this
N independence is that ν = 1 away from the controlled ’t
Hooft large N limit.

In Secs. II and III, we showed that the effective
Lagrangians describing the gapped phases that obtain from
Lm for Mψ 
= 0 do not depend on N . It remains to argue
that the physics of the intervening critical point could also
be independent of N . For this, we conjecture a duality that
equates the long wavelength behavior of the theory in (1) to
that of a free Dirac fermion for any integer N :

i�̄ /DA� + 1

2

1

4π
A dA ←→ LIQHT(A). (12)

Remarkably, this duality implies that the physics described
by LIQHT(A) does not depend on the particular value of N
appearing in its Lagrangian. While a direct proof of Eq. (12)
is not known, we can show that Eq. (12) is a consequence of
the web of bosonization dualities in 2 + 1 dimensions [47,48]
(see Appendixes E and F for details). Furthermore, Eq. (12)
is the statement of fermion particle-vortex duality [44–48]
when N = 1. Consequently, the accumulated evidence for the
duality web likewise provides support for Eq. (12). In the
remainder, we study the consequences of Eq. (12).

If the duality in Eq. (12) holds for all integers N � 1, then
ν must be independent of N for the theory in (1) and its
“modular descendants,” i.e., the theories of fractional quantum
Hall transitions given by Lm in Eq. (7). (See Appendix E
for the Abelian Chern-Simons dual of Lm.) Furthermore,
choosing to determine ν at N = ∞, the specific value of ν

should be captured at the leading planar order in the ’t Hooft
large N limit. This is because only planar terms scale as N0 at
large N ; subplanar terms always have an explicit dependence
on N through their 1/N prefactors [recall that both kSU (N ) and
kU (1) in Eq. (9) scale linearly with N] and so they should not
contribute to ν in any planar expansion at N = ∞.

Since ν = 1 exactly for the theory of a free Dirac fermion,
Eq. (12) implies the planar contribution to γψ̄ψ vanishes for
the theory in (1). In the absence of nonperturbative corrections
to the ’t Hooft expansion in Eq. (11) when m � 2, ν = 1
should also hold for transitions involving fractional states,
e.g., 1

m+1 → 0 with m � 2, because m only enters subplanar
terms in perturbation theory. In other words, duality suggests
the critical theories considered in this paper exhibit superuni-
versality with ν = z = 1.

VI. CONCLUSION

In this work, we introduced new effective theories with
an emergent U (N ) gauge symmetry (N > 1) for various
fractional quantum Hall transitions. We showed that these
theories are superuniversal in a controlled ’t Hooft large N
limit and we argued that this conclusion holds more generality
using duality. Our theories function as an example that the
effects of electron interactions and disorder can be disentan-
gled from the phenomenon of superuniversality. Furthermore,
our theories provide examples of new dualities which are
of fundamental interest and may have applications to other
instances of quantum criticality.

There are several directions of further study. It is impor-
tant to better understand nonperturbative corrections to our
theories; for instance, additional study of the lattice models
in [39,83] could provide useful insight. The theories in this
paper may have direct application to quantum Hall transitions
in graphene that can be controlled by varying an external elec-
tronic potential ([84] and references therein). Perhaps the most
important direction is to incorporate the effects of disorder,
which may account for the difference between the measured
and theoretically determined correlation length exponent.
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APPENDIX A: CHERN-SIMONS CONVENTIONS

In this Appendix, we collect basic facts and definitions
for Chern-Simons theories in 2 + 1 dimensions. The Chern-
Simons term for the U (N ) gauge field a is

Tr

[
a da − 2

3
ia3

]
= Nεμνρ

(
aR

μ∂νaR
ρ − 2

3
i f RST aR

μaS
νaT

ρ

)
,

(A1)

where a = aR
μtR for U (N ) (algebra) generators tR with R ∈

{1, . . . , N2}. Our normalization convention for these genera-
tors is the following: Tr[tRtS] = NδRS and [tR, t S] = i f RST tT

where f RST are the structure constants of U (N ). We denote
Abelian Chern-Simons terms

A dB = εμνρAμ∂νBρ, (A2)

where εtxy = 1.
In the absence of matter fields, only integral linear com-

binations of the following Chern-Simons terms appearing
in Eq. (1) make well-defined contributions to a 2 + 1-
dimensional effective action [95,96]:

1

4π
Tr

[
a da − 2

3
ia3

]
,

1

4π
Tr[a] dTr[a],

1

2π
Tr[a] db,

1

4π
b db. (A3)

Since Tr[a] extracts the U (1) ⊂ U (N ) component of a, we
can think of Tr[a] as a U (1) gauge field with 2π -quantized
flux. The combination of a single Dirac fermion and half-
integer Chern-Simons level for a in Eq. (1) yields a well-
defined term in the path integral [97–99].
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We regularize our effective theories with a Yang-Mills term
for a and a Maxwell term for the Abelian gauge fields. In a
Yang-Mills regularization, the Chern-Simons level k = −1/2
for the SU (N ) ⊂ U (N ) component of a receives a one-loop
exact shift k → k + sign(k)N [69,70]. This correction arises
from the interaction between the gauge fields contained in
the Yang-Mills term. If regularized by dimensional reduction
[70], the Chern-Simons level is not shifted (as the Yang-
Mills interaction is no longer present). To describe (1) within
dimensional reduction, the Chern-Simons level for the SU (N )
component kDR = k + sign(k)N .

APPENDIX B: INTEGER QUANTUM HALL STATE
AND THE INSULATOR

In this Appendix, we explain how the effective Lagrangian
Eq. (2) in the main text,

Leff [A] = sign(Mψ ) − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]

− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA, (B1)

describes an integer quantum Hall state when the fermion
mass Mψ < 0 and a topologically trivial insulator when Mψ >

0. In the effective Lagrangians written above and below, only
relevant and marginal terms, in the renormalization group
sense, are written; irrelevant operators (like Yang-Mills and
Maxwell terms for the gauge fields) are understood to sup-
plement Leff with a coefficient that scales inversely with the
cutoff of the effective theory.

Our strategy is to identify the integer quantum Hall state
and the insulator through their electrical response to the
U (1), i.e., electromagnetic, gauge field A. This response is
encoded in an effective response Lagrangian, obtained by
integrating out all dynamical degrees of freedom [e.g., ψ, a,

and b in Eq. (1)]. Consequently, this effective Lagrangian
only contains A. Using the relation Jμ = δLeff [A]

δAμ , where Jμ

is the electromagnetic current coupling to A, we can read
off the electrical response to an applied electromagnetic field
A. Focusing on the linear response of the system, we may
terminate this effective Lagrangian at quadratic order in A. As
a simple example, consider the effective Lagrangian LCS =

1
4π

AdA describing the integer quantum Hall state. The rela-
tion, Ji = 1

2π
εi jE j , allows us to read off the Hall conductivity,

σxy = 1, of this state, given in units where e2 = h̄ = 1.
When Mψ < 0, the effective Lagrangian takes the form

Leff (Mψ < 0) = − 1

4π
Tr

[
a da − 2

3
ia3

]

− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA.

(B2)

We will show how Eq. (B2) describes an integer quantum Hall
state by applying modular transformations to the rank/level
duality U (N )1 ↔ SU (1)N [61,74,75]

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] dA ↔ N

4π
A dA. (B3)

Note that since SU (1) is trivial, there are no dynamical
gauge fields on the right-hand side. Equation (B3) says that
U (N ) Chern-Simons theory at level k = −1 is equivalent to
the theory of N copies of the ν = 1 integer quantum Hall
state, i.e., a state with Hall conductivity equal to Ne2/h. For
instance, if the topological field theory on the left-hand side
of the duality in (B3) (or its dual on the right-hand side) is
placed on a surface with boundary, there will be N chiral Dirac
fermions propagating along the edge. We now sequentially act
on both sides of the duality in (B3) with ST −N−1, modular
transformations defined in Eq. (6) in the main text. First acting
by T −N−1, we obtain

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] dA − N + 1

4π
A dA ↔ − 1

4π
A dA. (B4)

Then acting by S , we find

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA ↔ − 1

4π
c dc − 1

2π
c dA. (B5)

The theory on the left-hand side of the duality in (B5) is the effective Lagrangian Leff (Mψ < 0) given in Eq. (B2). The theory
on the right-hand side of (B5) is simply the effective hydrodynamic description of the integer quantum Hall effect [100]. To see
this, i.e., to see that the theory exhibits a Hall conductivity equal to one in units of e2/h, we may integrate out c using its equation
of motion to find

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA ↔ 1

4π
A dA. (B6)

When Mψ > 0, the effective Lagrangian is

Leff (Mψ > 0) = − 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dA.

(B7)

The SU (N ) ⊂ U (N ) component of a is no longer present in
the effective Lagrangian. Consequently, at low energies, it

decouples from the remaining degrees of freedom: we assume
that it confines. The U (1) ⊂ U (N ) component of a, i.e., Tr[a],
and b remain in Leff (Mψ > 0). The equation of motion for
Tr[a] sets b = 0, up to gauge transformations. Thus,

Leff (Mψ > 0) = 0. (B8)
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This Lagrangian describes a topologically trivial insulator
as the Maxwell term for A is understood to supplement
Leff (Mψ > 0).

A related way to see that Leff (Mψ > 0) describes an in-
sulator is to perform a PSL(2,Z) field redefinition of the
dynamical U (1) gauge fields Tr[a] �→ ã and b �→ b̃ so that
Leff (Mψ > 0) = 1

4π
ã dã − 1

4π
b̃ db̃ − 1

2π
(ã − b̃)dA for odd N

or Leff (Mψ > 0) = 1
2π

ã db̃ − 1
2π

ã dA for even N . These effec-
tive Lagrangians describe topologically trivial insulators (if no
symmetry is preserved) of fermions or bosons. There is no
contradiction with the duality in Eq. (12) (or, alternatively,
restriction to odd N), which says that Eq. (1) is dual to a
free fermion, if we allow ourselves to “stabilize” by a trivial
insulator of fermions [101].

APPENDIX C: EFFECTIVE LAGRANGIANS FOR
FRACTIONAL QUANTUM HALL TRANSITIONS

In this Appendix, we list the effective Lagrangians of the
form given in Eq. (7),

Lm = LIQHT(c) + Lmod(A), (C1)

where LIQHT(c) is given by Eq. (1) with the replacement A →
c and Lmod(A) is determined by the particular modular trans-
formation for a few other fractional quantum Hall transitions.
Because LIQHT(c) is the same in each effective Lagrangian,
we only specify Lmod(A). We also determine the effective
Chern-Simons level for aU (1) which scales as |kU (1)| ∝ N for
N → ∞.

1. σ = 1/3 → 2/5 transition

The σ = 1/3 → 2/5 transition is obtained by acting on
Eq. (1) by S−1T −2ST . We find

Lmod(A) = 1

4π
c dc − 1

2π
c dg − 2

4π
gdg + 1

2π
gdA. (C2)

The corresponding effective Chern-Simons level for aU (1) in
(9) for this transition is kU (1) = −N

2 + N2

N+5/3 .

2. σ = m/(m + 1) → 1 transition

The σ = m/(m + 1) → 1 transition is obtained by acting
on Eq. (1) by S−1T mST −1. We find

Lmod(A) = − 1

4π
c dc − 1

2π
c dg + m

4π
gdg

+ 1

2π
gdA + 1

4π
A dA. (C3)

The corresponding effective Chern-Simons level for aU (1) in
(9) for this transition is kU (1) = −N

2 + N2

N+1/(m+1) .

APPENDIX D: FRACTIONAL QUANTUM HALL STATE
AND THE INSULATOR

In this Appendix, we show how the effective Lagrangian in
Eq. (7) in the main text,

Lm = LIQHT(c) + Lmod(A), (D1)

where

LIQHT(c) = iψ̄ /Daψ − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db

− N + 1

4π
b db − 1

2π
b dc (D2)

and

Lmod(A) = − 1

2π
c dg − m

4π
gdg + 1

2π
gdA, (D3)

describes a 1/(m + 1) → 0 transition when m � 0. Similar to
Appendix B, when a fermion mass term Mψψ̄ψ is added, we
may integrate it out below the scale set by |Mψ | to find

Leff = sign(Mψ ) − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db

− N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg

− m

4π
gdg + 1

2π
gdA. (D4)

We will show that Eq. (D4) describes a fractional quantum
Hall effect with Hall conductivity equal to 1/(m + 1) (in units
of e2/h) when Mψ < 0 and an insulator when Mψ > 0.

When Mψ < 0,

Leff (Mψ < 0) = − 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db

− N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg

− m

4π
gdg + 1

2π
gdA. (D5)

Applying S−1T −mS2T −N−1 to the rank/level dual pair
[61,74,75] in (B3), we find

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg − m

4π
gdg + 1

2π
gdA

�
− 1

4π
b db − 1

2π
b dc − 1

2π
c dg − m

4π
gdg + 1

2π
gdA. (D6)

Thus, Lψ (Mψ < 0) [the theory in the top line of (D6)] is dual to the theory in the bottom line of (D6). We now sequentially
integrate out b and c so that the bottom line of (D6) simplifies to

−m + 1

4π
gdg + 1

2π
gdA. (D7)
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This is the hydrodynamic effective Lagrangian for the fractional quantum Hall state with Hall conductivity equal to 1/(m + 1)
[100]. Thus, we find

− 1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg − m

4π
gdg + 1

2π
gdA ↔ −m + 1

4π
gdg + 1

2π
gdA.

(D8)

When Mψ > 0,

Leff (Mψ > 0) = − 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg − m

4π
gdg + 1

2π
gdA. (D9)

The SU (N ) ⊂ U (N ) component of a again decouples and we assume it confines. The equation of motion for Tr[a] sets b = 0;
the equation of motion for c sets g = 0 and we are left with the effective Lagrangian for an insulator:

Leff (Mψ > 0) = 0. (D10)

APPENDIX E: DUALITY ARGUMENT AND ABELIAN CHERN-SIMONS DUALS

1. Duality argument

In the first part of this Appendix, we argue that Eq. (1) is in the same universality class as a free fermion. Our demonstration
applies the argument of [47,48] to the bosonization duality [54–56,59,61],

|DAφ|2 − |φ|4 + 1

4π
A dA

�

iψ̄Daψ − 1

8π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] dA − N − 1

4π
A dA, (E1)

that relates the theory of a Wilson-Fisher boson φ to the theory
of a U (N ) Chern-Simons gauge field a coupled to a Dirac
fermion ψ . Applying the modular transformation ST −2 to
“both sides” of this duality (we introduce c in the Wilson-
Fisher theory and b in the gauged Dirac theory in applying the
S transformation), we find the low-energy equivalence

|Dcφ|2 − |φ|4 − 1

4π
c dc − 1

2π
c dA ↔ LIQHT(A), (E2)

with LIQHT(A) given in Eq. (1). But the gauged Wilson-Fisher
theory on the left-hand side of (E2) is also dual to the theory of
a free Dirac fermion [62–65]. Thus, we relate the low-energy
physics of the theory of a free Dirac fermion to that of our
theory in Eq. (1),

i�̄ /DA� + 1

2

1

4π
A dA ↔ LIQHT(A). (E3)

2. Abelian Chern-Simons duals

In the second part of this Appendix, we provide the Abelian
Chern-Simons duals for the U (N ) Chern-Simons theories
studied in the main text and listed in Appendix C that are
implied by the duality in Eq. (12) (copied below):

i�̄ /DA� + 1

2

1

4π
A dA ↔ LIQHT(A). (E4)

The strategy is identical to that of [48]: we perform a modular
transformation on each side of the duality (E4) and then
identify the resulting theories. Duality implies that ’t Hooft
large N limit calculations for the theories with non-Abelian
gauge group can be reinterpreted in terms of their Abelian
duals.

3. Dual pair for the σ = 1/(m + 1) → 0 transition

Acting on (E4) with S−1T −mS , we find the duality

i�̄ /Dã� + 1

2

1

4π
ã dã − 1

2π
ã db̃ − m

4π
b̃ db̃ + 1

2π
b̃ dA

�

iψ̄ /Daψ − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dc − 1

2π
c dg − m

4π
gdg + 1

2π
gdA, (E5)

where ã, b̃, b, c, and g are Abelian gauge fields and a is a U (N ) gauge field.
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4. Dual pair for the σ = 1/3 → 2/5 transition

Acting on (E4) with S−1T −2ST , we find the duality

i�̄ /Dã� + 3

2

1

4π
ã dã − 1

2π
ã db̃ − 2

4π
b̃ db̃ + 1

2π
b̃ dA

�

iψ̄ /Daψ − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db − N + 1

4π
b db − 1

2π
b dc + 1

4π
c dc − 1

2π
c dg − 2

4π
gdg + 1

2π
gdA, (E6)

where ã, b̃, b, c, and g are Abelian gauge fields and a is a U (N ) gauge field.

5. Dual pair for the σ = m/(m + 1) → 1 transition

Acting on (E4) with T S−1T mST −1, we find the duality

i�̄ /Dã� − 1

2

1

4π
ã dã − 1

2π
ã db̃ + m

4π
b̃ db̃ + 1

2π
b̃ dA + 1

4π
A dA

�

iψ̄ /Daψ − 1

2

1

4π
Tr

[
a da − 2

3
ia3

]
− 1

2π
Tr[a] db− N + 1

4π
b db− 1

2π
b dc − 1

4π
c dc − 1

2π
c dg+ m

4π
gdg+ 1

2π
gdA + 1

4π
A dA,

(E7)

where ã, b̃, b, c, and g are Abelian gauge fields and a is a
U (N ) gauge field.

APPENDIX F: PARTICLE-HOLE TRANSFORMATION
WITHIN THE LOWEST LANDAU LEVEL

For the free Dirac theory in the duality in Eq. (12), the
particle-hole transformation with respect to a filled Landau
level can be defined as follows. First, the fields are trans-
formed by the anti-unitary (i �→ −i) transformation that con-
sists of the product of time-reversal and charge-conjugation
which takes t �→ −t ,

� �→ −γ t�∗,

(At , Ax, Ay) �→ (−At , Ax, Ay), (F1)

and then the Lagrangian is shifted by a filled Landau level
using the T transformation.

The theory of a free Dirac fermion in Eq. (12) is invariant
under a particle-hole transformation with respect to a filled
Landau level. Duality implies that the theory in Eq. (1) like-
wise enjoys this symmetry; we believe particle-hole symmetry
is realized quantum mechanically and is not visible in the

classical Lagrangian of Eq. (1) for N > 1 (see [102] for a
recent discussion of this phenomena in related dualities). It
would be interesting to see how this symmetry constrains
the conductivity (along with other observables) of different
quantum critical states [103,104].

There is a second anti-unitary transformation that we ex-
pect to leave physical observables invariant even though it
is not a symmetry of Eq. (1). It is defined as follows: First,
time-reversal acts on the dynamical fields as

ψ �→ γ yψ,

(at , ax, ay ) �→ (at ,−ax,−ay), (F2)

(bt , bx, by ) �→ (bt ,−bx,−by).

Second, the product of time-reversal and charge-conjugation
acts on A as

(At , Ax, Ay) �→ (−At , Ax, Ay). (F3)

Finally, the Lagrangian in Eq. (1) is shifted by a filled Landau
level with the T transformation. This transformation can be
employed to generate alternative effective descriptions for
the particle-hole conjugate of a given quantum Hall phase
transition.
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