
PHYSICAL REVIEW B 99, 125128 (2019)

Static subspace approximation for the evaluation of G0W0 quasiparticle
energies within a sum-over-bands approach

Mauro Del Ben,1,* Felipe H. da Jornada,2,3 Gabriel Antonius,2,3,4 Tonatiuh Rangel,5,2

Steven G. Louie,2,3 Jack Deslippe,6 and Andrew Canning1

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Department of Physics, University of California at Berkeley, California 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
4Département de Chimie, Biochimie et Physique, Institut de recherche sur l’hydrogène,

Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Canada
5Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

6NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 4 December 2018; published 18 March 2019)

Many-body perturbation theory within the GW approach has been established as a quantitatively accurate
approach for predicting the quasiparticle and excited-state properties of a wide variety of materials. However,
the successful application of the method is often complicated by the computational complexity associated
with the evaluation and inversion of the frequency-dependent dielectric matrix ε(ω). Here, we describe an
approach to speed up the evaluation of the frequency-dependent part of ε(ω) in the traditional sum-over-states
GW framework based on the low-rank approximation of the static dielectric matrix, a technique often used
in GW implementations that are based on a starting mean field within density-functional perturbation theory.
We show that the overall accuracy of the approach, independently from other calculation parameters, is solely
determined by the threshold on the eigenvalues of the static dielectric matrix, ε(ω = 0), and that it can yield
orders-of-magnitude speed-ups in full-frequency GW calculations. We validate our implementation with several
benchmark calculations ranging from bulk materials to systems with reduced dimensionality, and show that
this technique allows one not only to study larger systems, but also to carefully consider the convergence of
computationally demanding systems, such as ZnO, without relying on plasmon-pole models.
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I. INTRODUCTION

Throughout the last few decades, Kohn-Sham (KS)
density-functional theory (DFT) has become a standard com-
putational method for predicting properties of extended mate-
rials, nanostructures, and even complex molecules. With the
recent improvements in energy functionals and numerical al-
gorithms in DFT codes, it is now possible to accurately predict
many ground-state properties of systems with complex chemi-
cal compositions and with thousand of atoms in the supercells.

Despite this notable success, static DFT is a ground-state
formalism and does not yield accurate quasiparticle proper-
ties, such as quasiparticle energies, electronic gaps, effective
masses, and quasiparticle lifetimes. A rigorous and proven
approach for computing these properties is through many-
body perturbation theory, in which the electronic Green’s
function G, the poles of which are associated with quasi-
particle excitation energies, is written in terms of a nonin-
teracting Green’s function G0 and the electronic self-energy
�, the latter able to capture electron-electron interactions and
eventually electron-phonon interactions. There are various
prescriptions for approximating �; a particularly common
and robust one that yields accurate quasiparticle proper-
ties for confined and extended systems—both metallic and
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semiconducting—is the GW approximation, in which the
electronic self-energy is written as a product of the Green’s
function and the screened Coulomb interaction W [1,2], which
we define in the next section.

The ab initio GW [2] approach is a particular way of using
the GW approximation in first-principles calculations, where
one typically uses KS orbitals and eigenvalues to construct G0.
The ab initio GW approach has been shown to yield excellent
quasiparticle excitation properties for a variety of materials,
and has received considerable attention from the computa-
tional sciences community. In fact, GW calculations have now
been implemented in a number of software packages [3–13].

Despite the value of GW calculations, their usage is still
less popular compared to DFT codes due to the significantly
higher computational cost. The main bottleneck in traditional
GW calculations, i.e., those which explicitly write the Green’s
function in terms of its spectral representation, is in the
evaluation of the noninteractive polarizability matrix χ0(ω).
The computational cost of computing χ0(ω) scales as O(N4),
where N is proportional to the system size. In addition, each
matrix has to be computed and eventually inverted on a
number of distinct frequency points which typically ranges
from a few tens up to hundreds.

One of the earliest strategies developed to reduce this
computational bottleneck is to simplify the frequency de-
pendence of χ0(ω), which allows one to perform a calcu-
lation of only the static polarizability χ0(ω = 0), and treat
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all integrals involving the frequency dependence of χ0(ω)
analytically. Such approaches are referred to as generalized
plasmon-pole models (PPMs), and were validated on a variety
of systems [1,2,14–16].

Despite the success of PPMs, the simplification in the
dynamical treatment of the polarizability typically prevents
these approaches from accurately capturing dynamical effects
of the self-energy. As a result, PPMs do not give accurate
information about quasiparticle lifetimes. In addition, there
is a growing demand for GW calculations with increasing
accuracy, and PPMs may introduce uncontrollable approxima-
tions beyond the desired threshold, in particular on systems
where the polarizability is not well approximated by a set
of plasmon-like excitations. Thus, there is a renewed interest
in GW calculations that do not employ PPMs, which are
commonly referred to as full-frequency (FF) calculations.

A number of novel ideas have been proposed to alleviate
the computational bottleneck in FF calculations. For instance,
Liu and coworkers recently presented a cubic-scaling GW
method based on a real-space, imaginary-time representation
of the polarizability matrix and self-energy, which are then
transformed to the real frequency domain through a nonuni-
form Fourier transform and analytical continuation [17]. In
addition, linear-scaling stochastic GW approaches have also
been demonstrated [18], which are particularly promising
for systems with very large number of atoms. Even though
approaches which reduce the scaling cost of GW calculations
are an important avenue of research, there is still high value
in speeding up traditional GW calculations evaluated directly
on the real frequency axis, in particular if one is interested in
resolving sharp features in the spectral function.

A more general way to speed up FF-GW calculations that
is both elegant and powerful is to find a better basis set to
describe the polarizability of the system [19,20]. This idea is
motivated by the properties of the eigenspectrum of the dielec-
tric function [21–23] and was shown to work remarkably well
for GW calculations based on density-functional perturbation
theory (DFPT) [4,24,25], as studied in detail in the earlier
work of Wilson et al. [26,27], Nguyen et al. [28], and Pham
et al. [29]. These studies have shown that, when solving the
Sternheimer equation to obtain the polarizability matrix of a
system, the eigendecomposition of χ0(ω = 0) forms a very
good basis set for subsequent Sternheimer-equation calcula-
tions for ω �= 0. A natural question is if this technique can be
used to speed up GW calculations that do not rely on DFPT.

In this paper, we describe the implementation of a method
which greatly speeds up the evaluation of the frequency-
dependent part of the polarizability, making the cost of a FF
calculation of the same order as that based on a PPM. This is
achieved through a low-rank approximation [30] of the static
symmetrized susceptibility [28] defining a static basis set,
and using this basis to perform a compression of the matrix
elements involved in the computation of the polarizability
matrix for the remaining frequencies. This procedure is effi-
ciently executed on modern computer architectures through
cache-friendly matrix-matrix multiplications and scales well
to handle large systems [31].

We refer to this approach in the context of traditional
GW calculations as the static subspace approximation, and

we show that it performs remarkably well for all classes of
systems tested in this work, with a large speedup, and with
a small and controllable error which is determined by the
eigenvalue threshold parameter. We also apply the method to
study the quasiparticle band gap of zinc oxide, which is a com-
putationally challenging system for GW calculations, partly
because it is not well described with a plasmon-pole model.
The new method has been implemented in the BERKELEYGW

software package [3].
The paper is organized as follows. Section II reviews

the key components required for practical GW calculations;
Sec. III introduces our implementation of the static subspace
approximation; Sec. IV shows validations of our method for
a variety of systems and Sec. V reports on the application of
the method for the evaluation of the quasiparticle band gap of
ZnO.

II. SUM-OVER-BANDS GW APPROACH IN PRACTICE

In typical ab initio GW calculations, the noninteracting
Green’s function G0 is constructed from the KS eigenvalues
εnk and wave functions ψnk(r), where n is a band index and
k is a k point. This allows one to express the independent-
particle irreducible polarizability χ0 at zero temperature for
an insulating system within the time-dependent Hartree, or
random-phase approximation (RPA) [32–34], as

χ0(r, r′, q, ω) = 2
Nv∑
n

Nc∑
m

∫
dk

(2π )3
	nmk(q, ω)

× ψnk+q(r)ψ∗
mk(r)ψmk(r′)ψ∗

nk+q(r′), (1)

	nmk(q, ω) ≡ 1

ω − (εmk − εnk+q) + i δ

− 1

ω + (εmk − εnk+q) − i δ
, (2)

where Nv and Nc denote the number of valence and conduction
states, respectively, q is a vector lying in the first Brillouin
zone (BZ), and δ is an infinitesimal number. Here and in the
following, we consider the spin unpolarized case, that is, sys-
tems for which there is an equal number of electrons with spin
up and down, each pair having the same spatial wave function.

The expression in Eq. (1) is rarely computed directly in
GW codes, since one may need to employ a very dense
grid to accurately represent the polarizability in real space.
A common choice, which naturally takes care of periodic
boundary conditions in solids, is to use a plane-wave (PW)
basis set for both the polarizability and orbitals.

In a PW basis, each cell-periodic Bloch state unk(r) =
e−ik·rψnk(r) is represented by a vector containing the linear
expansion coefficients cnk(G), where G is a reciprocal-lattice
vector. In this basis, the polarizability defined in Eq. (1) can
be written as

χ0
GG′ (q, ω) = 2

∑
k

Nv∑
n

Nc∑
m

[
MG

nmk(q)
]∗

	nmk(q, ω) MG′
nmk(q),

(3)
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where the frequency independent matrix elements MG
nmk(q)

are defined as

MG
nmk(q) = 〈ψnk+q|ei(q+G)·r|ψmk〉. (4)

The size of the matrix χ0
GG′ (q, ω) is thus determined by

the number of G vectors employed in the expansion, which
is typically defined in terms of an energy cutoff Eχ

cut for the
dielectric matrix by including a number NG of G vectors such
that |G + q|2 � Eχ

cut (in Rydberg atomic units). In practice,
NG is about an order of magnitude smaller than the number
Nψ of G vectors necessary to expand the Bloch functions in
reciprocal space. In order to obtain converged calculations, the
number of empty states Nc included in Eq. (3) is typically of
the same order as NG.

Once the matrices χ0
GG′ (q, ω) are obtained, one can com-

pute the dielectric matrix as

εGG′ (q, ω) = δGG′ − v(q + G)χ0
GG′ (q, ω), (5)

where v(q + G) is the bare Coulomb potential expressed
in reciprocal space. One then readily obtains the screened
Coulomb potential WGG′ (q, ω) after inverting the dielectric
matrix in Eq. (5) for all q points and frequencies ω,

WGG′ (q, ω) = ε−1
GG′ (q, ω)v(q + G′). (6)

It is convenient to split the screened Coulomb interaction
matrix into two components: one that includes only the bare
Coulomb interaction, and another that only includes electron
correlations due to electronic screening,

W c
GG′ (q, ω) = WGG′ (q, ω) − v(q + G)δGG′ . (7)

With the separation in Eq. (7), the self-energy matrix
elements are split into correlation 〈ψik|�c(E )|ψ jk〉 and bare-
exchange 〈ψik|�x|ψ jk〉 contributions. The latter, called ex-
change self-energy, is equivalent to the nonlocal Hartree-
Fock exchange in hybrid DFT calculations [3,35–38]. The
typical challenge in a GW code is to efficiently compute the
correlation contribution to the electronic self-energy �c (the
relevant expressions of �x �c can be found in Refs. [3,39]).

Since the self-energy is a direct product in real space and
time domains of G(r, r′, t ) and W (r, r′, t ), it involves an
integration when written in frequency space. Fortunately, this
integration can be performed in a numerically efficient way
by using the contour deformation (CD) technique, wherein
real-frequency integrals involving W c(ω) and G(ω) are writ-
ten in terms of an integral over the imaginary axis, where
both W c(ω) and G(ω) are smooth quantities, plus a small
number of residuals on the real axis [4,30,39–41]. While this
formalism still requires one to compute χ0(ω) on a number
of frequencies typically ranging from a few tens up to a
hundred, it requires many less evaluations of χ0(ω) than a
direct integration on the real axis.

If one is interested in computing the GW quasiparticle
energy for only a selected number of states, such as when
computing the quasiparticle band gap, then the most time-
consuming part of the calculation within a sum-over-bands
approach is in the construction of the inverse dielectric matrix.
The main computational steps for evaluating ε−1

GG′ (q, ω) (for
instance, in the BERKELEYGW [3] software package) are the
following.

TABLE I. Computational cost and required memory for the
evaluation of the inverse ε(q, ω) at each q point. In the table, Nψ is
the size of the PW basis used to expand the KS-DFT wave functions,
NG is the size of the PW basis used to expand the polarizability and
dielectric matrices, Nc and Nv are the number of conduction and
valence bands respectively, Nk is the number of symmetry-reduced
k points using the symmetry subgroup that leaves the q vector
invariant, and Nω is the number of frequencies (both imaginary and
real) employed in the calculation. Only Nv , Nc, Nψ , and NG scale with
the system size, the number of k/q points in general scale inversely
with the system size, and Nω only depends on the system type.

Execution Memory

Matrix element O(NkNvNcNψ log Nψ ) O(NkNvNcNG)
Polarizability O(NωNkNvNcN2

G) O(NωN2
G)

Inversion O(NωN3
G) O(NωN2

G)
Input and output O(NωN2

G) O(NωN2
G)

(1) Calculation of the PW matrix elements MG
nmk(q), given

by Eq. (4). Each matrix element can be written as a con-
volution and thus efficiently computed using fast Fourier
transforms (FFTs). Each individual FFT requires a number of
operations that scales as O(N log N ), with N proportional to
system size. For a single value of q, the required number of
FFTs is proportional to NvNcNk , with both Nv and Nc growing
linearly with system size, resulting in an overall scaling of
O(N3 log N ). The set of all matrix elements for a given q are
stored in a matrix M(q) with dimensions NvNcNk × NG, with
the set of (n, m, k) indices labeling different rows of M(q),
and with each G vector corresponding to a different column.

(2) Calculation of the frequency-dependent RPA polariz-
ability according to Eq. (3), which can be cast into a compact
matrix notation as

χ0(q, ω) = 2M†(q) �(q, ω) M(q). (8)

Here, M(q) is the previously calculated rectangular matrix,
and �(q, ω) is a diagonal matrix with elements 	nmk(q, ω),
defined in Eq. (2). From a computational stand point, Eq. (8)
is a matrix multiplication involving two “tall and skinny”
matrices, which is implemented in a parallel algorithm by
employing a tailored data layout [31]. This step represents
the most computationally demanding part of the algorithm,
scaling asymptotically as O(N4).

(3) Computation of the frequency-dependent dielectric ma-
trix ε, defined in Eq. (5), and its inverse. These steps are
accomplished as two simple algebraic operations, the most
demanding of which is a matrix inversion. The size of the
matrix ε is NG, which is proportional to N , resulting in a
computational cost scaling as O(N3).

These steps are performed for all q points given in the
input, offering another level of parallelization achieved by
splitting the set of q points and performing the computation
independently for each subset. A summary of the compu-
tational complexity and memory usage with respect to the
calculation parameters is reported in Table I.

In summary, the implementation presented so far computes
the polarizability matrix directly in reciprocal and frequency
spaces. Overall the algorithm display an O(NωNkNcNvN2

G)
computational bottleneck (scaling as N4 with system size),
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typical of traditional GW calculations; thus, any representa-
tion of the polarizability matrix that allows one to decrease the
size of the basis size NG would therefore dramatically speed
up FF GW calculations.

III. STATIC SUBSPACE APPROXIMATION
OF THE FREQUENCY-DEPENDENT INVERSE

DIELECTRIC MATRIX

In this section, we describe a flexible algorithm which
allows one to employ an alternative basis to decrease the
computational cost to construct the full frequency-dependent
dielectric matrix. The advantage of the algorithm presented
here is that it is of general applicability, as our implementation
can use any type of alternative basis. In fact, there is a variety
of possible low-rank approximations that can be used in GW
calculations [30]. As we discuss later, this paves the way
to combine low-rank approaches with cubic-scaling meth-
ods to build the polarizability matrix for full-frequency GW
calculations.

The approach considered here, inspired by the earlier
work of Wilson et al. [26,27], Nguyen and coworkers [28],
and Pham et al. [29], and motivated by the properties of
the dielectric function [21–23], is to express the frequency
dependence of the inverse dielectric matrix in a low-rank
approximation fashion by using selected Nb eigenvectors of
the static dielectric matrix, εGG′ (ω = 0), having eigenvalues
larger than a given threshold. While each individual eigenvec-
tor of ε−1(q, ω) might change considerably as a function of
ω, it was noted that the basis set spanned by the eigenvectors
associated with the larger eigenvalues is not very dependent
on ω for typical values of interest [15,16,19,21,29].

In this way, at the expense of a single matrix diagonal-
ization, the cost for evaluating χ0(ω) and ε−1(ω) for ω �=
0 is accelerated by a factor proportional to (NG/Nb)2 and
(NG/Nb)3, respectively. Since the computational cost for a
full-frequency calculation is roughly equal to that of repeating
Nω times a static calculation, with typically Nω of the order
of 10 to 100, even a moderate reduction in NG/Nb � 3–5
allows us to perform a full-frequency calculation in roughly
the same order of time as it takes to perform a static or PPM
calculation. Additionally, one can control the overall accuracy
of the method by a single parameter, namely, the threshold teig

for the truncation of the eigenspectrum of ε(ω = 0). In fact,
as will be shown later, we find a direct relation between the
absolute error in the QP energies and teig. Moreover, the error
resulting from the static subspace approximation is largely
independent from the other calculation parameters such as the
number of bands and the dielectric matrix cutoff.

According to the definition of the dielectric matrix given
in Eq. (5), ε−1(ω), ε(ω), and v · χ0(ω) all have the same
eigenvectors. For practical reason, it is more convenient to
define a symmetrized susceptibility,

χ0
GG′ (q, ω) ≡ v

1
2 (q + G) χ0

GG′ (q, ω) v
1
2 (q + G′), (9)

which is Hermitian for ω = 0. All eigenvalues of the static
dielectric matrix are real and greater than one [21,22] so

FIG. 1. Eigenvalue spectrum (logarithmic scale) for the static
dielectric and symmetrized susceptibility matrices for β-SiC at �.

that the eigenvalues of −χ0 are all positive. The eigenvalue
spectrum of ε and −χ0 at q = � and ω = 0 for silicon
carbide (β-SiC) are reported in Fig. 1, which shows the fast
decay of the eigenvalues to one and zero for ε and −χ0,
respectively [26].

With the notation introduced so far and employing the
same input parameters introduced in the previous section, the
procedure for the computation of the frequency-dependent
inverse symmetrized dielectric matrix within the static sub-
space approximation can be summarized as follows.

(1) For each q point, calculate χ0
GG′ (q, ω = 0) using the

standard procedure described in Section II. This step thus
involves the computation of the matrix elements MG

nmk(q) and
their contraction according to Eq. (8).

(2) Construct the symmetrized susceptibility χ0
GG′ accord-

ing to the definition in Eq. (9), and perform the eigendecom-
position

χ0(q, 0) = C(q) λ(q) C†(q), (10)

where C(q) is the NG × NG eigenvector matrix of χ0
GG′ (q, 0),

and λ(q) is the corresponding diagonal matrix of eigenvalues.
Given a truncation threshold teig, define Cs(q) as the NG × Nb

truncated eigenvector matrix associated with the Nb absolute
larger eigenvalues. This matrix is used to construct the low-
rank approximation of χ0 and related quantities.

(3) For all other frequencies {ωi �= 0}, the symmetrized
susceptibility is projected onto the subspace defined by Cs,

χ0
s (q, ωi ) = C†

s (q) χ0(q, ωi ) Cs(q),

where χ0(q, ωi ) and χ0
s (q, ωi ) are the NG × NG and Nb × Nb

matrix representations of the symmetrized susceptibility in
the PW and static eigenvector basis, respectively. In order to
take advantage of the reduced size of the static eigenvector
basis, χ0

s (q, ωi ) is computed in two steps. First, the PW
matrix elements MG

nmk(q), which are frequency independent,
are projected onto the χ0

s subspace and scaled by the square
root of the Coulomb potential,

Ms(q) ≡ M(q) v1/2(q) Cs(q), (11)
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TABLE II. Computational cost and required memory for the
evaluation of the frequency-dependent inverse dielectric matrix
within the static subspace approximation. The meaning of the
symbols are the same as that given in Table I, with the addition
of Nb defining the reduced number of eigenvectors of the static
symmetrized susceptibility employed for the representation of the
frequency-dependent part.

Execution Memory

Matrix elements O(NkNvNcNψ log Nψ ) O(NkNvNcNG)
Polarizability ω = 0 O(NkNvNcN2

G) O(N2
G)

Eigendecomposition: Cs O(N3
G) O(N2

G)
Basis transformation: Ms O(NvNcNGNb) O(NvNcNb)
Polarizability ω �= 0 O(NωNkNvNcN2

b ) O(NωN2
b )

Inversion O(NωN3
b ) O(NωN2

b )
Input and output O(NGNb + NωN2

b ) O(NGNb + NωN2
b )

where v1/2(q) is an NG × NG diagonal matrix containing the
Coulomb potential, M(q) is an NvNcNk × NG matrix, and
Ms(q) is an NvNcNk × Nb matrix containing the subspace-
projected PW matrix elements scaled by the square root of
the Coulomb potential. We then compute χ0

s (q, ωi ) as

χ0
s (q, ωi ) = Ms

†
(q) �(q, ω) Ms(q), (12)

which is very similar to Eq. (8) used in the previous algorithm.
However, the computational cost associated with Eqs. (11)
and (12) is O(NkNvNcNGNb) and O(NωNkNvNcN2

b ), respec-
tively, so that, compared to the O(NωNkNvNcN2

G) cost of the
standard procedure, the computational effort gets reduced
by a factor proportional to (NG/Nb)2, for large numbers of
frequencies.

(4) The final step of the algorithm consists of the evaluation
of the inverse dielectric matrix, which is also performed in
the truncated basis. In particular, the Nb × Nb symmetrized
dielectric matrix in the static eigenvector basis is simply
obtained as ε̄s(q, ωi ) = I − χ0

s (q, ωi ), which is then inverted
numerically. Then, ε̄−1

s (q, ωi ) can either be used directly in
this low-rank basis, or transformed back to the PW basis via

ε̄−1(q, ωi ) = Cs(q)
[
ε̄−1

s (q, ωi ) − INb

]
C†

s (q) + ING,

where INb and ING are identity matrices of size Nb and
NG, respectively. The reduced computational cost compared
to the standard algorithm is cubic in the inversion step,
namely, O(N3

b ) instead of O(N3
G) and quadratic in the num-

ber of input and output operations. The unsymmetrized
dielectric matrix in Eq. (6) is obtained as ε−1(q, ωi ) =
v1/2(q) ε̄−1(q, ωi ) v−1/2(q).

The computational costs associated with the individual
steps of the new procedure are reported in Table II. In
summary, the algorithm described in this section addresses
the memory and computational bottlenecks in full-frequency
GW calculations by representing the frequency-dependent
inverse dielectric matrix with the basis formed by the lower Nb

eigenvectors of the symmetrized susceptibility, and which de-
creases the computational cost to compute the full-frequency
dielectric matrix by O(NG/Nb)2 with NG being the size of the
original PW basis. Additionally, the inversion and storage of
large NG × NG matrices are also avoided by reformulating

the required operations in the reduced static Nb basis. The
size of the reduced basis is determined by a single truncation
parameter on the eigenspectrum of the static symmetrized
susceptibility, namely teig, that is directly related to the overall
accuracy of the resulting quasiparticle energies, as described
in the next section.

The idea of speeding up GW calculation by employing
a basis set obtained from the eigenvectors of the static di-
electric matrix has been explored before, in particular in the
context of using DFPT to avoid writing the Green’s function
in its spectral representation which requires a summation
over empty states [4,25–29]. In contrast, the implementation
presented here concerns GW formalisms that do not use
density-functional perturbation theory and, as we will show
in the next section, also enables one to significantly speed up
FF GW calculations

Even though spectral representation and DFPT based GW
calculations are often implemented in such a way as to have
the same computational complexity with system size, the tech-
nical difficulty in obtaining many unoccupied KS orbitals for
GW calculations is often cited as an advantage of DFPT-based
approaches. However, there are still a number of possible
algorithmic improvements that can be taken advantage of
in formalisms that rely on the spectral representation of the
Green’s function. For instance, the explicit use of empty states
allows the computation of the static polarizability with cubic
computational effort [17], which can directly be incorporated
into the present algorithmic framework.

In addition, for very large systems, extracting a large
number of eigenvectors of the polarizability matrix can be a
challenging tasks using iterative methods—especially since
the eigenvalues of χ0 become clustered. We found this to be
the case for system defects in semiconductors, which require
large supercells containing over 1000 atoms, and when more
than ∼10 000 eigenvectors of χ0 are necessary to converge
absolute quasiparticle energies to within ∼50 meV. In these
cases, having an algorithm based on direct methods—which
is used in the implementation we propose here—may be
considerably more stable.

IV. BENCHMARK CALCULATIONS

In this section, we present a series of benchmark calcu-
lations performed to validate the method and to assess how
the error introduced by the static subspace approximation
depends on the various input parameters as well as a function
of the system type under study. The analysis here is orga-
nized in subsections each reporting the results for a particular
class of materials, for which different approximations and
computational strategies have to be considered. The studied
materials include semiconductors, metals, systems with re-
duced dimensionality and molecules. Unless otherwise stated,
QUANTUM ESPRESSO [42] and BERKELEYGW [3] have been
used to perform the DFT and GW calculations, respectively.
At the DFT level the calculations have been performed us-
ing norm-conserving pseudopotentials [43] and plane-wave
basis. A detailed description of the computational protocol
employed in these calculations is reported in the Supporting
Information (SI) [44].
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FIG. 2. Band structures of (a) silicon and (b) β-SiC, along with the error introduced by the static subspace approximation. The solid blue
line is obtained without approximation and the red dashed employs the static subspace approximation with an eigenvalue screening threshold
teig = 0.01. The zero reference in both cases has been set to the valence band maximum (VBM). The inset blow-ups show the band structure
around the �15c point to show the difference between the reference and approximate results.

A. Semiconductors

As a prototype for condensed phase semiconductor sys-
tems, we chose silicon (Si) and silicon carbide (SiC). These
systems are among the most heavily studied semiconduc-
tors and this choice allows us to carefully assess our re-
sults compared to several previously reported calculations.
We considered the cubic phase of silicon carbide (3C-SiC)
also referred to as β-SiC. The experimental lattice parameter
has been used for both silicon (5.43 Å) and SiC (4.36 Å).
More details about the computational setups can be found in
the SI [44].

The results obtained with the static subspace approxima-
tion compared to the reference calculation (without approx-
imation) are summarized in Figs. 2 and 3. In particular,
Figs. 2(a) and 2(b) show the quasiparticle band structures as
obtained with and without the approximation, in both cases
the zero is set to the valence band maximum (VBM). Even
using a relatively high screening threshold for the eigenvalues
(in this case teig = 0.01), the plots show excellent agreement
over the whole range of considered energies and wave vectors.
The inset in both cases shows a blow-up of the band structure
around a specific region in order to highlight the deviation
between reference and approximate results. By analyzing the
error as signed deviation, i.e., taking the actual difference
between each approximate/reference pair of quasiparticle

energies calculated, we observed that for both systems con-
sidered, for a given teig the error is of similar magnitude
over the whole range of energies and the approximate results
approach the reference value from above by reducing teig (see
SI [44] for more details). The mean absolute error (MAE) over
all calculated quasiparticle energies is reported for silicon in
Fig. 3 as a function of teig. The corresponding analysis for SiC
is reported in SI [44]. In the plots, the label “relative” refers to
the case for which the quasiparticle energies have been shifted
with respect to the Fermi level, whereas “absolute” refers to
the error calculated for the unshifted quasiparticle energies.
As shown in the plots the error converges much faster with
respect to teig for the relative energy than for the absolute
energy. This is related to the fact that the static subspace ap-
proximation (see also SI [44]) introduces a uniform error over
the different quasiparticles corrections that is compensated
when calculating energy differences. These results show that
excellent approximate GW solutions can be obtained using a
screening threshold on the eigenvalues between 10−3 to 10−2,
and that the error can be further reduced by decreasing the
value of teig.

Figure 4 presents the computational effort of our calcula-
tion as a function of the eigenvalue screening threshold (teig).
The computational savings are measured with the reduction in
the time to solution (percentage of the reference calculation).
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FIG. 3. For silicon the mean absolute error between the reference
and approximate results calculated for 196 quasiparticle energies
is reported as a function of teig, in this case, the error is reported
with (relative) and without (absolute) shift with respect to the Fermi
level.

The reduction in the number of eigenvectors, that is, the size
of the subspace basis, is also given as a function of teig. As
shown in the plots, the full-frequency calculation can be sped
up by a factor ranging from four to twenty by choosing teig

between 10−3 and 10−2. This shows that, using the static
subspace approximation, it is possible to control the error in a
systematic way and perform full-frequency calculations with a
computational effort being of the same order as using a PPM,
for which only the static inverse dielectric matrix is computed.

Tables III and IV report the quasiparticle energies eval-
uated at high-symmetry points for silicon and β-SiC, re-
spectively. Additionally Table V gives the analogous results

calculated for aluminum arsenide (AlAs) obtained with the
same procedure described in SI [44]. Note in this case that the
wave functions employed in the evaluation of the self-energy
have been generated over k grids centered at each of the high-
symmetry points and both LDA and PBE [50] have been con-
sidered as a DFT starting point for G0W0. For comparison, the
tables have been supplemented with available experimental
and calculated data, the latter reported for a comparable level
of theory. In general good agreement, within a few hundreds
meVs, is achieved for silicon and AlAs while larger deviations
are observed for SiC, especially when moving away from the
valence band maximum.

Finally the full-frequency dependence of the self-energy,
real Re�nk(ω) and imaginary Im�nk(ω) parts, are reported
in Fig. 5 for the first eight bands of silicon. These quantities
can be used to construct the spectral function [3] (see also
SI [44]), which can be compared directly with photoemission
spectra and other experimental band structure parameters. The
possibility to calculate such quantities over a large range of
frequencies requires, within the contour deformation formal-
ism, the evaluation of the inverse dielectric matrix over a sim-
ilarly large grid of frequencies on the real axis, which is made
particularly inexpensive by using the static subspace approxi-
mation. The results reported in Fig. 5, obtained by employing
an eigenvalues screening threshold of 10−2, are in excellent
agreement with previously reported calculation [39,51].

B. Metals: Copper

As the next benchmark, we focus our analysis on a metallic
system, bulk copper. In contrast to insulators and semiconduc-
tors, metallic systems require additional considerations in the
evaluation of the dielectric matrix due to the absence of a gap
between occupied and empty states, leading to the possibility
for intra-band transitions, that is, excitation within the same
band. A fine k-point grid must therefore be used to accurately
sample the possible transitions across the Fermi surface [57],
as described in SI [44].

Due to the large number of q/k points involved in the
calculations, which has a large impact on the eigenspectrum

FIG. 4. For silicon (a) and β-SiC (b), blue columns show the number of eigenvectors in percentage of the total that are retained in the
computation of the inverse dielectric matrix (ε) as a function of the eigenvalue screening threshold (teig ). Red columns report the percentage
reduction of the time to solution for the evaluation of ε with respect to the reference calculation (no approximation).
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TABLE III. G0W0 quasiparticle energies calculated at high-symmetry points for silicon, in eV, relative to the VBM. We employed an
eigenvalue threshold of teig = 10−3. The second line reports the mean-field DFT functional employed as the starting point for the GW
calculation. All theoretical calculations use a full-frequency treatment of the dielectric matrix. Experimental values reported as quoted in
Ref. [45].

This Work Ref. [45] Ref. [46] Ref. [29] Ref. [4] Ref. [47]

LDA PBE LDA LDA LDA PBE PBE Exp.

�1v −11.54 −11.61 −11.57 −11.57 −11.64 −11.83 −12.5 ± 0.6
�′

25v 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�15c 3.32 3.30 3.24 3.23 3.25 3.32 3.25 3.40, 3.05
�′

2c 3.82 4.07 3.94 3.96 3.92 4.23, 4.1
X1v −7.53 −7.57 −7.67 −7.57 −7.75
X4v −2.77 −2.83 −2.80 −2.83 −2.88 −2.96 −2.86 −2.9, −3.3 ± 0.2
X1c 1.46 1.40 1.34 1.35 1.36 1.37 1.28 1.25
X4c 10.45 10.59 10.54
L′

2v −9.33 −9.38 −9.39 −9.35 −9.38 −9.3 ± 0.4
L1v −6.69 −6.76 −6.86 −6.78 −6.93 −6.7 ± 0.2
L′

3v −1.18 −1.20 −1.17 −1.20 −1.23 −1.21 −1.21 −1.2 ± 0.2, −1.5
L1c 2.17 2.23 2.14 2.18 2.21 2.29 2.14 2.1, 2.4 ± 0.15
L3c 4.17 4.11 4.05 4.06 4.00 4.15 ± 0.1

of the symmetrized susceptibility, the static subspace approx-
imation has been tested by fixing the number of included
eigenvectors rather than selecting them by using a screening
threshold on the eigenvalues. This choice is more reason-
able and results in better systematic convergence in metals
compared to the case of semiconductors. The error intro-
duced by the static subspace approximation has been tested
by performing the calculation of ten quasiparticle energies
(roughly five above and below the Fermi level depending on
the k point considered) for a set of five k points, including
�, X , L, and two additional points in the vicinity of the
Fermi surface. Figure 6 reports the convergence of the mean
absolute error as a function of the number of eigenvectors
included in the subspace basis (ranging between 10%–30% of

the total). As in the previous section, the error is reported as
relative and absolute to distinguish between the case for which
the quasiparticle energies have and have not been shifted
with respect to the Fermi level respectively. The plot shows
a systematic reduction of the error introduced by the static
subspace approximation by increasing the subspace basis and
that mean error below 20 meV can be achieved by using less
than 30% of the total number of eigenvectors.

Figure 7 reports the PBE and GW quasiparticle band struc-
tures computed employing a cutoff of 45 Ry and employing
100 eigenvectors in the subspace basis. Details of the energy
level positioning at high-symmetry points are reported in
Table VI compared with experiments and previously reported
calculations.

TABLE IV. G0W0 quasiparticle energies calculated at high-symmetry points for β-SiC, in eV, relative to the VBM. We employ an
eigenvalue threshold teig = 10−3. The second line reports the mean-field DFT functional employed as the starting point for the GW calculation.
PPM indicates that the calculations have been obtained within a plasmon-pole model. The other theoretical calculations use a full-frequency
treatment of the dielectric matrix. Experimental values reported as quoted in Ref. [48].

This Work Ref. [29] Ref. [4] Ref.[47] Ref. [48] Ref. [49]

LDA PBE LDA PBE PBE LDA-PPM LDA-PPM Exp.

�1v −15.41 −15.52 −15.54 −15.69 −16.08 −16.44
�′

15v 0.00 0.00 0.00 0.00 0.00 0.00 0.00
�1c 7.31 7.27 7.26 7.52 7.35 7.19 7.35 7.4
�15c 8.45 8.50 8.10 8.18 8.35 7.75
X1v −10.37 −10.58 −10.46 −10.96 −11.24
X3v −7.80 −7.87 −8.17 −8.44 −8.64
X5v −3.28 −3.33 −3.47 −3.46 −3.30 −3.53 −3.62 −3.4
X1c 2.57 2.42 2.31 2.28 2.42 2.19 2.34 2.39, 2.42
X3c 5.54 5.52 5.41 5.23 5.59 5.2(3)
L1v −11.85 −12.03 −12.06 −12.46 −12.75
L1v −8.53 −8.64 −8.92 −9.19 −9.42
L3v −1.12 −1.12 −1.10 −1.16 −1.10 −1.21 −1.21 −1.15
L1c 6.53 6.54 6.43 6.37 6.62 6.30 6.53 6.35
L3c 8.52 8.50 8.32 8.07 8.57 8.55
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TABLE V. G0W0 quasiparticle energies calculated at high-symmetry points for AlAs, in eV, relative to the VBM. We employed an
eigenvalue threshold teig = 10−3. The second line reports the mean-field DFT functional employed as a starting point for the GW calculation.
PPM indicates that the calculations have been obtained within a plasmon-pole model. The other theoretical calculations use a full-frequency
treatment of the dielectric matrix. Experimental values reported as quoted in Ref. [48].

This Work Ref. [29] Ref. [4] Ref. [47] Ref. [48]

LDA PBE LDA PBE PBE LDA-PPM Exp.

�1v −11.68 −11.70 −11.66 −11.82 −11.51
�′

15v 0.00 0.00 0.00 0.00 0.00 0.00
�1c 2.90 2.99 2.96 2.99 2.99 2.74 3.13
�15c 5.13 5.07 5.07 5.06
X1v −9.75 −9.70 −9.77 −9.67
X2v −5.31 −5.37 −5.37 −5.55
X5v −2.18 −2.22 −2.20 −2.35 −2.17 −2.27 −2.41
X1c 2.27 2.14 2.13 2.01 2.31 2.16 2.23
X3c 3.12 3.03 3.08 3.04
L1v −10.31 −10.28 −10.27 −10.19
L1v −5.44 −5.52 −5.82 −5.69
L3v −0.84 −0.86 −0.90 −0.90 −0.82 −0.87
L1c 2.96 2.96 3.02 2.94 3.08 2.84 2.36
L1c 5.58 5.49 5.63 5.52

Compared to experiments, the calculated positioning of the
d bands are systematically (∼0.6 eV) above the experimen-
tal values while the widths, with the exception of L3 − L1,
are very well reproduced. Opposite is the case of the s/p
bands which show a reversed trend, that is systematically
below experiments. These results are consistent with previous
studies [58,59] showing that spurious self-interactions in the
GW approximation may result in upward shifts of highly
localized d states up to 0.6 eV and downward shifts for
dispersed states at the valence or conduction band edges up
to 0.3 eV.

Compared to other theoretical results, our calculations are
in good agreement with those reported by Liu et al. [17], both
for the level positioning and widths. Additionally, compared
to the results reported in Ref. [17], we also found good
agreement in the overall profile of the band structure (see
Fig. 7) and for the computed spectral function of the Green’s
function at � (see SI [44]).

C. Systems with reduced dimensionality: Monolayer MoS2

Another class of materials that is computationally demand-
ing for the ab initio GW approach is that of systems with
reduced dimensionality, which includes molecules, clusters,
nanotubes, nanoribbons, slabs, and monolayer materials. The
two main challenges associated with these materials is that
(1) when performing calculations in a PW basis, we need to
construct large enough supercells and truncate the Coulomb
potential to avoid spurious interactions between the repeated
cell [60], and (2) systems with reduced dimensionality often
display a strong spatial variation of the dielectric screening,
which manifests in a slow convergence of these calculations
with k-point sampling.

To assess the validity of our approximation in these sys-
tems, we perform a thorough analysis on the quasiparticle
properties of monolayer MoS2, a prototypical quasi-two-
dimensional (quasi-2D) semiconductor, which belongs to the

FIG. 5. The frequency dependence of the matrix elements of the time-ordered self-energy operator for the first eight bands of silicon
evaluated at the � point. The zero of the frequency axis is set to the center of the gap. (a) and (b) show the real and imaginary part of
〈ψnk|�(ω)|ψnk〉, respectively. The reported calculations are in excellent agreement with previous works [39,51].

125128-9



MAURO DEL BEN et al. PHYSICAL REVIEW B 99, 125128 (2019)

TABLE VI. Quasiparticle energies calculated at high-symmetry points for copper, in eV, relative to the Fermi level. Experimental values
taken from Ref. [56]. For calculation parameters see Ref. [44].

PBE G0W0 Ref. [17] Ref. [55] Exp.

Position d bands �12 −2.21 −2.16 −2.11 −2.81 −2.78
X5 −1.49 −1.42 −1.45 −2.04 −2.01
L3 −1.63 −1.57 −1.58 −2.24 −2.25

�12 − �25′ 0.85 0.72 0.69 0.60 0.81
Widths of d bands X5 − X3 2.98 2.73 2.60 2.49 2.79

X5 − X1 3.43 3.20 3.10 2.90 3.17
L3 − L3 1.45 1.36 1.26 1.26 1.37
L3 − L1 3.52 3.29 3.16 2.83 2.91

Position of s/p bands �1 −9.44 −9.45 −9.18 −9.24 −8.60
L2′ −1.04 −1.14 −1.02 −0.57 −0.85

L gap L1c − L2′ 4.73 4.99 4.98 4.76 4.95

family of transition metal dichalcogenides. This system dis-
plays several features which make GW calculations computa-
tionally demanding. Because the VBM and CBM of this ma-
terial have a considerable amount of 4d character, it is crucial
to include the exchange interaction originating from semicore
4s and 4p states to accurately compute the quasiparticle band
gap. This also reflects in a relatively large dielectric cutoff
of ∼35 Ry being necessary to converge GW calculations
for these systems. In addition, because of the reduced dimen-
sionality, the dielectric function changes rapidly in the q → 0

FIG. 6. Mean absolute error between the reference and approxi-
mate results for a total of 50 quasiparticle energies as a function of
the number of eigenvectors included in the subspace basis. The error
is reported with (relative) and without (absolute) shift with respect
to the Fermi level. The calculations have been performed with a
cutoff of 32 Ry and including 300 and 1000 bands in the calculation
of the inverse dielectric matrix and self-energy, respectively. The
considered number of eigenvectors ranges between 10%–30% of the
full basis.

limit, [61,62] which require very fine k-point sampling to
converge GW calculations [63].

To address the slow convergence with respect to k-point
sampling, we employ the recently developed nonuniform neck
subsampling (NNS) method [64], which efficiently captures
the sharp features of the dielectric matrix, by evaluating
ε−1(q) on a nonuniform q grid. With the exception of the

FIG. 7. Band structure for copper obtained by employing a cutoff
of 45 Ry and including 400 and 1000 bands in the calculation of
the inverse dielectric matrix and self-energy, respectively. The size
of the subspace basis has been fixed to 100 eigenvectors (∼25% of
the total). A uniform k grid [52] of 16 × 16 × 16 and 32 × 32 ×
32 have been used for the evaluation of ε−1 for q �= 0 and q → 0
respectively. Calculations performed with a norm-conserving scalar-
relativistic pseudopotential [53,54] including semicore s and p states.
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FIG. 8. Convergence study of monolayer MoS2 with the static subspace approximation. (a) G0W0 quasiparticle band structure (red lines)
of monolayer MoS2 obtained with Nb = 400 eigenvectors, and the corresponding LDA band structure (blue dashed lines). (b) Convergence
of the error of the quasiparticle evaluated at the highest valence and lowest conduction band states at K and � with respect to the screening
threshold on the eigenvalues teig. We show the absolute error on the � → K and K → K band gaps (green and blue triangles respectively),
the mean absolute error (red circles) and the maximum absolute error (black squares). The percentage labels in the plot shows the fraction of
eigenvectors retained in the calculations for each teig.

utilization of the NNS technique, the remaining calculation
parameters for the evaluation of the full-frequency quasipar-
ticle corrections (cutoffs, number of bands etc.) are similar to
those employed by Qiu et al. in Ref. [63], except that here
we performed one-shot G0W0 calculations (i.e., without self-
consistently updating the eigenvalues of the Green’s function
G). We note that these calculations have been performed on a
large supercell and with a truncated Coulomb potential [60] to
avoid spurious interactions between repeated supercells along
the confined direction.

We show in Fig. 8(a) the calculated quasiparticle band
structure of monolayer MoS2, for which we used Nb = 400
eigenvectors (∼12% of the total) in the generation of the static
subspace. Spin-orbit interaction was included perturbatively
following Ref. [61]. In addition, in Fig. 8(b), we report the
error in the quasiparticle energies introduced by the static
subspace approximation as a function of the eigenvalue
screening threshold (teig) for both absolute and relative energy
differences.

From Fig. 8(b), it is clear that we can obtain very good con-
vergence of the quasiparticle energy of monolayer MoS2 with
an error of just 20 meV in the absolute value and a negligible
error in the energy differences when we keep only 8% of the
eigenvectors. It is interesting to note that, for similar dielectric
cutoffs, the absolute number of eigenvectors Nb necessary to
achieve a given target error for monolayer MoS2 is similar
to that needed in a bulk system such as copper. Hence, the
fact that we only need to keep a much smaller fraction of the
eigenvectors for monolayer MoS2 is likely due to the presence
of a large vacuum region, which increases the size of the
epsilon matrix but brings little additional information on the
dielectric function for the region inside the physical system of

interest. We stress, however, that the presence of the vacuum
may affect the dielectric environment outside the material,
as discussed in Ref. [63]. These results show that the static
subspace approximation is particularly useful for systems
with reduced dimensionality. In fact, for the case of monolayer
MoS2, excellent convergence is achieved by using ∼10% of
the original PW basis size, allowing one to speed up the evalu-
ation of the inverse dielectric matrix by an order of magnitude.

D. Molecules: H2O

As a final benchmark, we perform GW calculations on
a water molecule to test the static subspace approach on a
prototypical quasi-zero-dimensional system. Our GW calcula-
tions use a DFT mean-field starting point with the PBE func-
tional, norm conserving pseudopotential [54,65] and cluster
boundary conditions [66]. The details about the calculation
are reported in the supporting information [44]; additionally,
extensive analysis of convergence issues for isolated systems
in PW-GW implementations (which goes beyond the scope
of this work) can be found in Ref. [67]. Our calculated
value of the HOMO quasiparticle energy is −11.84 eV, which
compares well with previously reported calculations ranging
from −11.8 to −12.1 eV [4,11,18,67,68].

For GW calculations that employ a traditional sum-over-
bands approach, it is well known that the quasiparticle
energies depend sensitively on the cutoff of the dielectric
matrix and the number of bands included in the calcula-
tion, and that these two parameters are interconnected [69].
This is illustrated here for the case of a water molecule
in Fig. 9. An important question therefore is if the static
subspace approximation represents another convergence de-
gree of freedom that must be studied simultaneously with

125128-11



MAURO DEL BEN et al. PHYSICAL REVIEW B 99, 125128 (2019)

FIG. 9. Convergence of the HOMO quasiparticle energy of water
with respect to the number of bands included in the calculation and
the dielectric matrix ε and the screened Coulomb cutoff.

the cutoff of the dielectric matrix and the number of bands,
or if they are independent. Fortunately, we show here that
the subspace approximation is largely independent of other
convergence parameters, which dramatically simplifies GW
calculations within a sum-over-bands approach.

In Fig. 10(a), we show the convergence of the quasiparticle
energies obtained for a fixed number of bands (1600), but
varying the cutoff E ε

cut of the dielectric matrix, as well the
eigenvalue threshold teig for the subspace calculations. We
report the mean absolute error of the quasiparticle energy
computed for four states for a given eigenvalue threshold and

a given dielectric cutoff, relative to the calculation performed
with the same cutoff but without the static subspace approx-
imation. In Fig. 10(b), we report the complementary case,
wherein we fix E ε

cut = 20 Ry but vary the number of bands and
teig, and report the error from the subspace approximation for a
given number of bands. In all cases, even though the absolute
quasiparticle energies change significantly with respect to
dielectric cutoff and number of bands, the error introduced by
the static subspace approximation as a function of teig displays
very little dependence on the cutoff or number of bands em-
ployed. This implies that convergence studies with respect to
teig can be dramatically simplified by performing calculations
with relatively small cutoffs and number of bands to determine
the appropriate value of teig. Once teig is determined for the
desired accuracy of the calculation, one can then use standard
techniques to converge the calculation with respect to the
number of bands and dielectric cutoff, but taking advantage of
the static subspace approximation to make these calculations
more computationally efficient.

In all cases, less than 4% of the total number of eigen-
vectors is sufficient to provide excellent convergence in the
absolute quasiparticle energy of ∼10−3 eV. This represents a
reduction of the basis size that is even larger than that found
for quasi-2D and bulk systems.

V. ZINC OXIDE

Despite the wide use and success of the ab initio GW
approach to predict electronic properties of a large variety of
condensed-phase systems, zinc oxide, an apparently simple
insulator, turned out to be a challenging system for these first-
principle calculations. Most of the difficulties arise from the
presence of shallow Zn-3d states, which give strong covalent
hybridization with valence O-2p states, and the presence of
shallow semicore Zn-3p and 3s states, which also affect the
valence band edges via exchange interactions. For the wurtzite
structure, at the local and semilocal DFT levels, the electronic

FIG. 10. (a) Convergence of the mean absolute error for the quasiparticle states with respect to the truncation threshold on the eigenvalues
teig. Each curve was evaluated with a different cutoff for the dielectric matrix, but with a fixed number of bands (1600). The error is computed
with respect of the calculation performed without the subspace approximation, but for the same cutoff of the dielectric matrix. (b) Similar plot
as in (a), but where each curve was computed with a different number of bands, but with a fixed cutoff for the dielectric matrix of 20 Ry.
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FIG. 11. Convergence study of the GW quasiparticle band gap of ZnO with respect to three interdependent parameters (see the text).
The convergence function is plotted for two fixed parameters (dashed lines) used to produce the data points (discs), and for the extrapolated
parameters (solid lines).

gap is strongly underestimated (0.7–0.9 eV) compared to
experiments (3.6 eV [70,71]), while theoretical results at the
GW level range between 2.3 and 4.5 eV [69,72–81]. Such
a wide spread of results at the GW level, especially when
considering the single-shot G0W0 method, is a direct conse-
quence of the sensitivity of the approximation with respect
to the various calculation parameters for this system. These
include the poor starting point description for the electronic
structure at the local and semilocal DFT levels, the importance
of the core-valence exchange contributions, errors introduced
by linearization procedures, plasmon-pole models, slow con-
vergence with respect to the number of bands included in
the evaluation of the polarizability and self-energy, and slow
convergence with respect to the plane-wave cutoff for the
expansion of the dielectric function. Therefore, because of its
numerical sensitivity, ZnO is an ideal test system to bench-
mark the static subspace approximation.

In this section, we both validate the static subspace ap-
proximation in this computationally challenging system, and
also take advantage of our algorithm to perform highly con-
verged calculations on ZnO. Similarly to the case of the water
molecule, we have verified that, for ZnO, the error resulting
from the static subspace approximation is independent of
the other convergence parameters. We also found that an
eigenvalue screening threshold of teig = 10−3 and a total of
81 frequencies on the real and imaginary axis is sufficient to
converge absolute quasiparticle energies to within better than
10 meV. More details on these calculations are reported in the
supporting information [44].

Apart from these quantities, there are four other con-
vergence parameters that need to be considered in a GW
calculation: the k-point sampling of the BZ, the size of the
dielectric matrix in the PW basis (NG), and the number of
bands included in the evaluation of the dielectric function
(Nε) and self-energy (N�). The first convergence parameter
(k-point sampling) is in most cases independent on the other
three, which are interdependent [82,83]. We perform a con-
vergence study on all of these three parameters including up
to 2000 bands in � and ε, with PW cutoffs up to 100 Ry (see
SI [44] for the detailed analysis).

In order to extrapolate the quasiparticle band gap to the
complete basis set limit (NG → ∞, Nε → ∞, N� → ∞),
we make use of a convergence function that models the quasi-
particle band gap as a function of the three parameters. Our
convergence function is the product of three linear functions
of 1/NG, 1/Nε, and 1/N� , and we fit the six coefficients to
our data. Figure 11 shows a subset of our GW calculations
used in our convergence study, as well as the convergence
function for any two fixed parameters. The extrapolation to
the complete basis set limit gives a ZnO quasiparticle band
gap of Eg = 2.78 eV, which represents our best estimate of
the fully converged gap within respect to all three parameters.

As a final note, we emphasize that the error introduced
by the static subspace approximation in all examined cases
(see SI [44]) is negligibly small—of the order of few meV in
the absolute quasiparticle energies—while the approximation
allows one to speed up these calculations by one order of mag-
nitude. Therefore we expect the static subspace approximation
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to be a valuable technique when dealing with computationally
challenging systems such as ZnO.

VI. CONCLUSIONS

In this paper, we described a method—the static sub-
space approximation—that greatly speeds up the evaluation
of the frequency-dependent part of the polarizability matrix
for G0W0 calculations within the traditional sum-over-states
approach. This is achieved by performing a low-rank ap-
proximation of the static (ω = 0) symmetrized susceptibility
matrix, and subsequently using the subspace formed by the
eigenvectors to compress the relevant plane-wave matrix ele-
ments necessary to compute the polarizability matrix for other
frequencies. This approximation is motivated by the proper-
ties of the eigenspectrum of the dielectric function [21–23]
and is based on the earlier work of Wilson et al. [26,27],
Nguyen and coworkers [28], and Pham et al. [29].

We tested the approximation for a wide variety of systems,
showing that, depending on the dimensionality of the prob-
lem, retaining 5%–25% of the total number of eigenvectors
is enough to obtain excellent accuracy in the evaluation of
the final quasiparticle energies. In addition, we show that
the error in the final quasiparticle energy can be directly
controlled by setting a target eigenvalue threshold. We also
obtain useful rules of thumb, wherein an absolute error of
just a few meV’s can be achieved by keeping eigenvalues up
to a threshold of ∼10−3, while relative quasiparticle energies
typically converge with a threshold of ∼10−2.

We also show that the error introduced by the static
subspace approximation is largely independent of the error
introduced by other convergence parameters, such as the
number of bands used to represent the Green’s function in

its spectral form, and the plane-wave cutoff of the dielectric
matrix. This is particularly important for converging GW
calculations, since it shows that the error introduced by the
subspace approximation can be determined with calculations
using a relatively small cutoff for the dielectric matrix and
including a smaller number of bands.

The approach we propose allows one to speed up the
evaluation of G0W0 quasiparticle energies by at least one
order of magnitude compared to the standard approaches,
making the cost of a FF calculation of the same order as that
based on a plasmon-pole model. This open the possibility not
only to study large systems at the FF-GW level, but also to
perform systematic convergence studies of complex materials.
We show this by successfully applying the method to study the
quasiparticle energies of zinc oxide, a system that is difficult
to treat within the ab initio GW approach. The algorithm
described in this paper has been implemented and is available
in the BERKELEYGW software package [3].
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