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The band structure of some translationally invariant lattice Hamiltonians contains strictly dispersionless flat
bands (FB). These are induced by destructive interference and typically host compact localized eigenstates (CLS)
which occupy a finite number U of unit cells. FBs are important due to macroscopic degeneracy and consequently
due to their high sensitivity and strong response to different types of weak perturbations. We use a recently
introduced classification of FB networks based on CLS properties, and extend the FB Hamiltonian generator
introduced in Phys. Rev. B 95, 115135 (2017) to an arbitrary number ν of bands in the band structure, and
arbitrary size U of a CLS. The FB Hamiltonian is a solution to equations that we identify with an inverse
eigenvalue problem. These can be solved only numerically in general. By imposing additional constraints, e.g.,
a chiral symmetry, we are able to find analytical solutions to the inverse eigenvalue problem.
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I. INTRODUCTION

Physical models featuring macroscopically degenerate
eigenstates have attracted a lot of attention in the past decades.
Such degeneracies are naturally unstable to slightest pertur-
bations making them perfect candidates for exotic or un-
conventional correlated phases of matter like in frustrated
magnetism, and strongly correlated systems. An active field
in this direction is the understanding of properties of flat
bands (FB), i.e., bands with no dispersion [1,2]. FB models
are usually translationally invariant tight-binding networks
which are characterized by a certain hopping connectivity
between different network sites and which characterize the
wave function of, e.g., a quantum particle, a macroscopic
condensate, or a photonic field in a structured medium. [2,3]
The band structure of the corresponding eigenvalue problem
contains ν bands if the unit cell of the network is containing ν

sites. FB networks were widely studied theoretically in lattice
dimension d = 1 [4–6], d = 2 [7–9], and d = 3 [7,10–15].
FBs have been experimentally realized in a variety of setups,
including optical wave guide networks, exciton-polariton con-
densates, and ultracold atomic condensates [16–24].

The absence of dispersion in FBs happens due to destruc-
tive interference. Destructive interference is also the cause
of the existence of compact localized states (CLS). CLS are
eigenstates at the FB energy, that have strictly finite support on
the lattice, and occupy a finite number U of unit cells. Since
any translation of a CLS is necessarily again an eigenstate for
a translationally invariant Hamiltonian, the existence of a CLS
is a direct proof of existence of an FB and its macroscopic
degeneracy.

System perturbations typically destroy CLS leading to a
variety of interesting phenomena: flat band ferromagnetism
in the fermionic Hubbard model [7,8,12,25–28], energy de-
pendent scaling of disorder-induced localization length [29],
singular mobility edges with quasiperiodic potentials [30,31],
Landau-Zener Bloch oscillations in the presence of external

fields [32], discrete breathers in nonlinear flat band lattices
[33–35], pair formation of hard core bosons [36], and ge-
ometric origin of superfluidity [37,38]. Several approaches
were developed to construct FB networks: line graph con-
structions [7], decorated lattices [8], origami rules [39], rep-
etition of miniarrays [40], chiral symmetry based ones [15],
and methods based on local symmetries of the Hamiltonian
[41]. Nishino et al. [10,42] used specific CLS and network
symmetries to fine-tune the hoppings down to a FB.

A systematic classification of FBs in terms of compact
localized states was introduced in Ref. [43], where FBs are
classified by the size U of the CLS: the number of unit
cells occupied by CLS. CLS-based FB generators were then
obtained for U = 1 and arbitrary number of bands and di-
mension [43] covering all FB models of that class. For ν = 2
and U = 2 in one dimension, a generator was obtained in
Ref. [44] describing all the possible d = 1 FB networks with
two bands. These FB networks form a two-parameter family
of generalized sawtooth chains.

In this work, we focus on the case d = 1 deferring higher
dimensions, where we expect even richer phenomenology,
for future work. The d = 1 case was so far analyzed only
for two bands and U = 2 [44]. Many recent theoretical pro-
posals [40,45–51] and experimental attempts of realizations
[18,19,24,52] focus on d = 1 settings, and make it necessary
to obtain firstly an as complete as possible evaluation of the
general d = 1 case.

We extend the ν = 2 flat band generator [44] approach to
any value of ν and U . The paper is organized as follow. In
Sec. II, we provide the main definitions that we are using
throughout the paper. Section III A discusses the relationship
between the FB Hamiltonians and the inverse eigenvalue
problems. That relationship is turned into an efficient FB
generator in Sec. III B. In Sec. IV, we present the solutions
for the FB generator. We conclude by summarising our results
and discussing open problems.
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II. MAIN DEFINITIONS

In this work, we consider a one-dimensional (d = 1) trans-
lationally invariant lattice Hamiltonian with ν > 1 lattice sites
per unit cell. We label unit cells by the index n, so that
the full wave function reads � = (. . . , �ψn−1, �ψn, . . .). Here
individual vectors �ψn have elements ψnm, m = 1, . . . ν labels
sites inside the unit cell. Consequently the complex amplitude
on the mth site in the nth unit cell reads as ψnm. We will use
the notation �ψn for the wave functions along with the bra-ket
notation, |ψn〉, throughout the paper.

Any translationally invariant Hamiltonian can be charac-
terized by a set of hopping matrices Hm, m = 0, 1, . . . , where
H0 is the intracell hopping, H1 describes nearest-neighbor
unit cell hopping, etc. The case of finite-range hopping is
additionally characterized by mc (the maximum range of the
hopping). For the sake of simplicity, we restrict our analysis
to the simplest case of mc = 1. Most of the results presented
below carry over to the cases of mc > 1 with minimal changes,
that we indicate in the text, where appropriate. We restrict the
analysis to the case of a single flat band in the system, and
postpone the more general case of multiple flat bands for later
studies.

With the above conventions and notations the eigenvalue
problem for an arbitrary nearest-neighbor Hamiltonian reads
[44]

H†
1

�ψl−1 + H0 �ψl + H1 �ψl+1 = E �ψl , l ∈ Z. (1)

The Hamiltonian of the system is a tridiagonal block matrix

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0 0 . . . 0 0 . . .

. . . H0 H1 0 0 . . . 0 . . .

0 H†
1 H0 H1 0 . . . 0 . . .

. . . 0
. . .

. . .
. . .

. . .
... . . .

. . .
... . . . 0 H†

1 H0 H1 0

. . . 0 . . . 0 0 H†
1 H0

. . .

. . . 0 0 . . . 0 0
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Compact localized state. A CLS is an eigenvector of (1)
with �ψn �= 0 only for a strictly finite number U of adjacent
unit cells and zero everywhere else [43]. The value U is
referred to as the class of CLS. The presence of a CLS in the
spectrum of a translationally invariant Hamiltonian implies an
FB. Indeed, in the infinite lattice size limit, infinitely many
discrete translations of a CLS will be linearly independent.
A CLS with a larger size V > U can be generated from a
given class U CLS by linear superpositions. Therefore the
class U refers to the irreducible smallest value of U for which
a CLS can not be represented as a linear superposition of even
smaller CLS for a given FB network/Hamiltonian. As far as
we can tell, for all known translationally invariant flat band
Hamiltonians with finite range hoppings, the FB eigenspace
does decompose into a CLS set. For the translationally invari-
ant d = 1 case the set of all CLS forms a complete basis [44].
The eigenenergy of a flat band will be denoted as EFB.

The CLS is an eigenvector �CLS = ( �ψ1, �ψ2, . . . �ψU ) of the
U × U block matrix

HU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0 H1 0 0 . . . 0
H†

1 H0 H1 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
...

0 . . . 0 H†
1 H0 H1

0 . . . 0 0 H†
1 H0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

with eigenenergy EFB. Additionally the CLS has to satisfy the
destructive interference (compactness) conditions

H1 �ψ1 = H†
1

�ψU = 0, (4)

that ensure that the wave function amplitudes vanish ev-
erywhere except for the U unit cells occupied by �CLS.1

Therefore a necessary condition for the existence of a CLS
reads

det H1 = 0. (5)

Chiral symmetry. An important subclass of FB networks
is that with chiral symmetry. [15] Chiral lattices are bipar-
tite networks with minority and a majority sublattices. This
imposes a specific structure of the hopping integrals and the
CLS amplitudes �ψl . For that we split the lattice sites from
each unit cell into two subsets, each belonging to one of
the two sublattices. This leads to a splitting of each �ψl into
two sublattice vectors, as well as to a corresponding block
structure of the matrices H0, H1. As a result the CLS of a
chiral flat band will always reside exclusively on the majority
sublattice [15]:

H0 =
(

0 A†

A 0

)
, H1 =

(
0 T †

S 0

)
,

�ψl =
(

�ϕl

0

)
, l = 1, . . . ,U . (6)

Here, A, S, and T are (ν − μ) × μ matrices, μ is the number
of sites on the majority sublattice in the unit cell, and �ϕl is a μ

component vector residing on the majority sublattice sites in
a unit cell. By definition ν − μ � μ < ν. The spectrum of the
system enjoys particle-hole symmetry around E = 0. A chiral
flat band has energy EFB = 0 and is symmetry protected.
For ν < 2μ, there are μ − �ν/2� flat bands at EFB = 0 [15].
Increasing the range of hopping mc > 1 while preserving the
chiral symmetry will keep the chiral flat bands in place. More-
over one can keep the chiral flat bands by partially destroying
the chiral and sublattice symmetry. This is achieved by adding
hopping terms on the minority sublattice only, since the chiral
FB CLS is occupying majority sublattice sites only:

H0 =
(

0 A†

A B

)
, H1 =

(
0 T †

S W

)
,

�ψl =
(

�ϕl

0

)
, l = 1, . . . ,U . (7)

1In the presence of longer-range hopping mc > 1, the CLS com-
pactness conditions become more involved [44]
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where B and W are (ν − μ) × (ν − μ) matrices. Note that the
overall particle-hole symmetry of the system is lost, but the
original chiral flat bands are still present at EFB = 0.

III. THE FLAT BAND GENERATOR

The flat band generator introduced below is based on a
generalization of the concept developed in Ref. [44] for ν =
U = 2.

A. Inverse eigenvalue problem

We rewrite the CLS problem [(3) and (4)] as

H1 �ψ2 = (EFB − H0) �ψ1, (8)

H†
1

�ψl−1 + H1 �ψl+1 = (EFB − H0) �ψl , 2 � l � U − 1, (9)

H†
1

�ψU−1 = (EFB − H0) �ψU , (10)

H1 �ψ1 = H†
1

�ψU = 0, (11)

�ψl = 0, l < 0, l > U . (12)

This set of equations is the starting point of our flat band
generator. Our goal is to generate all possible matrices H1

which allow for the existence of a flat band, given a particular
choice of H0. Note that H0 can be diagonal (canonical form),
but any nondiagonal Hermitian choice of H0 is fine as well.

One way to look for solutions is to parametrize H1 and
to compute the flat band energy EFB and the CLS �CLS

for a given set of U and ν. In order to satisfy (11), we
choose H1 from the space Z of ν × ν matrices with one zero
eigenvalue. Then the directions of the vectors �ψ1, �ψU are fixed
by the choice of H1, leaving their two norms as free variables.
Together with the remaining unknown CLS components and
the flat band energy we arrive at V = (U − 2)ν + 3 variables.
The total number of equations from (8)–(10) is E = Uν. Since
ν � 2 it follows that the set of equations is overdetermined.
We need 2ν − 3 additional constraints which will lead us to
the proper codimension (2ν − 3) manifold in the space Z . For
ν = 2, the codimension (1) manifold was computed explicitly
and a closed form of the functional dependence of the CLS
and flat band energy on H1 was obtained in Ref. [44]. For
larger values of ν (and U ), the constraint computation turns
hard. Therefore we will simply invert the approach—we will
define the CLS (thereby setting U ) and EFB and generate the
proper H1 matrix manifold. This will turn an overcomplete set
of equations into an undercomplete one, which is easier to be
analyzed.

Let us assume that ψ1 is not orthogonal to ψU . Multiplying
〈ψU | from the left with equation (8), the flat band energy EFB

follows as2

EFB = 〈ψU |H0|ψ1〉
〈ψ1|ψU 〉 . (13)

2For mc > 1, one has to assume Hm, m < mc are also input param-
eters.

For practical purposes, we can choose the CLS normalization
condition 〈ψ1|ψU 〉 = 1. Note that if ψ1 is orthogonal to ψU ,
the CLS class is reduced to a U − 1 class by an appropriate
unitary transformation including a redefinition of the unit cell
(see Appendix A).

We can then treat the problem of flat band generation
(8)–(12) as an inverse eigenvalue problem [53]: given EFB and
�CLS—as well as part of the Hamiltonian—H0, we reconstruct
the Hamiltonian matrix H, Eq. (2). The idea of finding hop-
ping matrices for a fixed CLS was first introduced by Nishino,
Goda, and Kusakabe [10,42]. Our results, even if limited
to d = 1 in the present work, are much more systematic:
compared the work of Nishino, Goda, and Kusakabe, we
classify CLS by their size U , introduce the constraints on
�CLS ensuring that it is a U -class CLS and show how to
resolve these constraints.

B. The generator

We arrive at the following algorithm to construct a Hamil-
tonian with a flat band from a given CLS.

(1) Fix the number of bands ν and the size of the CLS U .
(2) Choose H0, either as a diagonal (canonical form), or as

any Hermitian matrix.
(3) Choose a real EFB.
(4) Choose �ψ1 (or �ψU ).
(5) Exclude H1 from (8)–(12), arrive at a set of two linear

and further nonlinear constraints, and solve them for the
remaining CLS components �ψl .

(6) Solve the linear system (8)–(12) to find H1.
The system (8)–(12) is linear, and therefore it is easy to

solve it, or to show that it has no solution. Typically, if this
system has a solution, it will be undercomplete and show up
with multiple solutions compatible with the input CLS. It is
therefore enough to find a particular solution H̄1 to Eqs. (8)–
(12). A generic solution H1 = H̄1 + δH1, where δH1 follows
from the homogeneous system of equations:

δH1 �ψ2 = 0,

δH†
1

�ψl−1 + δH1 �ψl+1 = 0, 2 � l � U − 1,

δH†
U−1

�ψU−1 = 0,

δH1 �ψ1 = δH†
1

�ψU = 0,

�ψl = 0 l < 0, l > U . (14)

The perturbation δH1 is a deformation of the Hamiltonian H
which preserves the CLS and the flat band energy and only
affects the dispersive part of the spectrum.

It is also possible to further constrain the network connec-
tivity by choosing specific elements of H0 and/or H1 to be
zero. This is easily accounted for in H0, which is an input
parameter. The case of H1 is more involved as discussed in
Sec. IV B.

IV. SOLUTIONS

We proceed to classify flat bands in the order of increasing
U . The U = 1 case has already been completed in Ref. [43],
therefore we start our classification with U = 2.
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A. U = 2

We fix the number of bands to ν, and choose some H0, EFB,
and |ψ1〉. The inverse eigenvalue problem Eqs. (8)–(12) now
reads

H1|ψ2〉 = (EFB − H0)|ψ1〉,
〈ψ1|H1 = 〈ψ2|(EFB − H0),

H1|ψ1〉 = 0,

〈ψ2|H1 = 0. (15)

The eigenfunction �CLS = ( �ψ1, �ψ2) cannot be chosen
arbitrarily—its second part |ψ2〉 has to satisfy the following
set of linear and nonlinear compatibility constraints:

〈ψ1|ψ2〉 = 1,

〈ψ1|H0|ψ2〉 = EFB,

〈ψ1|EFB − H0|ψ1〉 = 〈ψ1|EFB − H0|ψ1〉. (16)

The first constraint is simply a choice of normalization of
�CLS. The second constraint follows from Eq. (13) and uses
EFB as input variable. The last identity results from multi-
plying the first equation in Eqs. (15) by 〈ψ2| from the left,
and multiplying the second equation in Eqs. (15) by |ψ1〉
from the right. It is not possible to solve the third constraint
analytically in general, but we present in Appendix C 1 a
numerical algorithm that allows to resolve these constraints
and enumerate all the solutions, if existing. If existing, the
solution to |ψ2〉 has ν − 3 free parameters. For the special
case of two bands ν = 2, the flat band energy EFB can not be
chosen arbitrarily and needs to be included into the procedure
as a to be defined variable. Note that this particular case can be
solved in closed analytical form following a different solution
strategy [44].

Once �CLS = ( �ψ1, �ψ2) is known, we can solve Eq. (15) for
H1. First we note that the last two equations - the destructive
interference conditions—can be taken into account with the
following Ansatz for H1:

H1 = Q2 M Q1, Qi = I − |ψi〉〈ψi|
〈ψi||ψi〉 . (17)

Then Eq. (15) becomes an inverse eigenvalue problem. The
details of the derivation are presented in Appendix B and the
solution is

H1 = G1 + δH1,

G1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 , (18)

δH1 = Q12 K Q12,

where K is an arbitrary ν × ν matrix and Q12 is a joint
transverse projector on |ψ1〉, |ψ2〉: Q12|ψi〉 = 0, i = 1, 2. If
the denominator 〈ψ1|EFB − H0|ψ1〉 ≡ 0, the above solution is
replaced with a more complicated expression involving two
different projectors (see Appendix B for details).

It is instructive to count the number F of free parameters in
the above solution, given a fixed H0, EFB and |ψ1〉 for ν � 3. It
is the sum of two contributions: the number of free parameters
in δH1 and in the particular solution G1, which are (ν − 2)2

and (ν − 3) respectively. The final result is F = ν2 − 3ν + 1.

FIG. 1. Examples of flat band Hamiltonians with CLS of class
U = 2, ν = 3. The sites occupied by a CLS are indicated by filled
black circles. Each subfigure contains the visualization of the lattice
(top) and the band structure (bottom). The flat band is colored in or-
ange. (a) Diagonal H0, (b) nondiagonal H0, and (c) nondiagonal and
fully connected H0. Appendix D 1 contains the detailed description
of the Hamiltonians.

It then follows that the flat band Hamiltonians form a codi-
mension (2ν − 2) subspace, since H0 is arbitrary, dim(H1) =
ν2, and the total number of free parameters at fixed H0 is
Ft = F + 1 + ν = ν2 − 2(ν − 1). This is a remarkable result,
since it shows that flat band Hamiltonians are only weakly
fine-tuned, e.g., for ν = 3, we find five free parameters when
choosing the nine elements of H1 for an arbitrary chosen
H0. Note that the above counting does not apply to the case
ν = 2 which was studied in Ref. [44] and amounts to two free
parameters when choosing the four elements of H1.

Equations (16) and (18) provide the complete solution to
the problem of finding all the d = 1 nearest-neighbor Hamil-
tonians with one flat band and CLS of class U = 2. Figure 1
shows some examples of U = 2 and ν = 3 Hamiltonians
constructed using the above scheme.

For a bipartite network, the hopping matrix H1 has
a specific structure given by Eqs. (7) that simplifies
Eqs. (15) to

S|ϕ2〉 = −A|ϕ1〉, (19)

S|ϕ1〉 = 0, (20)

T |ϕ1〉 = −A|ϕ2〉, (21)

T |ϕ2〉 = 0, (22)
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FIG. 2. Example of a bipartite flat band Hamiltonian with U = 2,
ν = 4. The sites of the CLS are indicated by the filled black squares.
Links are colored differently for the convenience of visualisation of
the chain. In this example, the chiral symmetry is broken on the
minority sublattice, due to the presence of B �= 0,W �= 0 in Eq. (7).
Nevertheless the chiral flat band is preserved. The details of this
example are given in Appendix D 1.

and EFB = 0. The minority sublattice hopping matrices B,W
dropped out as expected. The above equations are consid-
erably simpler than the generic U = 2 Eqs. (15): the above
system splits into two independent inverse eigenvalue prob-
lems for S and T . The details of the solution are presented in
Appendix B 3, the final answer is

S = −A|ϕ1〉〈ϕ2|Q1

〈ϕ2|Q1|ϕ2〉 + KSQ12,

T = −A|ϕ2〉〈ϕ1|Q2

〈ϕ1|Q2|ϕ1〉 + KT Q12, (23)

where KT and KS are arbitrary matrices of size (ν − μ) × μ,
respectively. The Q12 is a joint transverse projector on |ϕ1,2〉.
There are no restrictions on the entries of A, B, W , and
|ϕ1,2〉—they are all free parameters—at variance with the
generic U = 2 flat band construction. Therefore the number
of free parameters is (ν − μ)(2ν + μ − 2) − 1 (see Appendix
B 3 for details). The above solution fails for 〈ϕ2|Q1|ϕ2〉 =
〈ϕ1|Q2|ϕ1〉 ≡ 0, therefore |ϕ2〉 ∝ |ϕ1〉, the CLS and the flat
band are of class U = 1.

Figure 2 shows an example of a bipartite lattice with ν = 4.
There are two sites in the unit cell of each sublattice, and B �=
0, W �= 0. In this example, the parameters �ϕ2, �ϕ2, A, B, W
are arbitrarily chosen, and KT = 0, KS = 0 (see details in the
Appendix D 1).

B. U � 3

Let us consider larger U values. For simplicity, we use U =
3 in the examples. Fix the number of bands to ν, and choose
some H0, EFB, and |ψ1〉. Then we have the following inverse
eigenvalue problem with U + 2 equations (U for each CLS

occupied unit cell, and two for the destructive interference
conditions):

H1|ψ2〉 = (EFB − H0)|ψ1〉,
H†

1 |ψ1〉 + H1|ψ3〉 = (EFB − H0)|ψ2〉,
H†

1 |ψ2〉 = (EFB − H0)|ψ3〉,
H1|ψ1〉 = 0,

H†
1 |ψ3〉 = 0. (24)

The set of constraints for the �CLS reads

〈ψ1|ψ3〉 = 1,

〈ψ1|H0|ψ3〉 = EFB,

〈ψ1|EFB − H0|ψ2〉 = 〈ψ2|EFB − H0|ψ3〉,
〈ψ1|EFB − H0|ψ1〉 + 〈ψ3|EFB − H0|ψ3〉

= 〈ψ2|EFB − H0|ψ2〉. (25)

Again these identities are derived from Eqs. (24) by multi-
plying them with 〈ψ1| and 〈ψU | and rearranging terms, in
order to eliminate H1. Notice that the set of compatibility
constraints for �CLS amounts to U + 1 equations. Note also
that in precisely two of those U + 1 equations, with 〈ψ1|
given, amount to 2 linear, and U − 1 nonlinear equations for
the remaining CLS amplitudes. It is not possible to solve the
nonlinear equations analytically in general, but we present in
Appendix C 2 a numerical algorithm that allows to resolve
these constraints and enumerate all the solutions, if existing,
for the case U = 3.

Instead of using the Ansatz (17) for H1, we take a more
suitable approach to generate flat band Hamiltonians (i.e.,
matrices H1) for U � 3. With a given �CLS, which satisfies
the constraints (25), the set of equations (24) is a linear system
with respect to H1:

T h1 = �. (26)

Here, h1 is a ν2-dimensional vector resulting from the vec-
torization of the matrix H1. T is a rectangular ν(U + 2) × ν2

matrix whose elements are composed by the elements of CLS,
such that the product T h1 is the left-hand side of Eqs. (24). �

is a ν(U + 2) vector originating from the right-hand side of
Eqs. (24):

� = (EFB − H0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�ψ1

�ψ2

. . .

�ψU

�0
�0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

The zero vector components �0 result from the destructive
interference. The linear system (26) can be then solved, e.g.,
using a least squares solver. Figure 3 shows some examples
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FIG. 3. Examples of Hamiltonians with a CLS of class U = 3.
The sites occupied by a CLS are indicated by black filled cir-
cles. (a) Diagonal choice for H0. (b) Chain like structure for H0.
(c) Generic choice for H0. (d) EFB is chosen negative enough to
become the groundstate. Details of these examples are presented in
Appendix D 2.

of U = 3 flat bands, which we generated by resolving the
constraints (25) and solving Eq. (26).

C. Network constraints

For practical purposes, the flat band fine-tuning of a Hamil-
tonian network can involve additional network constraints,
e.g. the strict vanishing of certain hopping terms between
specific sites of the network [54]. This typically happens
when arranging network sites in a plane. Let us consider
the typical problem of finding a nearest-neighbor flat band
Hamiltonian with specific network constraints. These net-
work constraints dictate the locations of zero entries in H0

and H1. They can be incorporated into the matrix T of
Eq. (26) as a mask M: T → T M that enforces zero entries
in H1 in the right positions. The solution of the resulting
system is then searched for similar to the nonconstrained
case.

Especially when H0 and H1 are sparse, e.g., the num-
ber of variables in H1 is equal to or greater then the
number of equations, it is possible to solve (8)–(12) an-
alytically (see Appendix E). Figure 4 shows examples of
networks with flat bands generated for a d = 1 kagome
chain and chains with hoppings allowed only inside network
plaquettes.

FIG. 4. Examples of flat band Hamiltonians constructed on spe-
cific networks. The sites occupied by a CLS are marked by black
filled circles. (a) 1d kagome with ν = 5 and U = 2 compact localized
states. The crossing of three bands indicates that the Hamiltonian
can be detangled into two independent sub-Hamiltonians. (b) and
(c) Examples of Hamiltonians with ν = 3, U = 2 and U = 3 CLS,
respectively. The details of all these Hamiltonians are provided in
Appendix E.

V. CONCLUSIONS

We presented a systematic construction of one-dimensional
Hamiltonians with ν bands including one flat band for an arbi-
trary size U � ν of compact localized states and illustrated the
method with several examples. The task of finding flat band
Hamiltonians is reduced to solving a specific inverse eigen-
value problems subject to certain nonlinear constraints. The
flat band energy enters as a parameter and can be tuned. For
the U = 2 case, we derive analytical solutions to the inverse
eigenvalue problem supplemented with a numerical algorithm
to resolve for the constraints. For U � 3, analytical solutions
are not accessible, yet numerical algorithms are applied to
generate flat band Hamiltonians. We illustrate the method by
generating several U = 3 flat band Hamiltonians. The same
construction allows to incorporate various network geometry
constraints into the search algorithm. Our results show that flat
band Hamiltonians, while being the result of a fine-tuning in
the space of all tight binding Hamiltonian networks, allow for
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a surprisingly large number of free parameters which change
the network, but leave the flatness of the flat band untouched.

Open questions include the extension of the present for-
malism to the case of multiple flat bands and/or higher
dimensions. The present algorithm can be extended naturally
to higher dimensions and will generalize the approach of
Nishino et al. [10,42]. The extension to d = 2, 3 would
require more intercell hopping matrices Ha describing hop-
ping in different dimensions—Hx, Hy in the simplest case
of the square lattice geometry—beyond just H1. Also the
simple classification in terms of the CLS size U has to be
extended: one has to specify the shape of the compact lo-
calised state. Equations (1) regarded as an inverse eigenvalue
problem would now couple different Ha. These equations can
be decoupled with respect to Ha by introducing additional
variables, and reduced to inverse eigenvalue problems for
individual hopping matrices Ha, similar to the ones that we
were solving here for d = 1.

Another interesting interesting avenue for future research
is the case of non-Hermitian Hamiltonians allowing for gain
and loss terms in the Hamiltonian (2). Recently a number of
works [55,56] analyzed flat bands in such systems or consid-
ered the fate of flat bands in the presence of non-Hermitian
perturbations [50,57] and finding interesting results. Finally,
non-Hermitian Hamiltonians have a larger parameter space
suggesting richer classification as compared to the Hermitian
case. We expect therefore that a systematic construction and
identification of flat bands in this context might lead to new
interesting results.
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APPENDIX A: REDUCTION OF CLS OF CLASS U INTO
U − 1, WHEN �ψ1 ⊥ �ψU .

Suppose we have a CLS of class U , that we write as
�ψcls = ( �ψ1, �ψ2, . . . , �ψU )T , and �ψ1 ⊥ �ψU . Then we can ap-

ply a unitary transformation R on the CLS, such that �̃ψi =
R �ψi, i = 1, . . . ,U . and

�̃ψ1 =

⎡
⎢⎢⎢⎢⎣

1

0
...

0

⎤
⎥⎥⎥⎥⎦, �̃ψ2 =

⎡
⎢⎢⎢⎢⎣

ψ1
2

ψ2
2

...

ψν
2

⎤
⎥⎥⎥⎥⎦, . . . , �̃ψU =

⎡
⎢⎢⎢⎢⎣

0

ψ2
U

...

ψν
U

⎤
⎥⎥⎥⎥⎦, (A1)

where ν is number of sites per unit cell. Due to unitary of
transformation R, the eigenvalue problem (8)–(12) does not
change. Next we redefine the unit cell in the following way:

�̄ψ1 =

⎡
⎢⎢⎢⎢⎣

1

ψ2
2

...

ψν
2

⎤
⎥⎥⎥⎥⎦, �̄ψ2 =

⎡
⎢⎢⎢⎢⎣

ψ1
2

ψ2
3

...

ψν
3

⎤
⎥⎥⎥⎥⎦, . . . , �̄ψU−1 =

⎡
⎢⎢⎢⎢⎣

ψ1
U−1

ψ2
U

...

ψν
U

⎤
⎥⎥⎥⎥⎦,

FIG. 5. A schematics showing how a CLS of class U = 4 re-
duces to U = 3, when �ψ1 ⊥ �ψ4. Each elongated box stands for one
unit cell. Filled circles: nonzero wave function components. Open
circles: zero wave function components.

and �̄ψU = 0. Therefore, after the unitary transformation R and
redefinition of the unit cell, the class of the CLS reduces to
U − 1. The schematics of this procedure is shown in Fig. 5.

APPENDIX B: INVERSE EIGENVALUE PROBLEM: A TOY
EXAMPLE AND THE SOLUTION OF THE U = 2 CLS

This Appendix explains the solution of the inverse eigen-
value problems (15). As discussed in main text, 1D flat band
lattices with CLS class U satisfy

H1 �ψ2 = (EFB − H0) �ψ1,

H†
1

�ψl−1 + H1 �ψl+1 = (EFB − H0) �ψl , l = 2, . . . ,U − 1,

H†
1

�ψU−1 = (EFB − H0) �ψU ,

H1 �ψ1 = 0,

H†
1

�ψU = 0. (B1)

Assuming that EFB, H0, �ψl=1,...,U are given, the equations
(B1) constitute an inverse eigenvalue problem for a block-
tridiagonal matrix, where diagonal blocks are H0 and off
diagonal ones are H1.

1. Toy example

As a warmup, we solve a toy inverse eigenvalue problem:
reconstruct ν × ν matrix T given its action |y〉 on some
vector |x〉

T |x〉 = |y〉. (B2)

The solution is not unique: generic solution can be repre-
sented as T = T∗ + δT , where T∗ is any particular solution
of Eq. (B2) and δT |x〉 = 0. One possible particular solution is
easily found to be

T∗ = |y〉〈x|
〈x||x〉 , δT = Qx K, (B3)

where Qx is a transverse projector on x. This construction
generalizes straightforwardly to the case of many vectors (we
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assume here implicitly that the equations are consistent):

T |xk〉 = |yk〉, k = 1, . . . , m. (B4)

The generic solution to this problem is given by

T∗ =
∑

i j

Ai j |yi〉〈x j |, A−1
i j = 〈xi||x j〉, (B5)

δT = Q K, (B6)

where Q is the orthogonal projector on the subspace spanned
by {xk} and K is an arbitrary ν × ν matrix. For later conve-
nience, we refer to T∗ as particular solution and δT as free
part.

2. U = 2 case

In this case, Eq. (B1) reads

H1|ψ2〉 = (EFB − H0)|ψ1〉,
H†

1 |ψ1〉 = (EFB − H0)|ψ2〉,
H1|ψ1〉 = 0,

H†
1 |ψ2〉 = 0. (B7)

We know H0, |ψ1〉, |ψ2〉 and EFB = 〈ψ1|H0|ψ2〉, and we need
to determine H1. As discussed above for the toy case, the
generic solution to this problem can be decomposed into a
particular solution and a free part. The last two equations in
the above set are satisfied by the following Ansatz:

H1 = Q2MQ1, Qi = I − |ψi〉〈ψi|
〈ψi|ψi〉 . (B8)

Plugging this Ansatz back into the system, we find

Q2 M Q1|ψ2〉 = (EFB − H0)|ψ1〉,
〈ψ1|Q2 M Q1 = 〈ψ2|(EFB − H0). (B9)

Note the identity

〈ψ1|H1|ψ2〉 = 〈ψ1|EFB − H0|ψ1〉 = 〈ψ2|EFB − H0|ψ2〉,
(B10)

that follows straightforwardly from the first two equations of
(B7). Defining the projectors

R12 = I − Q1|ψ2〉〈ψ2|Q1

〈ψ1|Q1|ψ1〉 ,

R21 = I − Q2|ψ1〉〈ψ1|Q2

〈ψ1|Q2|ψ1〉 , (B11)

we can write

M = T + R21 K R12, (B12)

where T is a particular solution of Eq. (B9). The second term,
where K is an arbitrary ν × ν matrix, satisfies Eqs. (B9) by
construction and is the free part of the solution. Therefore we
only need to find a particular solution to the system to get the
generic solution. This is achieved by the same Ansatz T =
|x〉〈y| as in the toy case discussed above. The Ansatz yields
the following equations:

Q2 T Q1|ψ2〉 = 〈y|Q1|ψ2〉Q2|x〉 = (EFB − H0)|ψ1〉, (B13)

〈ψ1|Q2 T Q1 = 〈ψ1|Q2|x〉〈y|Q1 = 〈ψ2|(EFB − H0). (B14)

From these, the vectors x and y are fixed (up to unimportant
normalization):

〈y|Q1 = 1

〈ψ1|Q2|x〉 〈ψ2|(EFB − H0),

Q2|x〉 = 1

〈y|Q1|ψ2〉 (EFB − H0)|ψ1〉

= 〈ψ1|Q2|x〉
〈ψ2|EFB − H0|ψ2〉 (EFB − H0)|ψ1〉

= 〈ψ1|Q2|x〉
〈ψ1|EFB − H0|ψ1〉 (EFB − H0)|ψ1〉.

We used the condition (B10) to replace the denominator in the
fourth line. Also note that the expression for y from the first
line was used to simplify the second line, and eliminate y. The
particular solution is then

Q2T Q1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 . (B15)

Thanks to (B10) it is symmetric with respect to |ψ1〉, |ψ2〉.
This and the above mentioned free part Q21KQ12 give the full
family of solutions (18):

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 + Q2R21KR12Q1.

This expression is further simplified by noticing that R12Q1

and Q2R21 are the same projector on the subspace spanned
by |ψ1〉, |ψ2〉, that we denote Q12: (R12Q1)2 = R12Q1, idem
for Q2R21 and both vanish when acting on |ψ1,2〉 as can
be straightforwardly verified. We can therefore replace these
combinations by Q12:

H1 = (EFB − H0)|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|EFB − H0|ψ1〉 + Q12KQ12. (B16)

This solution is supplemented by the following nonlinear
constraints:

〈ψ2|ψ1〉 = 1,

〈ψ2|H0|ψ1〉 = EFB,

〈ψ1|EFB − H0|ψ1〉 = 〈ψ2|EFB − H0|ψ2〉, (B17)

that are obtained by eliminating H1 from Eq. (B7) using
“destructive interference conditions,” i.e., last two equations
in Eq. (B7).

In case the denominator in Eq. (B16) is zero, the single
projector Ansatz fails, and two projector Ansatz has to be used:

H1 = (EFB − H0)|ψ1〉〈ψ2|Q1

〈ψ2|Q1|ψ2〉

+ Q2|ψ1〉〈ψ2|(EFB − H0)

〈ψ1|Q2|ψ1〉 + Q12KQ12, (B18)

as can be verified by a direct substitution. In this special
solution, the denominators only vanish when �1 ∝ �2, i.e.,
in U = 1 case.
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3. Bipartite lattices and chiral symmetry

In this section, we solve the inverse eigenvalue problem for
U = 2 for the special case of bipartite lattices. We consider a
bipartite lattice with ν sites per unit cell that split into majority
and minority sublattices with μ and ν − μ sites, respectively.
Since the lattice is bipartite, the sites on one sublattice only
have neighbours belonging to the other sublattice. This en-
forces the following structure on the hopping matrices and the
wave functions of the CLS [see Eqs. (7)]:

H0 =
(

0 A†

A B

)
, H1 =

(
0 T †

S W

)
,

�ψ1 =
(

ϕ1

0

)
, �ψ2 =

(
ϕ2

0

)
. (B19)

Here, ϕ1,2 are μ component vectors describing the wave
amplitudes of the majority sublattice sites. A, S, T are
(ν − μ) × μ matrices, while B, W are (ν − μ) × (ν − μ)
matrices. B and W formally break the bipartiteness of the
lattice, but do not affect the EFB = 0 flat band(s). This special
structure simplifies Eqs. (B7):

S|ϕ2〉 = −A|ϕ1〉, (B20)

T |ϕ1〉 = −A|ϕ2〉, (B21)

S|ϕ1〉 = 0, (B22)

T |ϕ2〉 = 0. (B23)

These equations need to be resolved with respect to S and T .
The last two equations are satisfied by the Ansätze S = S′Q1,
T = T ′Q2, where Qi is a transverse projector on ϕi. The
remaining two equations are identical to the toy problem that
we discussed above(see Appendix B 1) and their solution is
precisely Eqs. (23):

S = −A|ϕ1〉〈ϕ2|Q1

〈ϕ2|Q1|ϕ2〉 + KSQ12, (B24)

T = −A|ϕ2〉〈ϕ1|Q2

〈ϕ1|Q2|ϕ1〉 + KT Q12, (B25)

where Q12 is a joint transverse projector on |ϕ1,2〉.
Now let’s count the number of free parameters.

|ϕ1〉 and |ϕ2〉 all are free parameters each contains μ

free parameters. A contains (ν − μ)μ free variables.
B,W each contains (ν − μ)2 free parameters. KSQ12 and
Q21KT are (ν − μ) × μ and μ × (ν − μ) matrices, and,
because of the transverse projectors, they contain (ν −
μ)(μ − 2) and μ(ν − μ − 2) free parameters respectively.
Therefore total number of free parameters in the solu-
tion (B24) contains 2μ − 1 + (ν − μ)μ + (ν − μ)(μ − 2) +
μ(ν − μ − 2) + 2(ν − μ)2 = (ν − μ)(2ν + μ − 2) − 1 free
parameters. The extra −1 corresponds to the overall normali-
sation of the CLS, that is not fixed.

APPENDIX C: RESOLVING THE NONLINEAR
CONSTRAINTS

Let us discuss how one can efficiently resolve the set of
nonlinear constraints, that appear in the inverse eigenvalue

problem, for example (B17). Since these are a nonlinear
system of equations, one can always try a numerical solver.
However our experience was not particularly successful: the
solver was not converging and finding no solution more
often than not. Instead it is possible to design an numerical
algorithm that eliminates constraints one by one and either
founds and enumerates all the solutions, or proves that there
are none.

1. U = 2 case

The nonlinear equations that we need to solve are

〈ψ1|ψ2〉 = 1, (C1)

〈ψ1|H0|ψ2〉 = EFB, (C2)

〈ψ1|EFB − H0|ψ1〉 = 〈ψ1|EFB − H0|ψ1〉. (C3)

We assume that EFB, H0, and ψ1 (or ψ2) are given input
parameters.

Then we need to solve the above equations for ψ2. The first
two equations (C1) and (C2) are linear and are easily satisfied
with the following expansion for ψ2, by the choice of the basis
vectors e1 and e2:

|ψ2〉 =
ν∑

k=1

xk|ek〉, (C4)

|e1〉 = 1√〈ψ1||ψ1〉
|ψ1〉, (C5)

|e2〉 = 1√〈ψ1|H0Q1H0|ψ1〉
Q1H0|ψ1〉, (C6)

〈el ||em〉 = δlm, l, m = 1, 2, . . . ν. (C7)

Here, Q1 is a transverse projector on |ψ1〉. With this choice of
the basis vectors the equations (C1) and (C2) imply:

x1 = 1√〈ψ1||ψ1〉
,

x2 = 1√〈ψ1|H0Q1H0|ψ1〉
[

EFB − 〈ψ1|H0|ψ1〉
〈ψ1||ψ1〉

]
.

The remaining basis vectors are fixed by requiring their
orthonormality, for example, by using Gram-Schmidt orthog-
onalization. Next we plug the expansion (C4) into Eq. (C3)
and separate out the terms with e1 and e2:

〈ψ1|EFB − H0|ψ1〉 =
ν∑

i j=1

x∗
i x j〈ei|EFB − H0|e j〉

=
2∑

i j=1

x∗
i x j〈ei|EFB − H0|e j〉

+
2∑

i=1

ν∑
j=3

[x∗
i x j〈ei|EFB − H0|e j〉

+ x∗
j xi〈e j |EFB − H0|ei〉]

+
ν∑

i j=3

x∗
i x j〈ei|EFB − H0|e j〉.
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This expression can be rewritten as follows:

ν−2∑
i j=1

y∗
i Mi jy j +

ν−2∑
i=1

[u∗
i yi + uiy

∗
i ] = w, (C8)

Mi j = 〈ei+2|EFB − H0|e j+2〉, (C9)

ui =
2∑

j=1

x j〈ei+2|EFB − H0|e j〉, (C10)

w =
2∑

i j=1

x∗
i x j〈ei|EFB − H0|e j〉 − 〈ψ1|EFB − H0|ψ1〉, (C11)

where yi = xi+2. The equations on yi are further simplified
by the shift: zi = yi + M−1

i j u j , that eliminates the linear term.
This gives the following equation on a quadratic form:

ν−2∑
i j=1

z∗
i Mi jz j = w +

ν−2∑
i j=1

u∗
i Mi ju j . (C12)

Notice that the RHS of the above equation is real. The
matrix M is Hermitian, and can be diagonalized: Mi j =∑

α Eα|rα〉〈rα|. The above equation is solved with the help of
this spectral decomposition:

ν−2∑
α=1

Eα|tα|2 = w̃, (C13)

w̃ = w +
ν−2∑
α=1

Eα|sα|2, (C14)

tα = 〈rα||zα〉, sα = 〈rα||u〉. (C15)

The presence or absence of solution is decided by the mutual
signs of w̃ and Eα: if w̃ > 0 and Eα < 0 ∀α, then there is no
solution. If one Eα > 0, there is a single solution, for two and
more Eα > 0 there is a multiparametric family of solutions.
Knowing tα , it is straightforward to reconstruct the original
�ψ2.

In the above M, was assumed nonsingular. If it is singular,
than M−1

i j is the Moore-Pensrose pseudoinverse [58] and

we have yi = zi + gi − M−1
i j u j where g ∈ ker M. For gi the

quadratic terms in (C8) vanish (by definition of gi) and the
gi only enter linearly the equation, while zi can be treated as
in the nonsingular case (for convenience we assume that the
first k eigenvalues of M are zero):

ν−2∑
α=k+1

Eαt2
α = w̃ −

k∑
α=1

[〈u||rα〉 + 〈rα||u〉]. (C16)

The presence of zero modes renormalizes w̃.
The more refined version of the counting relies on the

above solution, and the counting of the Eα with the “right”
sign. It tells us that for ν = 2 and 3, there is a single solution
for fixed �ψ1, EFB, H0. For larger ν, there could be a single
solution or multiparametric families of solutions, from 0 to
ν − 3.

2. U = 3 case

In this case, the nonlinear constraints read, Eq. (25),

〈ψ1|ψ3〉 = 1,

〈ψ1|H0|ψ3〉 = EFB,

〈ψ1|EFB − H0|ψ2〉 = 〈ψ2|EFB − H0|ψ3〉,
〈ψ3|EFB − H0|ψ3〉 = 〈ψ2|EFB − H0|ψ2〉

− 〈ψ1|EFB − H0|ψ1〉. (C17)

The resolution of this set of constraint is very similar to
the U = 2 case, therefore we only outline the main steps.
We search to resolve the above equations with respect to
�3, taking �1, �2 as inputs. The first three equations are
linear, and we solve them by expanding �3 over a suitable
orthonormal basis:

|ψ3〉 =
∑

k

xk|ek〉,

|e1〉 = 1√〈ψ1||ψ1〉
|ψ1〉,

|e2〉 = 1√〈ψ1|H0Q1H0|ψ1〉
Q1H0|ψ1〉,

|e3〉 = Q∗(EFB − H0)|ψ2〉√〈ψ2|(EFB − H0)Q∗(EFB − H0)|ψ2〉
,

...

〈el ||em〉 = δl,m, l, m = 1, 2, . . . , ν,

Q1 = I − |ψ1〉〈ψ1|
〈ψ1||ψ1〉 ,

and Q∗ is a joint transverse projector on |ψ1〉 and Q1H0|ψ1〉.
Then x1 and x2 are the same as in the U = 2 case, x3 is directly
expressed through the third equation in Eqs. (C17). The last,
fourth equation in (C17) is solved in the same way as that in
the U = 2 case: it is reduced to solving a quadratic form.

APPENDIX D: EXAMPLES FOR FB GENERATORS

In this section, we present the details of the example flat
band Hamiltonians generated using the algorithm discussed in
the main text. In all of these examples we pick some H0, EFB

and part of the ψl as an input. Next following the algorithm
outlined in Appendix C we construct a set of {ψl} consistent
with the CLS structure. Then we find the hopping matrix H1

using the algorithm from Sec. III B (detailed in Appendix B).
For simplicity we drop the free part K in all the examples
below.

1. ν = 3,U = 2 case

Example shown in Fig. 1(a). We start with a three band
case ν = 3, and no additional constraints on the form of H1.
We assume canonical (diagonal) form of H0 and choose �ψ1

H0 =
⎡
⎣0 0 0

0 1 0
0 0 2

⎤
⎦, �ψ1 = (1,−1, 1), (D1)
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Using the FB algorithm, we find the particular solution:

EFB = 0.5, �ψ2 = (1.5, 1.5, 1), (D2)

H1 =
⎡
⎣−0.25 0.25 0.5

−0.25 0.25 0.5
0.75 −0.75 −1.5

⎤
⎦, (D3)

Example shown in Fig. 1(b). Taking nondiagonal H0 and
�ψ1 as

H0 =
⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, �ψ1 = (1,−1, 1), (D4)

we construct the following FB Hamiltonian:

H1 =
⎡
⎣ 0.19926929 −0.47727273 −0.67654202

−0.33211549 0.79545455 1.12757003
0.19926929 −0.47727273 −0.67654202

⎤
⎦,

(D5)

�ψ2 = (4.46130814, 1.5, −1.96130814), EFB = 0.5 (D6)

Example shown in Fig. 1(c). Taking all the sites in the unit
cell connected to each other and the same �ψ1, EFB as in the
above example

H0 =
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦, �ψ1 = (1,−1, 1), (D7)

we land at the following Hamiltonian:

H1 =
⎡
⎣ 0.18163216 −0.16071429 −0.34234644

−0.90816078 0.80357143 1.71173221
0.18163216 −0.16071429 −0.34234644

⎤
⎦,

(D8)

�ψ2 = (1.84761673, 0.25, −0.59761673), EFB = 0.5.

(D9)

Bipartite lattice U = 2, Fig. 2. We consider the ν = 4, μ =
2 case and pick the following input variables:

A = 1

4

(√
3 1

3
√

3

)
, B =

(
1 −2

−2 1

)
,

�ϕ1 = 1√
2

(1, 1), �ϕ2 = 1

2
(1,

√
3),

W =
(

2 −1
−1 2

)
.

Solving Eqs. (23) and (B24) yields the following solution:

S =
(
√

3 + 2)
( −1 1

−√
3

√
3

)
2
√

2
,

T =
(
√

3 + 1)
(

3 3
√

3
−√

3 −3

)
4
√

2
.

The corresponding hopping matrices H0 and H1 read

H0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0
√

3
4

3
4

0 0 1
4

√
3

4√
3

4
1
4 1 −2

3
4

√
3

4 −2 1

⎞
⎟⎟⎟⎟⎟⎠,

H1 =
(

0 T
S W

)
,

�ψ1 =
(

1√
2
,

1√
2
, 0, 0

)
,

�ψ2 =
(

1

2
,

√
3

2
, 0, 0

)
.

2. ν = 3, U = 3 case

Example shown in Fig. 3(a). We pick H0 in canonical form
and choose �ψ1 as follows:

H0 =
⎡
⎣0 0 0

0 1 0
0 0 2

⎤
⎦, �ψ1 = (1,−1, 1).

Solving the nonlinear constraints (25) and (C17), we get
�ψ2, �ψ3. Then solving the equation (26), which is equivalent

to equations (8) and (12), we get

H1 =
⎡
⎣−0.06548573 −0.27210532 −0.2066196

−0.15130619 −0.28682832 −0.13552213
−0.14682469 0.75742396 0.90424865

⎤
⎦,

�ψ2 = (−0.05144152,−1.53640189,−0.38025523),

�ψ3 = (0.58333333,−0.33333333, 0.08333333),

EFB = 0.5.

Example shown in Fig. 3(b). We choose H0 and �ψ1 as

H0 =
⎡
⎣ 0 −1 0

−1 0 1
0 1 0

⎤
⎦, �ψ1 = (1,−1, 1).

The corresponding flat band H1 is

H1 =
⎡
⎣ 0.23624218 0.15535892 −0.08088326

−0.87350793 −0.69073091 0.18277702
1.31303601 0.95651792 −0.35651809

⎤
⎦,

�ψ2 = (3.14189192,−2.05220768,−0.94681365),

�ψ3 = (1.08333333,−0.33333333,−0.41666667),

EFB = 0.5.

Example shown in Fig. 3(c). For the following input

H0 =
⎡
⎣ 0 −1 2

−1 0 1
2 1 0

⎤
⎦, �ψ1 = (1,−1, 1),
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we find the flat band nearest-neighbor hopping matrix H1:

H1 =
⎡
⎣ 0.06915801 −0.66620419 −0.7353622

−0.31644957 −0.3029663 0.01348327
−0.46657738 −0.38011423 0.08646314

⎤
⎦,

�ψ2 = (0.77717503, 2.50899893, 1.05355773),

�ψ3 = (0.03571429,−0.57142857, 0.39285714),

EFB = 0.5.

Example shown in Fig. 3(d). The following input data

H0 =
⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, �ψ1 = (1,−1, 1)

provides an example of the flat band Hamiltonian, with the flat
band being the ground state:

H1 =
⎡
⎣−0.52279625 0.17024672 0.69304298

−0.62702148 −0.11461122 0.51241027
−0.73124671 −0.39946915 0.33177756

⎤
⎦,

�ψ2 = (0.25537008, 0.28652804,−0.59920373),

�ψ3 = (0.25,−0.5, 0.25),

EFB = −1.5.

APPENDIX E: NETWORK CONSTRAINTS

We present here the details of the examples where the
network connectivity was provided as an input to the FB
generator. In all cases, one can find particular solutions to the
resulting nonlinear system of equations.

Often network connectivity implies sparse H0 and H1

very sparse. Therefore inserting these sparse H0 and H1 into
Eqs. (8)–(12) gives a set of equations that can be solved
analytically. More precisely, as you will see in the examples
below, when H0 and H1 are so sparse that the number un-
knowns (nonzero elements of H1, H0, and part of CLS) is
less then or equal to the number of equations, we can solve
Eqs. (8)–(12) analytically. Note that, instead of inserting H1

and H0 into Eqs. (8)–(12), we can get the same set of equations
from Eq. (26) by zeroing the elements of h1 corresponding to
zero elements of H1.

1. U = 2 case

a. 1D kagome

We consider the d = 1 version of the 2D kagome lattice.
The nearest-neighbor Hamiltonian is restricted by the lattice
connectivity to

H0 =

⎡
⎢⎢⎢⎣

0 t2 0 0 0
t2 0 t1 0 0
0 t1 0 t1 0
0 0 t1 0 t2
0 0 0 t2 0

⎤
⎥⎥⎥⎦, H1 =

⎡
⎢⎢⎢⎣

0 t1 t1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 t1 t1 0

⎤
⎥⎥⎥⎦.

The “destructive interference” condition (4), i.e., the last two
equations in (15), implies that

�ψ1 = (x1,−x2, x2,−x2, x3), �ψ2 = (0, a, b, c, 0).

If we insert �ψ1 and �ψ2 above into Eqs. (15), we find⎛
⎜⎜⎜⎜⎜⎝

−x2t2 + (y2 + y3)t1
x2t1 + x1t2

−2x2t1
x2t1 + x3t2

−x2t2 + (y3 + y4)t1

⎞
⎟⎟⎟⎟⎟⎠ = EFB

⎛
⎜⎜⎜⎝

x1

−x2

x2

−x2

x3

⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎜⎜⎝

at2
(b + y1)t1

(a + c + y1 + y5)

(b + y5)t1
ct2

⎞
⎟⎟⎟⎟⎟⎠ = EFB

⎛
⎜⎜⎜⎝

0
a
b
c
0

⎞
⎟⎟⎟⎠.

One the possible solutions of above equation is

a = c = 0,

t1 = −EFB

2
,

t2 = EFB

2
,

x1 = −x,

x2 = x,

x3 = −x,

a = 0,

b = x,

c = 0.

This solution gives a flat band with energy EFB. Thus the final
solution is

�ψ1 = (−x,−x, x,−x,−x),

�ψ2 = (0, 0, x, 0, 0),

H1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −EFB
2 −EFB

2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 −EFB
2 −EFB

2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 EFB
2 0 0 0

EFB
2 0 −EFB

2 0 0

0 −EFB
2 0 −EFB

2 0

0 0 −EFB
2 0 EFB

2

0 0 0 EFB
2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This lattice has a flat band with flat band energy EFB.

b. U = 2, ν = 3 example

The connectivity of the network shown in Fig. 4(b) implies
the following hopping matrices:

H0 =
⎛
⎝0 t1 0

t1 0 t2
0 t2 0

⎞
⎠, H1 =

⎛
⎝s1 s2 0

s4 s5 s6

0 s7 s8

⎞
⎠.
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We parametrize the CLS amplitudes as follows: �ψ1 =
(x, y, z), �ψ2 = (a, b, c). Then Eqs. (15) gives⎛

⎝ as1 + bs2

as4 + bs5 + cs6

bs7 + cs8

⎞
⎠ =

⎛
⎝ xEFB − t1y

−t1x − t2z + yEFB

zEFB − t2y

⎞
⎠,

⎛
⎝ s1x + s4y

s2x + s5y + s7z
s6y + s8z

⎞
⎠ =

⎛
⎝ aEFB − bt1

−at1 + bEFB − ct2
cEFB − bt2

⎞
⎠,

⎛
⎝ s1x + s2y

s4x + s5y + s6z
s7y + s8z

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠,

⎛
⎝ as1 + bs4

as2 + bs5 + cs7

bs6 + cs8

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠.

Here, H0, EFB, and �ψ1 as free parameters. If we fix x =
1, y = 2, z = 1, t1 = 1, t2 = 2, EFB = 3, then we find one
particular solution of above equations:

s1 = 2
√

2

3
, s2 = −

√
2

3
,

s4 = 2
√

2

3
, s5 =

√
2

3
,

s6 = −1

3
(4

√
2), s7 = −

√
2

3
,

s8 = 2
√

2

3
, a = 1√

2
,

b = − 1√
2
, c = −

√
2,

from which follow the hopping matrices and the CLS ampli-
tudes

H0 =
⎛
⎝0 1 0

1 0 2
0 2 0

⎞
⎠, H1 =

⎛
⎜⎜⎝

2
√

2
3 −

√
2

3 0
2
√

2
3

√
2

3 − 1
3 (4

√
2)

0 −
√

2
3

2
√

2
3

⎞
⎟⎟⎠,

�ψ1 = (1, 2, 1), �ψ2 =
(

1√
2
,− 1√

2
,−

√
2

)
.

2. U = 3 case

a. U = 3, ν = 3 example

We consider networks shown in Fig. 4(c). Its connectivity
requires the following hopping matrices

H0 =
⎛
⎝0 t1 0

t1 0 t2
0 t2 0

⎞
⎠, H1 =

⎛
⎝ s1 s1 0

− s1
2 − s1

2 − s6 s6

0 2s6 −2s6

⎞
⎠.

According to “destructive interference” condition (4), we
parametrize �ψ1, �ψ2, �ψ3 as follows:

�ψ1 = (−y, y, y), �ψ2 = (a, b, c), �ψ3 = (d, 2d, d ).

Then the main equations (24) become

⎛
⎝ (a + b)s1

(c − b)s6 − 1
2 (a + b)s1

2(b − c)s6

⎞
⎠ =

⎛
⎜⎝

−y(EFB + t1)

y(EFB + t1 − t2)

y(EFB − t2)

⎞
⎟⎠,

⎛
⎜⎝

3
2 (2d − y)s1

(y − d )s6 − 3
2 (d + y)s1

(2d − y)s6

⎞
⎟⎠ =

⎛
⎜⎝

aEFB − bt1
bEFB − at1 − ct2

cEFB − bt2

⎞
⎟⎠,

⎛
⎜⎝

1
2 (2a − b)s1(

a − b
2

)
s1 − (b − 2c)s6

(b − 2c)s6

⎞
⎟⎠ =

⎛
⎜⎝

d (EFB − 2t1)

d (2EFB − t1 − t2)

d (EFB − 2t2)

⎞
⎟⎠.

Again the above system admits many solutions. We pick one
with t1 = 1, t2 = 2, b = 1

2 , and

a = 1

80
(3

√
21 + 23), c = 1

80
(
√

21 + 41),

d = 1

40

(
−7

√
3

2
−

√
7

2

)
, y = 1

40

(√
3

2
+ 3

√
7

2

)
,

EFB = 5

2
, s1 = −

√
7
2

3
, s6 = −

√
3
2

2
.

Therefore the CLS amplitudes and the hopping matrices
are

�ψ1 =

⎛
⎜⎜⎜⎜⎝

1
40

(−√
3
2 − 3

√
7
2

)
1

40

(√
3
2 + 3

√
7
2

)
1

40

(√
3
2 + 3

√
7
2

)

⎞
⎟⎟⎟⎟⎠,

�ψ2 =

⎛
⎜⎜⎝

1
80 (3

√
21 + 23)
1
2

1
80

(√
21 + 41

)
⎞
⎟⎟⎠,

�ψ3 =

⎛
⎜⎜⎜⎜⎝

1
40

(−7
√

3
2 −

√
7
2

)
1

20

(−7
√

3
2 −

√
7
2

)
1

40

(−7
√

3
2 −

√
7
2

)

⎞
⎟⎟⎟⎟⎠,

H1 =

⎛
⎜⎜⎜⎜⎝

−
√

7
2

3 −
√

7
2

3 0
√

7
2

6

√
3
2

2 +
√

7
2

6 −
√

3
2

2

0 −
√

3
2

√
3
2

⎞
⎟⎟⎟⎟⎠,

H0 =
⎛
⎝0 1 0

1 0 2
0 2 0

⎞
⎠,

which gives a flat band with energy EFB = 5/2. Schematics
and the band structure of this lattice is shown in Fig. 4(c).
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